Study on Spatio-Temporal Evolution Characteristics of Vegetation Carbon Sink in the Hexi Corridor, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Data for Vegetation Carbon Sink Analysis
2.2.2. Meteorological Data
2.3. Research Methods
2.3.1. Trend Analysis
2.3.2. Hurst Exponent Analysis
2.3.3. Partial Correlation Analysis
2.3.4. Ridge Regression Analysis
3. Results
3.1. Change Characteristics of GPP and Meteorological Factors from 2003 to 2022
3.1.1. Inter-Annual and Intra-Annual Change Characteristics of GPP
3.1.2. Spatio-Temporal Characteristics of Meteorological Factors
3.2. Response of GPP to Meteorological Factors
3.2.1. Response of GPP to Air Temperature
3.2.2. Response of GPP to Precipitation
3.2.3. Response of GPP to VPD
3.3. The Spatial Change Trend and Future Change Trend of GPP
3.3.1. Spatial Distribution Pattern of GPP
3.3.2. Spatial Change Trend of GPP
3.3.3. Future Change Trends of GPP
4. Discussion
5. Conclusions
- (1)
- GPP in the Hexi Corridor exhibits gradient characteristics of being higher in the east and lower in the west, and higher in the south and lower in the north. The average annual total from 2003 to 2022 increased from 256.3 to 316.3 gC/m2. The growth rate in the growing season (3.38 gC/m2/yr) was significantly higher than that in the non-growing season (0.47 gC/m2/yr), reflecting that climate warming has extended the photosynthetic window. GPP in oasis areas showed continuous and stable growth, while growth in desert areas was slow due to drought constraints. In the future, GPP in high-altitude permafrost regions and desert areas may continue to decline.
- (2)
- The regulation of GPP by air temperature and precipitation showed significant spatial differentiation. In the oasis zones of the corridor, increased air temperature drives carbon sink gain by prolonging the growing season; sufficient artificial irrigation facilities reduce the contribution rate of precipitation to 20% to 30%. The contribution of VPD ranges from 0% to 40%, and a 0.1 KPa decrease in VPD could increase GPP by approximately 1.0 to 1.5 gC/m2. In desert areas, high air temperatures exacerbate water stress, inhibit vegetation activities, and bring the risk of carbon loss. GPP in desert areas is highly sensitive to precipitation and VPD: the contribution rate of precipitation to GPP changes reaches 60% to 80%; the contribution of VPD to GPP changes can exceed 80%, and when VPD > 2.5 KPa, it is prone to triggering water stress, inhibiting carbon absorption capacity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Lu, H.; Ma, Z.; Lu, Y.; Wang, W.; Zhu, J.; Wu, C.; Zhu, H.; Chen, M.; Sun, Y. Predicting CO2 emissions through partitioned land use change simulations considering urban hierarchy. Int. J. Digit. Earth 2024, 17, 2405541. [Google Scholar] [CrossRef]
- Fang, H.; Guo, S.; Yang, C.; Yuan, B.; Li, C.; Pan, X.; Tang, P.; Du, P. Influence of urban functional zone change on land surface temperature using multi-source geospatial data: A case study in Nanjing City, China. Sustain. Cities Soc. 2024, 115, 105874. [Google Scholar] [CrossRef]
- Lixin, W. Paris Agreement: A roadmap to tackle climate and environment challenges. Natl. Sci. Rev. 2016, 3, 153. [Google Scholar] [CrossRef]
- Doblas-Reyes, F.J.; Sorensson, A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B. Linking Global to Regional Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Coops, N.C.; Ferster, C.J.; Waring, R.H.; Nightingale, J. Comparison of three models for predicting gross primary production across and within forested ecoregions in the contiguous United States. Remote Sens. Environ. 2008, 113, 680–690. [Google Scholar] [CrossRef]
