Economic Modeling of Shelterbelt Land Use on Agricultural Production in Ukraine
Abstract
1. Introduction
- (1)
- To quantify the impact of forest shelterbelts on agricultural production in Ukraine, with a specific focus on their effect on crop yield using correlation analysis to assess the relationship between the area of shelterbelts and agricultural output;
- (2)
- To develop a methodology for creating mathematical models of economic indicators for the rational use of forestry land, drawing on best practices from the European Union for use in other countries;
- (3)
- To evaluate the forestry rent generated by these plantations, which could provide a financial incentive for their establishment and maintenance;
- (4)
- To visualize the impact of shelterbelts across different landscapes by employing geoinformation modeling.
2. Materials and Methods
2.1. Database
2.2. Mathematical Modeling
- –
- population, million people (X1);
- –
- area of the EU member state, thousand km2 (X2);
- –
- area of forestry land, thousand hectares (X3);
- –
- ownership of forestry land (private (X4), state (X5));
- –
- forest area suitable for commodity production, thousand hectares (X6);
- –
- total production of forestry goods and services at actual prices, million euros (X7);
- –
- gross value added at basic prices, million euros (X8);
- –
- gross growth of fixed capital in forestry, million euros (X9);
- –
- number of employees in forestry, thousand people (X10);
- –
- relative indicators: (1) number of employees in forestry per 1 ha of forest area suitable for commodity production (X11); (2) labor productivity indicators (volume of felled trees, thousand m3/number of employees) (X12), (gross value added, thousand euros/number of employees (X13)).
2.3. Statistical Analysis
2.4. Study Area
2.5. Geoinformation Modeling
3. Results
4. Discussion
4.1. Deforestation Drivers and Land Use Policy: A Statistical Analysis of EU and Ukrainian Forestry Trends
4.2. Forest Shelterbelts and Farm Structures: Drivers of Agricultural Output in Ukraine
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The World Bank. Forests and the Environment. 2018. Available online: http://www.worldbank.org/en/topic/forests/brief/forest-and-environment (accessed on 2 March 2021).
- Sansores Guerrero, E.A.; Navarrete Marneou, J.E. The Concept of Circular Bioeconomy: Origin, Evolution and Perspectives for México. Rev. Econ. (Univ. Autón. Yucatán) 2025, 42, 61–92. [Google Scholar]
- Kharytonov, M.; Martynov, O.; Pidlisnyuk, V. Sustainable land and water management in post-war Ukraine: Challenges and priorities. Land Use Policy 2024, 137, 106974. [Google Scholar]
- European Commission. EU Support for the Recovery and Modernization of Ukraine’s Irrigation Systems. DG AGRI Report. 2023. Available online: https://agriculture.ec.europa.eu (accessed on 1 January 2025).
- Mishra, A.K.; Singh, V.P.; Jain, M.K. Climate change impacts on irrigation water demand and agricultural productivity. J. Hydrol. 2022, 608, 127611. [Google Scholar] [CrossRef]
- Bazile, D.; Turek, A.; Vyshpolsky, F. Rehabilitation of irrigation and drainage systems in Eastern Europe: Lessons for Ukraine. Irrig. Drain. 2021, 70, 42–58. [Google Scholar] [CrossRef]
- Kuzmych, L. (Ed.) Sustainable Soil and Water Management Practices for Agricultural Security; IGI Global: Hershey, PA, USA, 2024; p. 662. [Google Scholar] [CrossRef]
- Rokochinskiy, A.; Kuzmych, L.; Volk, P. (Eds.) Handbook of Research on Improving the Natural and Ecological Conditions of the Polesie Zone; IGI Global: Hershey, PA, USA, 2023. [Google Scholar] [CrossRef]
- Eurostat. Forests, Forestry and Logging. 2018. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Forests,_forestry_and_logging#Forests_and_other_wooded_land (accessed on 2 March 2021).
