Ecological Risk Assessment of the Aksu River Basin Based on Ecological Service Value
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Model Method
3. Results
3.1. Changes in Land Use Types in the Aksu River Basin
3.2. The Changes in the Ecological Service Value of the Aksu River Basin
3.3. Identification of Ecological Problems in the Aksu River Basin
4. Discussion
4.1. Identification of Key Ecological Restoration Zones Based on ESV
4.2. Strategies to Enhance ESV in Key Restoration Zones
4.3. Ecological Governance Measures and Restoration Planning
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, J.; Biswas, A.; Jiang, Q.; Zhao, R.; Hu, J.; Hu, B.; Shi, Z. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Tang, X.; Xu, L.-P.; Zhang, Z.-Y.; Lv, X. Effects of glacier melting on socioeconomic development in the Manas River basin, China. Nat. Hazards 2013, 66, 533–544. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, W.; Wei, H.; Zhang, P.; Ren, J.; Gao, Z.; Ulgiati, S.; Kong, W.; Dong, X. Evaluation and simulation of the impact of land use change on ecosystem services based on a carbon flow model: A case study of the Manas River Basin of Xinjiang, China. Sci. Total Environ. 2019, 652, 117–133. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Ge, Y.; Li, H.; Han, F.; Hu, X.; Tian, W.; Tian, Y.; Pan, X.; Nian, Y.; et al. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins. J. Geophys. Res. Atmospheres 2018, 123, 890–914. [Google Scholar] [CrossRef]
- Huang, F.; Chunyu, X.; Zhang, D.; Chen, X.; Ochoa, C.G. A framework to assess the impact of ecological water conveyance on groundwater-dependent terrestrial ecosystems in arid inland river basins. Sci. Total Environ. 2020, 709, 136155. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fang, G.; Li, W. Large Hydrological Processes Changes in the Transboundary Rivers of Central Asia. J. Geophys. Res. Atmos. 2018, 123, 5059–5069. [Google Scholar] [CrossRef]
- Huang, F.; Ochoa, C.G.; Chen, X.; Cheng, Q.; Zhang, D. An entropy-based investigation into the impact of ecological water diversion on land cover complexity of restored oasis in arid inland river basins. Ecol. Eng. 2020, 151, 105865. [Google Scholar] [CrossRef]
- Shafroth, P.B.; Schlatter, K.J.; Gomez-Sapiens, M.; Lundgren, E.; Grabau, M.R.; Ramírez-Hernández, J.; Rodríguez-Burgueño, J.E.; Flessa, K.W. A large-scale environmental flow experiment for riparian restoration in the Colorado River Delta. Ecol. Eng. 2017, 106, 645–660. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Wang, H.; Gui, D.; Liu, Q.; Feng, X.; Qu, J.; Zhao, J.; Wang, G.; Wei, G. Vegetation coverage precisely extracting and driving factors analysis in drylands. Ecol. Inform. 2024, 79, 102409. [Google Scholar] [CrossRef]
- González, E.; González-Sanchis, M.; Cabezas, Á.; Comín, F.A.; Muller, E. Recent Changes in the Riparian Forest of a Large Regulated Mediterranean River: Implications for Management. Environ. Manag. 2010, 45, 669–681. [Google Scholar] [CrossRef]
- Natural Capital Project. InVEST 3.14.2 User’s Guide. Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, and Stockholm Resilience Centre. [WWW Document]. 2022. Available online: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/zh/index.html (accessed on 8 April 2024).
- Cao, T.; Yi, Y.; Liu, H.; Yang, Z. Integrated ecosystem services-based calculation of ecological water demand for a macrophyte-dominated shallow lake. Glob. Ecol. Conserv. 2020, 21, e00858. [Google Scholar] [CrossRef]
- Chen, L.; Wei, W. Spatiotemporal Changes in Land Use and Habitat Quality in A Typical Dryland Watershed of Northwest China. Ecol. Environ. Sci. 2022, 31, 1909–1918. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment; World Resources Institute (Eds.) Ecosystems and Human Well-Being: Opportunities and Challenges for Business and Industry; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Hu, S.; Ma, R.; Sun, Z.; Ge, M.; Zeng, L.; Huang, F.; Bu, J.; Wang, Z. Determination of the optimal ecological water conveyance volume for vegetation restoration in an arid inland river basin, northwestern China. Sci. Total Environ. 2021, 788, 147775. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Xu, H.; Shi, W.; Zhang, Q. Regional climate change and its effects on the runoff of Manas River, Xinjiang, China. Environ. Earth Sci. 2011, 64, 2203–2213. [Google Scholar] [CrossRef]