- Wolf, S.; Keenan, T.F.; Fisher, J.B.; Baldocchi, D.D.; Desai, A.R.; Richardson, A.D.; Scott, R.L.; Law, B.E.; Litvak, M.E.; Brunsell, N.A.; et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl. Acad. Sci. USA 2016, 113, 5880–5885. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, G.; Du, H.; Mao, F.; Xu, L.; Li, X.; Liu, L. Combined MODIS land surface temperature and greenness data for modeling vegetation phenology, physiology, and gross primary production in terrestrial ecosystems. Sci. Total Environ. 2020, 726, 137948. [Google Scholar] [CrossRef] [PubMed]
- Swinbank, W. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J. Atmos. Sci. 1951, 8, 135–145. [Google Scholar] [CrossRef]
- Otaki, E.; Matsui, T. Infrared device for simultaneous measurement of fluctuation of atmosphere CO2 and water vapor. Bound. -Layer Meteorol. 1982, 24, 109–119. [Google Scholar] [CrossRef]
- Brach, E.; Desjardins, R.; St Amour, G. Open path CO2 analyser. J. Phys. E Sci. Instrum. 1981, 14, 1415. [Google Scholar] [CrossRef]
- Wofsy, S.; Goulden, M.; Munger, J.; Fan, S.-M.; Bakwin, P.; Daube, B.; Bassow, S.; Bazzaz, F. Net exchange of CO2 in a mid-latitude forest. Science 1993, 260, 1314–1317. [Google Scholar] [CrossRef]
- Lieth, H. Modeling the primary productivity of the world. In Primary Productivity of the Biosphere; Springer: Berlin/Heidelberg, Germany, 1975; pp. 237–263. [Google Scholar]
- Yuan, W.; Cai, W.; Liu, D.; Dong, W. Satellite-based vegetation production models of terrestrial ecosystem: An overview. Adv. Earth Sci. 2014, 29, 541–550, (In Chinese with English abstract). [Google Scholar]
- Wang, F.; Chen, J.M.; Gonsamo, A.; Zhou, B.; Cao, F.; Yi, Q. A two-leaf rectangular hyperbolic model for estimating GPP across vegetation types and climate conditions. J. Geophys. Res. Biogeosci. 2014, 119, 1385–1398. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, J.; Xu, X.; Dong, Z. A GPP assimilation model for the southeastern Tibetan Plateau based on CO2 eddy covariance flux tower and remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 213–225. [Google Scholar] [CrossRef]
- Zhang, Q.; Ficklin, D.L.; Manzoni, S.; Wang, L.; Way, D.; Phillips, R.P.; Novick, K.A. Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit. Environ. Res. Lett. 2019, 14, 074023. [Google Scholar] [CrossRef]
- Lin, X.; Chang, L.; Feng, D. Remote-sensing estimation of vegetation gross primary productivity and its spatiotemporal changes in Qinghai Province from 2000 to 2019. Acta Prataculturae Sin. 2021, 30, 16–27, (In Chinese with English abstract). [Google Scholar]
- Zhang, M.; Chen, E.; Zhang, C.; Han, Y. Impact of seasonal global land surface temperature (LST) change on gross primary production (GPP) in the early 21st century. Sustain. Cities 2024, 110, 105572. [Google Scholar]
- Xu, Y.; Zhao, C.; Guo, Z.; Dai, Q.; Pan, Y.; Zheng, Z. Spatio-temporal variation of gross primary productivity and synergistic mechanism of influencing factors in the eight economic zones, China. China Environ. Sci. 2023, 43, 477–487, (In Chinese with English abstract). [Google Scholar]
- Wang, X.-H.; Liu, X.-F.; Sun, G.-P.; Liang, J. Response of vegetation productivity to drought in the Qinling-Daba Mountains, China from 2001 to 2020. Chin. J. Appl. Ecol. 2022, 33, 2105–2112, (In Chinese with English abstract). [Google Scholar]
- He, Y.; Dong, W.; Guo, X.; Li, D. The terrestrial growth and its relationship with climate in China based on the MODIS data. Acta Ecol. Since 2007, 27, 5086–5092, (In Chinese with English abstract). [Google Scholar]
- Yan, M.; Li, Z.Y.; Tian, X.; Chen, E.X.; Gu, C. Remote sensing estimation of gross primary productivity and its response to climate change in the upstream of Heihe River Basin. Chin. J. Plant Ecol. 2016, 40, 1–12, (In Chinese with English abstract). [Google Scholar]