- Prykhodko, N.; Koptyuk, R.; Kuzmych, L.; Kuzmych, A. Formation and predictive assessment of drained lands water regime of Ukraine Polesie Zone. In Handbook of Research on Improving the Natural and Ecological Conditions of the Polesie Zone; IGI Global: Hershey, PA, USA, 2023; pp. 51–74. [Google Scholar] [CrossRef]
- Rokochinskiy, A.; Bilokon, W.; Frolenkova, N.; Prykhodko, N.; Volk, P.; Tykhenko, R.; Openko, I. Implementation of modern approaches to evaluating the effectiveness of innovation for water treatment in irrigation. J. Water Land Dev. 2020, 45, 119–125. [Google Scholar] [CrossRef]
- European Commission. Climate Action. Land-Based Emissions. Available online: https://climate.ec.europa.eu/eu-action/land-use-sector_en (accessed on 2 March 2025).
- Deng, R.; Guo, Q.; Jia, M.; Wu, Y.; Zhou, Q.; Xu, Z. Extraction of farmland shelterbelts from remote sensing and their spatial characteristics. Front. For. Glob. Change 2023, 2, 1247032. [Google Scholar] [CrossRef]
- Borovics, A.; Ábri, T.; Benke, A.; Illés, G.; Király, É.; Kovács, Z.; Schiberna, E.; Keserű, Z. Carbon credit revenue assessment for shelterbelt plantings: Implications for financing agroforestry. Agrofor. Syst. 2025, 99, 214. [Google Scholar] [CrossRef]
- Koptyuk, R.; Rokochinskiy, A.; Volk, P.; Turcheniuk, V.; Frolenkova, N.; Pinchuk, O.; Tykhenko, R.; Openko, I. Ecological efficiency evaluation of water regulation of drained land in changing climatic conditions. Ecol. Eng. Environ. Technol. 2023, 24, 210–216. [Google Scholar] [CrossRef]
- Eurostat. Forests, Forestry and Logging—Statistics Explained; 2022/2023 update; EU forestry statistics and trends useful for cross-country comparison; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Kuzmych, L.; Furmanets, O.; Usatyi, S.; Kozytskyi, O.; Mozol, N.; Kuzmych, A.; Polishchuk, V.; Voropai, H. Water Supply of the Ukrainian Polesie Ecoregion Drained Areas in Modern Anthropogenic Climate Changes. Arch. Hydro-Eng. Environ. Mech. 2022, 69, 79–96. [Google Scholar] [CrossRef]
- Openko, I.; Tykhenko, R.; Tsvyakh, O.; Shevchenko, O.; Stepchuk, Y.; Rokochinskiy, A.; Volk, P.; Zhyla, I.; Chumachenko, O.; Kryvoviaz, Y.; et al. Improvement of economic mechanism of rational use of forest resources using discrete mathematics method. Eng. Rural Dev. 2023, 22, 544–552. [Google Scholar] [CrossRef]
- Openko, I.; Tykhenko, R.; Shevchenko, O.; Tsvyakh, O.; Stepchuk, Y.; Rokochinskiy, A.; Volk, P. Mathematical modeling of economic losses caused by forest fire in Ukraine. In Proceedings of the 21st International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 25–27 May 2022; pp. 22–27. [Google Scholar] [CrossRef]
- Rokochinskiy, A.; Volk, P.; Frolenkova, N.; Tykhenko, O.; Shalai, S.; Tykhenko, R.; Openko, I. Differentiation in the value of drained land in view of variable conditions of its use. J. Water Land Dev. 2021, 51, 174–180. [Google Scholar] [CrossRef]
- Ukhshina, A.; Kireyeu, V.; Dronin, N. Agricultural drought risks in Eastern Europe and adaptation needs under future climate scenarios. Sci. Total Environ. 2024, 908, 168189. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Nita, I.A. Global drylands expansion and implications for agricultural water availability. Glob. Planet. Change 2022, 211, 103772. [Google Scholar] [CrossRef]
- Davis, J.; Whistance, L.; Lewis, D. The role and benefits of shelterbelts on farms: Review and practice guidance. Agrofor. Res. Rep. 2023, 117, 2. [Google Scholar]