- Tao, H.; Gemmer, M.; Song, Y.; Jiang, T. Ecohydrological responses on water diversion in the lower reaches of the Tarim River, China. Water Resour. Res. 2008, 44, W08422. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes De Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, X.; Feng, M.; Nian, Y.; Huang, L.; Xie, T.; Zhang, K.; Chen, F.; Huang, W.; Chen, J.; et al. High agricultural water consumption led to the continued shrinkage of the Aral Sea during 1992–2015. Sci. Total Environ. 2021, 777, 145993. [Google Scholar] [CrossRef]
- Liu, Q.; Dai, H.; Gui, D.; Hu, B.X.; Ye, M.; Wei, G.; Qin, J.; Zhang, J. Evaluation and optimization of the water diversion system of ecohydrological restoration megaproject of Tarim River, China, through wavelet analysis and a neural network. J. Hydrol. 2022, 608, 127586. [Google Scholar] [CrossRef]
- Stone, R. Saving Iran’s great salt lake. Science 2015, 349, 1044–1047. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Bodin, Ö.; Liu, J.; Zhang, M.; Li, X. Alignment of social and ecological structures increased the ability of river management. Sci. Bull. 2019, 64, 1318–1324. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, J.; Ling, H.; Han, F.; Kong, Z.; Wang, W. Function zoning based on spatial and temporal changes in quantity and quality of ecosystem services under enhanced management of water resources in arid basins. Ecol. Indic. 2022, 137, 108725. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.P.; Chen, X.; Bao, A.M.; Zhou, M. Simulation-based optimization method for water resources management in Tarim River Basin, China. Procedia Environ. Sci. 2010, 2, 1451–1460. [Google Scholar] [CrossRef]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Cao, Y.; Sun, H.; Li, Q. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef]
- Ling, H.; Guo, B.; Yan, J.; Deng, X.; Xu, H.; Zhang, G. Enhancing the positive effects of ecological water conservancy engineering on desert riparian forest growth in an arid basin. Ecol. Indic. 2020, 118, 106797. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, G.; Gui, D.; Liu, Y.; Kotb Abd-Elmabod, S.; Wei, G. Precise ecological restoration under water diversions-groundwater-ecosystem interactions in drylands. J. Hydrol. 2024, 628, 130601. [Google Scholar] [CrossRef]
- Liu, R.; Dong, X.; Wang, X.; Zhang, P.; Liu, M.; Zhang, Y. Study on the relationship among the urbanization process, ecosystem services and human well-being in an arid region in the context of carbon flow: Taking the Manas river basin as an example. Ecol. Indic. 2021, 132, 108248. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Li, Y.; Xu, B.; Li, Y.; Wan, Y. Impact of LULC in Coastal Cities on Terrestrial Carbon Storage and Ecosystem Service Value: A Case Study of Liaoning Province. Sustainability 2025, 17, 2889. [Google Scholar] [CrossRef]
- Duan, L.; Yang, S.; Xiang, M.; Li, W.; Li, J. Spatiotemporal evolution and driving factors of ecosystem service value in the Upper Minjiang River of China. Sci. Rep. 2024, 14, 23398. [Google Scholar] [CrossRef]
- Li, Y.; Wei, M.; Zhou, R.; Jin, H.; Chen, Y.; Hong, C.; Duan, W.; Li, Q. Identifying priority restoration areas based on ecological security pattern: Implications for ecological restoration planning. Ecol. Indic. 2025, 174, 113486. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Zhang, J.; Wang, K.; Wu, X.; Xu, L. Simulated glacier responses to temperature and precipitation trends in a snowmelt-dominated river basin. Ecol. Indic. 2019, 106, 105492. [Google Scholar] [CrossRef]
- Werden, L.K.; Alvarado, J.P.; Zarges, S.; Calderón, M.E.; Schilling, E.M.; Gutiérrez, L.M.; Powers, J.S. Using soil amendments and plant functional traits to select native tropical dry forest species for the restoration of degraded Vertisols. J. Appl. Ecol. 2018, 55, 1019–1028. [Google Scholar] [CrossRef]
- Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial Differentiation and Driving Mechanisms in Ecosystem Service Value of Arid Region: A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Rastogi, M.; Kolur, S.M.; Burud, A.; Sadineni, T.; Sekhar, M.; Kumar, R.; Rajput, A. Advancing Water Conservation Techniques in Agriculture for Sustainable Resource Management: A review. J. Geogr. Environ. Earth Sci. Int. 2024, 28, 41–53. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Z.; Duan, L.; Wang, Z.; Zhao, Y.; Zhang, Q.; Dai, M.; Liu, H.; Zheng, X.; Sun, Y. Response of the groundwater system in the Guanzhong Basin (central China) to climate change and human activities. Hydrogeol. J. 2018, 26, 1429–1441. [Google Scholar] [CrossRef]