- Zhang, Y.; Xiao, X.; Guanter, L.; Zhou, S.; Ciais, P.; Joiner, J.; Sitch, S.; Wu, X.; Nabel, J.; Dong, J. Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production. Sci. Rep. 2016, 6, 39748. [Google Scholar] [CrossRef] [PubMed]
- Gui-Rui, Y.; Xian-Jin, Z.; Yu-Ling, F.; Hong-Lin, H.; Qiu-Feng, W.; Xue-Fa, W.; Xuan-Ran, L.; Lei-Ming, Z.; Li, Z.; Wen, S.; et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Change Biol. 2013, 19, 798–810. [Google Scholar]
- Chen, Y.; Li, Y.; Wang, X.; Yao, C.; Niu, Y. Risk and countermeasures of global change in ecologically vulnerable regions of China. J. Desert Res. 2022, 42, 148–158, (In Chinese with English abstract). [Google Scholar]
- Yun, N.; Caixia, C. Analysis of the Relationship Between Plant Growth and Moisture Variation in the Desert Area of Hexi Corridor. J. Landsc. Res. 2018, 10, 122–127. [Google Scholar]
- Yang, F.; Zhang, W.; Zhang, F.; Wang, C. Climate characteristics and variation in the Qilian Mountains from 1961 to 2022. Arid Zone Res. 2024, 41, 1627–1638, (In Chinese with English abstract). [Google Scholar]
- Cheng, P.; Kong, X.; Luo, H.; Li, B.; Wang, Y. Climate change and its runoff response in the middle section of the Qilian Mountains in the past 60 years. Arid Land Geogr. 2020, 43, 1192–1201, (In Chinese with English abstract). [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1948. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Legates, D.R.; Outcalt, S.I. Detection of climate transitions and discontinuities by Hurst rescaling. Int. J. Clim. 2021, 42, 4753–4772. [Google Scholar] [CrossRef]
- Rust, H.; Mestre, O.; Venema, V. Fewer jumps, less memory: Homogenized temperature records and long memory. J. Geophys. Res. Atmos. 2008, 113, D19110. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Gan, S.; Wang, Q. Estimation for a class of linear regression models. J. Cent. China Norm. Univ. 2021, 55, 351–355, (In Chinese with English abstract). [Google Scholar]
- Christian, K.; Patrick, M.; Erika, H. Four ways to define the growing season. Ecol. Lett. 2023, 26, 1277–1292. [Google Scholar] [CrossRef]
- Wang, K.; Sun, J.; Cheng, G.; Jiang, H. Effect of altitude and latitude on surface air temperature across the Qinghai-Tibet Plateau. J. Mt. Sci. 2011, 8, 808–816. [Google Scholar] [CrossRef]
- Wang, Z.; Che, T.; Dai, L.; Jiang, Y. Comparative analysis on the spatiotemporal changes of vegetation and drivers in inland river basins of the Hexi Corridor, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 8112–8124. [Google Scholar] [CrossRef]
- Shen, Z.; Yong, B. Downscaling the GPM-based satellite precipitation retrievals using gradient boosting decision tree approach over Mainland China. J. Hydrol. 2021, 602, 126803. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Ren, H.; Du, J.; Yang, R.; Yang, Q.; Liu, H. Thoughts and suggestions on oasis ecological construction and agricultural development in Hexi Corridor. Bull. Chin. Acad. Sci. 2023, 38, 424–434, (In Chinese with English abstract). [Google Scholar]
- Wang, X.; Liu, S.; Chen, X.; Wang, X.; Wang, B.; Wan, X. Dynamic Changes and Driving Factors of Oasis in Hexi Corridor. J. Desert Res. 2019, 39, 212–219, (In Chinese with English abstract). [Google Scholar]
- Wang, S.; Zhang, Y.; Ju, W.; Qiu, B.; Zhang, Z. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Sci. Total Environ. 2021, 755, 142569. [Google Scholar] [CrossRef] [PubMed]
- Goulden, M.L.; Anderson, R.G.; Bales, R.C.; Kelly, A.E.; Meadows, M.; Winston, G.C. Evapotranspiration along an elevation gradient in California’s Sierra Nevada. J. Geophys. Res. Biogeosciences 2012, 117, G03028. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Guo, J.; Shen, Y. Spatiotemporal Evolution and Impact Mechanisms of Gross Primary Productivity in Tropics. Forests 2024, 15, 913. [Google Scholar] [CrossRef]