- Agroforestry Network/AgroforestryUkraina. Seven Reasons to Invest in Agroforestry for Post-War Reconstruction and Resilience in Ukraine; Policy brief; Vi Agroforestry: Stockholm, Sweden, 2024. [Google Scholar]
- UNECE/FAO. Forest Products Annual Market Review 2023–2024; UNECE Timber Section report; United Nations Economic Commission for Europe (UNECE): Geneva, Switzerland, 2024. [Google Scholar]
- Enescu, C.M.; Mihalache, M.; Ilie, L.; Dinca, L.; Constandache, C.; Murariu, G. Agricultural benefits of shelterbelts and windbreaks: Mechanisms and evidence. Agriculture 2025, 15, 1204. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, B.; Deng, R.; Li, Y.; Li, J.; Jiang, J.; Tang, J. Integrating remote sensing and mechanistic models for shelterbelt detection and effect estimation. Remote Sens. Environ. 2025, 374, 110822. [Google Scholar] [CrossRef]
- Mayrinck, R.C.; Laroque, C.P.; Amichev, B.Y.; Van Rees, K. Above-and below-ground carbon sequestration in shelterbelt trees: A review. Forests 2019, 10, 922. [Google Scholar] [CrossRef]
- Matsala, M.; Odruzhenko, A.; Sydorenko, S.; Sydorenko, S. War impacts on protective plantations and the role of satellite monitoring in eastern Ukraine. Land 2025, 578, 122361. [Google Scholar]
- Fonseka, D.; Jha, N.; Jeyakumar, P. Soil nutrient enrichment and carbon accumulation associated with shelterbelts in pastoral systems. Sci. Total Environ. 2025, 393, 126938. [Google Scholar]
- Kovalenko, A.; Sakal, O.; Tretiak, N.; Skolskyi, I.; Shtohryn, H.; Tretiak, R. Field shelterbelts: Current state, land use issues and perspective in Ukraine. Sci. Papers. Ser. E. Land Reclam. 2021, 10, 229–240. [Google Scholar]
- Pimenow, S.; Pimenowa, O.; Moldavan, L.; Prus, P.; Sadowska, K. Agroforestry as a Resource for Resilience in the Technological Era: The Case of Ukraine. Resources 2025, 14, 152. [Google Scholar] [CrossRef]
- Maliuha, V.M. Stages of restoring the fertility of eroded soils under the influence of protective forest plantations. For. Agrofor. 2008, 112, 118–124. [Google Scholar]
- Sovakov, O. Field Protective Effectiveness of Forest Shelterbelts within Right-Bank Forest-Steppe. J. Natl. Univ. Life Environ. Sci. Ukr. 2009, 135, 274–282. [Google Scholar]
- Openko, I.; Shevchenko, O.; Zhuk, O.; Kryvoviaz, Y.; Tykhenko, R. Geoinformation modelling of forest shelterbelts effect on pecuniary valuation of adjacent farmlands. Int. J. Green Econ. 2017, 11, 139–153. [Google Scholar] [CrossRef]
- Duran Zuazo, V.H.; Pleguezuelo, C.R.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef]
- Maliuha, V.; Minder, V. Age periods of development of protective forest stands in the restoration of eroded ravine-gully lands. Ukr. J. For. Wood Sci. 2021, 12, 6–21. [Google Scholar] [CrossRef]
- Tykhenko, O.; Tykhenko, O.; Martyn, A.; Tykhenko, R.; Openko, I.; Shevchenko, O.; Tsvyakh, O.; Rokochynskiy, A.; Volk, P. Impact of Comparative Assessment of Soil Quality on Determining the Value of Agricultural Land (Ukraine). Ecol. Eng. Environ. Technol. 2024, 25, 252–261. [Google Scholar] [CrossRef]
- Varchenko, O.M.; Utechenko, D.M.; Khakhula, L.I.; Slobodeniuk, N.O.; Byba, V.V.; Portyan, M.O.; Shepel, T.P. Key Components of Sustainable Development of the Agricultural Sector of Ukraine. Int. J. Supply Chain. Manag. 2019, 8, 874–884. [Google Scholar]
- Kovalenko, A.; Tsybulska, J.; Sakal, O.; Krupin, V.; Bratinova, M. Ukraine’s Agricultural and Rural Development: Transformation of Strategic Planning within the Processes of European Integration. Eur. Res. Stud. J. 2025, 28, 739–760. [Google Scholar] [CrossRef]
