Optimizing Urban Land-Use Through Deep Reinforcement Learning: A Case Study in Hangzhou for Reducing Carbon Emissions
Abstract
Share and Cite
Shen, J.; Zheng, F.; Chen, T.; Deng, W.; Bellotti, A.; Tesema, F.B.; Lucchi, E. Optimizing Urban Land-Use Through Deep Reinforcement Learning: A Case Study in Hangzhou for Reducing Carbon Emissions. Land 2025, 14, 2368. https://doi.org/10.3390/land14122368
Shen J, Zheng F, Chen T, Deng W, Bellotti A, Tesema FB, Lucchi E. Optimizing Urban Land-Use Through Deep Reinforcement Learning: A Case Study in Hangzhou for Reducing Carbon Emissions. Land. 2025; 14(12):2368. https://doi.org/10.3390/land14122368
Chicago/Turabian StyleShen, Jie, Fanghao Zheng, Tianyi Chen, Wu Deng, Anthony Bellotti, Fiseha Berhanu Tesema, and Elena Lucchi. 2025. "Optimizing Urban Land-Use Through Deep Reinforcement Learning: A Case Study in Hangzhou for Reducing Carbon Emissions" Land 14, no. 12: 2368. https://doi.org/10.3390/land14122368
APA StyleShen, J., Zheng, F., Chen, T., Deng, W., Bellotti, A., Tesema, F. B., & Lucchi, E. (2025). Optimizing Urban Land-Use Through Deep Reinforcement Learning: A Case Study in Hangzhou for Reducing Carbon Emissions. Land, 14(12), 2368. https://doi.org/10.3390/land14122368