- Yang, L.J.; Yang, H.N.; Yang, Y.C.; Wei, W.; Pan, J.H. Spatial-temporal evolution of ecological environment quality in Hexi Corridor based on Coupled Coordination Model. China Popul. Resour. Environ. 2020, 30, 102–112, (In Chinese with English abstract). [Google Scholar]
- Kutsch, W.L.; Liu, C.; Hörmann, G.; Herbst, M. Spatial heterogeneity of ecosystem carbon fluxes in a broadleaved forest in Northern Germany. Glob. Change Biol. 2005, 11, 70–88. [Google Scholar] [CrossRef]
- Yu, T.; Sun, R.; Xiao, Z.; Zhang, Q.; Liu, G.; Cui, T.; Wang, J. Estimation of global vegetation productivity from global land surface satellite data. Remote Sens. 2018, 10, 327. [Google Scholar] [CrossRef]
- Xu, L.; Saatchi, S.S.; Yang, Y.; Myneni, R.B.; Frankenberg, C.; Chowdhury, D.; Bi, J. Satellite observation of tropical forest seasonality: Spatial patterns of carbon exchange in Amazonia. Environ. Res. Lett. 2015, 10, 084005. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.; Ma, D.; Wei, C.; Peng, B.; Du, W. Spatiotemporal variation characteristics and influencing factors analysis of the GPP in the Tibetan Plateau. Remote Sens. Technol. Appl. 2024, 39, 727–740, (In Chinese with English abstract). [Google Scholar]
- Ma, D.; Wu, X.; Yin, G.; Li, Z.; Wang, J.; Tang, R.; Zeng, Q.; Mu, C. Detection, mapping, and interpretation of the main drivers of the Arctic GPP change from 2001 to 2019. Clim. Dyn. 2024, 62, 723–738. [Google Scholar] [CrossRef]
- Beatriz, M.; Sergio, S.; Manuel, C.; Javier, G.F.; Amparo, G.M. Exploring Ecosystem Functioning in Spain with Gross and Net Primary Production Time Series. Remote Sens. 2022, 14, 1310. [Google Scholar]
- Wei, Y.; Hu, Y.; Li, X.; Liao, J.; Fu, R.; Hu, Z.; Yang, Y. Spatial pattern of net primary productivity and asymmetric response of precipitation in global grassland ecosystems. Ecol. Environ. Sci. 2024, 33, 1827–1836, (In Chinese with English abstract). [Google Scholar]
- Chen, Z.; Yu, G.; Ge, J.; Sun, X.; Hirano, T.; Saigusa, N.; Wang, Q.; Zhu, X.; Zhang, Y.; Zhang, J. Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region. Agric. For. Meteorol. 2013, 182, 266–276. [Google Scholar] [CrossRef]
- Fu, Z.; Ciais, P.; Makowski, D.; Bastos, A.; Stoy, P.C.; Ibrom, A.; Knohl, A.; Migliavacca, M.; Cuntz, M.; Šigut, L. Uncovering the critical soil moisture thresholds of plant water stress for European ecosystems. Glob. Change Biol. 2022, 28, 2111–2123. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Wang, G.; Yang, Y.; Wu, H.; Wu, H.; Zhang, H.; Xia, Y. Temperature Thresholds for Carbon Flux Variation and Warming-Induced Changes. J. Geophys. Res. Atmos. 2023, 128, e2023JD039747. [Google Scholar] [CrossRef]













Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Jia, S.; Li, C.; Chen, W.; Liang, Y.; Chen, Y. Study on Spatio-Temporal Evolution Characteristics of Vegetation Carbon Sink in the Hexi Corridor, China. Land 2025, 14, 2215. https://doi.org/10.3390/land14112215
Yang Q, Jia S, Li C, Chen W, Liang Y, Chen Y. Study on Spatio-Temporal Evolution Characteristics of Vegetation Carbon Sink in the Hexi Corridor, China. Land. 2025; 14(11):2215. https://doi.org/10.3390/land14112215
Chicago/Turabian StyleYang, Qiang, Shaokun Jia, Chang Li, Wenkai Chen, Yutong Liang, and Yuanyuan Chen. 2025. "Study on Spatio-Temporal Evolution Characteristics of Vegetation Carbon Sink in the Hexi Corridor, China" Land 14, no. 11: 2215. https://doi.org/10.3390/land14112215
APA StyleYang, Q., Jia, S., Li, C., Chen, W., Liang, Y., & Chen, Y. (2025). Study on Spatio-Temporal Evolution Characteristics of Vegetation Carbon Sink in the Hexi Corridor, China. Land, 14(11), 2215. https://doi.org/10.3390/land14112215