- Kovalenko, V.; Sheludko, S.; Aranchyi, V.; Chumak, V.; Doroshenko, O. Export of agricultural products as a determinant of currency security of Ukrainian economy. Agric. Resour. Econ. Int. Sci. E-J. 2024, 10, 56–79. [Google Scholar] [CrossRef]
- Zavgorodnya, T.P. Econometrics; KNEU: Kyiv, Ukraine, 2006. [Google Scholar]
- Nazyr, A.K. Multifactor models for the conservation of forest resources in the Russian Federation. Stat. Math. Methods Econ. 2015, 6, 76–79. Available online: https://cyberleninka.ru/article/n/mnogofaktornye-modeli-sohrannosti-lesnyh-resursov-rossiyskoy-federatsii (accessed on 2 March 2025).
- Pashko, A.O. Statistical Data Analysis; Electronic edition; Kyiv National University: Kyiv, Ukraine, 2019; p. 55. Available online: https://csc.knu.ua/media/filer_public/19/d5/19d56780-269a-4eef-bb3b-48ec8da23859/intelektualnaobrobkadanikh.pdf (accessed on 2 March 2021).
- Malashevskyi, M.; Palamar, A.; Malanchuk, M.; Bugaienko, O. The possibilities of sustainable land use formation in Ukraine. Geod. Cartogr. 2020, 46, 83–88. [Google Scholar] [CrossRef]
- Committee on World Food Security. Sustainable Development Goals (SDGs). 2018. Available online: http://www.fao.org/cfs/home/activities/sdgs/en/ (accessed on 2 March 2021).
- Fedchyshyn, D.; Ignatenko, I.; Shulga, M.; Danilik, D. Legal problems of rational use and protection of agricultural land in Ukraine. Justicia 2022, 27, 43–52. [Google Scholar] [CrossRef]
- Moldavan, L.; Pimenowa, O.; Wasilewski, M.; Wasilewska, N. Crop rotation management in the context of sustainable development of agriculture in Ukraine. Agriculture 2024, 14, 934. [Google Scholar] [CrossRef]
- Tian, M.; Hong, M.; Wang, J. Land resources, market-oriented reform and high-quality agricultural development. Econ. Change Restruct. 2023, 56, 4165–4197. [Google Scholar] [CrossRef]
- Moskalenko, A.; Ivanov, D.; Shyian, N.; Khalep, Y. Environmental features of land use formation in the regions of Ukraine. Agric. Resour. Econ. 2023, 9, 287–301. [Google Scholar] [CrossRef]
- Vyshkvarkova, E.V.; Rybalko, E.A.; Baranova, N.V.; Voskresenskaya, E.N. Favorability Level Analysis of the Sevastopol Region’s Climate for Viticulture. Agronomy 2020, 10, 1226. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Xie, J.; Wang, Z.; Yang, S.; Zhang, Z.; Qi, S.; Li, Y. Optimizing the quantity and spatial patterns of farmland shelter forests increases cotton productivity in arid lands. Agric. Ecosyst. Environ. 2020, 292, 106832. [Google Scholar] [CrossRef]
- Kuzmych, L. (Ed.) Balancing Water-Energy-Food Security in the Era of Environmental Change; IGI Global: Hershey, PA, USA, 2024; p. 582. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, J.; Xing, Z. Assessment of the effects of shelterbelts on crop yields at the regional scale in Northeast China. Agric. Syst. 2016, 143, 49–60. [Google Scholar] [CrossRef]
- Celma, S.; Sanz, M.; Ciria, P.; Maliarenko, O.; Prysiazhniuk, O.; Daugaviete, M.; Lazdina, D.; von Cossel, M. Yield performance of woody crops on marginal agricultural land in Latvia, Spain and Ukraine. Agronomy 2022, 12, 908. [Google Scholar] [CrossRef]
- State Statistics Service of Ukraine. Average Prices of Agricultural Products SOLD by Enterprises (1996–2023). Available online: https://www.ukrstat.gov.ua/operativ/operativ2020/sg/scr/scr_rp_96-20ue.xls (accessed on 2 March 2023).
- Rudevska, V.; Gutsul, T.; Tesak, O.; Kyselov, O. Investment attractiveness of agriculture in Ukraine: Factors and prospects for the future. Futurity Econ. Law 2024, 4, 22–37. [Google Scholar]
- Rudenko, L.; Maruniak, E.; Golubtsov, O.; Lisovskyi, S.; Chekhniy, V.; Farion, Y. Reshaping rural communities and spatial planning in Ukraine. Eur. Countrys. 2017, 9, 594–610. [Google Scholar] [CrossRef]
- Dorosh, Y.; Derkulskyi, R.; Dorosh, A.; Kabuzan, A. Restrictions on the use of agricultural land in Ukraine for the protection of water resources. Acta Sci. Pol. Adm. Locorum 2023, 22, 511–524. [Google Scholar] [CrossRef]
- Chetvertak, T.; Diuzhykova, T.; Hryshko, S.; Nepsha, O.; Tutova, H. The precipitation levels during the warmest quarter are the primary factor influencing the spatial distribution of Opatrum sabulosum. Biosyst. Divers. 2025, 33, 2507. [Google Scholar] [CrossRef]
- Moroz, V. Analysis and forecasting of the scale and impact of forest fires on ecosystems of Ukraine. Ukr. J. For. Wood Sci. 2024, 3, 43–60. [Google Scholar] [CrossRef]
- Halecki, W.; Bedla, D. Global wheat production and threats to supply chains in a volatile climate change and energy crisis. Resources 2022, 11, 118. [Google Scholar] [CrossRef]
- Shubravska, O.; Prokopenko, K.; Krupin, V.; Wojciechowska, A. Challenges and opportunities for the development of Ukrainian agriculture in the context of EU enlargement. Stud. Agric. Econ. 2024, 126, 57–65. [Google Scholar] [CrossRef]
- Baldynyuk, V.; Tomashuk, I. The impact of european integration processes on the development of rural areas of Ukraine. Norw. J. Dev. Int. Sci. 2021, 56-3, 29–40. [Google Scholar]
- Orlova, N.; Sidenko, Y. Development of governmet agricultural policy and advisory system of Ukraine in the conditions of European integration. State Form. 2025, 1, 350–361. [Google Scholar] [CrossRef]
- Tkachuk, O.; Pantsyreva, H.; Mazur, K.; Chabanuk, Y.; Zabarna, T.; Pelekh, L.; Viter, N. Ecological problems of the functioning of field protective forest belts of Ukrainian Forest Steppe. Ecol. Eng. Environ. Technol. 2025, 26, 149–161. [Google Scholar] [CrossRef]
- Stoiko, N.; Cherechon, O.; Dudych, H.; Kostyshyn, O.; Soltys, O. Planning of rational use of forest resources in Ukraine based on the improvement of ecosystem services. Ukr. J. For. Wood Sci. 2024, 2, 135–152. [Google Scholar] [CrossRef]
- Sydorenko, S.; Gumeniuk, V.; De Miguel-Díez, F.; Soshenskiy, O.; Budzinskyi, I.; Koren, V. Assessment of the surface forest fuel load in the Ukrainian Polissia. Fire Ecol. 2024, 20, 35. [Google Scholar] [CrossRef]
- Halecki, W.; Kalarus, K.; Kowalczyk, A.; Garbowski, T.; Chudziak, J.; Grabowska-Polanowska, B. Reducing Water Resource Pressure and Determining Gross Nitrogen Balance of Agricultural Land in the European Union. Appl. Sci. 2025, 15, 9216. [Google Scholar] [CrossRef]




| Y | 0.09 | 0.62 | 0.89 | −0.36 | 0.36 | 0.85 | 0.53 | 0.8 | 0.91 | 0.47 | −0.37 | 0.52 | 0.71 |
| 0.73 | 0.41 | −0.18 | 0.18 | 0.47 | 0.64 | 0.51 | 0.3 | 0.62 | −0.13 | 0.04 | 0.26 | ||
| 0.88 | −0.27 | 0.27 | 0.9 | 0.75 | 0.82 | 0.71 | 0.72 | −0.34 | 0.29 | 0.59 | |||
| −0.31 | 0.31 | 0.99 | 0.68 | 0.88 | 0.91 | 0.65 | −0.41 | 0.43 | 0.7 | ||||
| −1 | −0.31 | −0.13 | −0.29 | −0.44 | 0.03 | 0.24 | −0.38 | −0.55 | |||||
| 0.31 | 0.13 | 0.29 | 0.44 | −0.03 | −0.24 | 0.38 | 0.55 | ||||||
| 0.74 | 0.9 | 0.87 | 0.65 | −0.53 | 0.43 | 0.73 | |||||||
| 0.92 | 0.65 | 0.76 | −0.26 | 0.37 | 0.65 | ||||||||
| 0.86 | 0.73 | −0.38 | 0.46 | 0.79 | |||||||||
| 0.61 | −0.44 | 0.64 | 0.66 | ||||||||||
| 0.12 | 0.05 | 0.31 | |||||||||||
| −0.34 | −0.27 | ||||||||||||
| 0.66 |
| Performance Indicators | Factor Indicators | ||||
|---|---|---|---|---|---|
| Name | Units of Measurement | Symbol | Name | Units of Measurement | Symbol |
| Area of forest cover loss in EU countries | thousand hectares | Y | Country area | thousand km2 | |
| Area of forestry land | thousand hectares | ||||
| Area of suitable forests for commodity production | thousand hectares | ||||
| Total production of forestry goods and services at actual prices | million euros | ||||
| Gross value added at basic prices | million euros | ||||
| Gross fixed capital growth in forestry | million euros | ||||
| Volume of felled trees, thousand m3/number of employees | thousand m3/thousand people | ||||
| Gross value added, thousand euros/number of employees | thousand m3/thousand people | ||||
| Area of forests suitable for commodity production in EU countries | thousand hectares | Area of forest cover loss in EU countries | thousand hectares | Y | |
| Total production of forestry goods and services (at actual prices) | million euros | ||||
| Gross value added at basic prices | million euros | ||||
| Gross fixed capital growth in forestry | million euros | ||||
| Number of employees in forestry | thousand people | ||||
| Gross value added, thousand euros/number of employees | thousand euros/thousand people | ||||
| Total production of forestry goods and services at actual prices in EU countries | million euros | Area of forest cover loss in EU countries | thousand hectares | Y | |
| Gross value added at basic prices | million euros | ||||
| Gross fixed capital growth in forestry | million euros | ||||
| Number of employees in forestry | thousand people | ||||
| Gross value added, thousand euros/number of employees | thousand euros/thousand people | ||||
| Gross value added at basic prices | million euros | Area of forest cover loss in EU countries | thousand hectares | Y | |
| Modeling Indicator | Regression Equation | Darbin-Watson Criterion (DW) | Coefficient of Determination | Fisher’s F-Criterion |
|---|---|---|---|---|
| Area of forest cover loss in EU countries (Y → X in subsequent regressions) | 1.711 | 0.949 | 50.55 | |
| Area of forests suitable for commodity production in EU countries (X6 → for the equation we take the symbol Y6) | 1.751 | 0.883 | 31.92 | |
| Total production of forestry goods and services at actual prices in EU countries (X7 → for the equation we take the symbol Y7) | 1.651 | 0.961 | 136.958 | |
| Gross value added (in actual prices) in the forest sector of the EU economy (X8 → for the equation we take the symbol Y8) | 1.896 | 0.632 | 43.023 |
| Variables | Coeff. | Std.Err. | t | p | R2 |
|---|---|---|---|---|---|
| Constant | 9.321 | 45.035 | 0.20697 | 0.83901 | |
| The total area of agricultural land leased under contracts, thsd. ha | 0.024359 | 0.036337 | 0.67036 | 0.51354 | 0.38536 |
| Wheat, centner/ha | 0.0013061 | 0.0065606 | 0.19909 | 0.84506 | 0.54912 |
| Peas, centner/ha | 0.18311 | 0.10976 | 1.6683 | 0.11745 | 0.57495 |
| Barley, centner/ha | 0.0053723 | 0.013176 | 0.40772 | 0.68964 | 0.47749 |
| All agricultural holdings, thsd. ha | −0.059483 | 0.037635 | −1.5805 | 0.13631 | 0.38705 |
| Including private farms, thsd. ha | 0.097974 | 0.0418 | 2.3439 | 0.034361 | 0.59283 |
| Households, thsd. ha | −0.00023671 | 0.032672 | −0.0072452 | 0.99432 | 0.43447 |
| Harvested area of all agricultural holdings, thsd. ha | 0.047728 | 0.044379 | 1.0755 | 0.30035 | 0.45299 |
| Indicator Name | Area of Forest Shelterbelts, thsd. ha | ||
|---|---|---|---|
| R | |||
| The total area of agricultural land leased under contracts, thsd. ha | 0.73 | ||
| Yields | Wheat, centner/ha | 0.78 | |
| Peas, centner/ha | 0.80 | ||
| Barley, centner/ha | 0.73 | ||
| Planted area under annual and biennial agricultural crops | Agricultural crops | All agricultural holdings, thsd. ha | 0.73 |
| Including private farms, thsd. ha | 0.87 | ||
| Households, thsd. ha | 0.71 | ||
| Cereals and leguminous crops | Harvested area of all agricultural holdings, thsd. ha | 0.78 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Openko, I.; Tykhenko, R.; Kuzmych, L.; Tykhenko, O.; Tsvyakh, O.; Rokochynskyi, A.; Volk, P.; Halecki, W. Economic Modeling of Shelterbelt Land Use on Agricultural Production in Ukraine. Land 2025, 14, 2236. https://doi.org/10.3390/land14112236
Openko I, Tykhenko R, Kuzmych L, Tykhenko O, Tsvyakh O, Rokochynskyi A, Volk P, Halecki W. Economic Modeling of Shelterbelt Land Use on Agricultural Production in Ukraine. Land. 2025; 14(11):2236. https://doi.org/10.3390/land14112236
Chicago/Turabian StyleOpenko, Ivan, Ruslan Tykhenko, Lyudmyla Kuzmych, Olha Tykhenko, Oleg Tsvyakh, Anatolii Rokochynskyi, Pavlo Volk, and Wiktor Halecki. 2025. "Economic Modeling of Shelterbelt Land Use on Agricultural Production in Ukraine" Land 14, no. 11: 2236. https://doi.org/10.3390/land14112236
APA StyleOpenko, I., Tykhenko, R., Kuzmych, L., Tykhenko, O., Tsvyakh, O., Rokochynskyi, A., Volk, P., & Halecki, W. (2025). Economic Modeling of Shelterbelt Land Use on Agricultural Production in Ukraine. Land, 14(11), 2236. https://doi.org/10.3390/land14112236