- Liu, Q.; Gui, D.; Zhang, L.; Niu, J.; Dai, H.; Wei, G.; Hu, B.X. Simulation of regional groundwater levels in arid regions using interpretable machine learning models. Sci. Total Environ. 2022, 831, 154902. [Google Scholar] [CrossRef]
- Han, S.; Hu, Q.; Yang, Y.; Wang, J.; Wang, P.; Wang, Q. Characteristics and Driving Factors of Drainage Water in Irrigation Districts in Arid Areas. Water Resour. Manag. 2015, 29, 5323–5337. [Google Scholar] [CrossRef]
- Han, Q.; Xue, L.; Liu, Y.; Yang, M.; Chu, X.; Liu, S. Developing a multi-objective simulation-optimization model for ecological water conveyance in arid inland river basins. J. Hydrol. Reg. Stud. 2023, 50, 101551. [Google Scholar] [CrossRef]
- Hao, Y.; Wu, J.; Sun, Q.; Zhu, Y.; Liu, Y.; Li, Z.; Yeh, T.J. Simulating effect of anthropogenic activities and climate variation on Liulin Springs discharge depletion by using the ARIMAX model. Hydrol. Process. 2013, 27, 2605–2613. [Google Scholar] [CrossRef]
- Shang, H.; Wang, W.; Dai, Z.; Duan, L.; Zhao, Y.; Zhang, J. An ecology-oriented exploitation mode of groundwater resources in the northern Tianshan Mountains, China. J. Hydrol. 2016, 543, 386–394. [Google Scholar] [CrossRef]
- Zhang, H.; Ahmed, Z.; Han, W.; Sun, G. Ecosystem service changes and water management in the manas river basin. Water 2024, 16, 3585. [Google Scholar] [CrossRef]
- Halik, Ü.; Aishan, T.; Betz, F.; Kurban, A.; Rouzi, A. Effectiveness and challenges of ecological engineering for desert riparian forest restoration along China’s largest inland river. Ecol. Eng. 2019, 127, 11–22. [Google Scholar] [CrossRef]
- Moody, A.; Hickey, R. Comparing RUSLE LS Calculation Methods Across Varying DEM Resolutions. Modern Geografia. 2025, 20, 97–123. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Sun, L.; Zhang, Y. Assessing the effects of precipitation and temperature changes on hydrological processes in a glacier-dominated catchment. Hydrol. Process. 2015, 29, 4830–4845. [Google Scholar] [CrossRef]
- Liao, S.; Xue, L.; Dong, Z.; Zhu, B.; Zhang, K.; Wei, Q.; Fu, F.; Wei, G. Cumulative ecohydrological response to hydrological processes in arid basins. Ecol. Indic. 2020, 111, 106005. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Q.; Chen, L.; Yu, T. Significance and Effect of Ecological Rehabilitation Project in Inland River Basins in Northwest China. Environ. Manag. 2013, 52, 209–220. [Google Scholar] [CrossRef]
- Jiao, A.; Wang, W.; Ling, H.; Deng, X.; Yan, J.; Chen, F. Effect evaluation of ecological water conveyance in Tarim River Basin, China. Front. Environ. Sci. 2022, 10, 1019695. [Google Scholar] [CrossRef]
- Sun, X.; Li, F. Spatiotemporal assessment and trade-offs of multiple ecosystem services based on land use changes in Zengcheng, China. Sci. Total Environ. 2017, 609, 1569–1581. [Google Scholar] [CrossRef]
- Bowen, G.J.; Cai, Z.; Fiorella, R.P.; Putman, A.L. Isotopes in the Water Cycle: Regional- to Global-Scale Patterns and Applications. Annu. Rev. Earth Planet. Sci. 2019, 47, 453–479. [Google Scholar] [CrossRef]
- Chan, K.K.Y.; Ren, Z.H.; Liu, Y.F.; Song, H.; Bai, Y.Q.; Xu, B. Land Cover Change and Fragmentation Within China’s Ramsar Sites. Remote Sens. 2025, 17, 869. [Google Scholar] [CrossRef]
- Shumilova, O.; Tockner, K.; Thieme, M.; Koska, A.; Zarfl, C. Global Water Transfer Megaprojects: A Potential Solution for the Water-Food-Energy Nexus? Front. Environ. Sci. 2018, 6, 150. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef]
- Cheng, G.; Li, X.; Zhao, W.; Xu, Z.; Feng, Q.; Xiao, S.; Xiao, H. Integrated study of the water–ecosystem–economy in the Heihe River Basin. Natl. Sci. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef]
- Czuba, J.A. A Lagrangian framework for exploring complexities of mixed-size sediment transport in gravel-bedded river networks. Geomorphology 2018, 321, 146–152. [Google Scholar] [CrossRef]
- Hamel, P.; Bryant, B.P. Uncertainty assessment in ecosystem services analyses: Seven challenges and practical responses. Ecosyst. Serv. 2017, 24, 1–15. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, M.; Wang, J. Insights into groundwater salinization from hydrogeochemical and isotopic evidence in an arid inland basin. Hydrol. Process. 2018, 32, 3108–3127. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Franklin, J.F.; Lindenmayer, D.B. Importance of matrix habitats in maintaining biological diversity. Proc. Natl. Acad. Sci. USA 2009, 106, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Everard, M.; Sharma, O.P.; Vishwakarma, V.K.; Khandal, D.; Sahu, Y.K.; Bhatnagar, R.; Singh, J.K.; Kumar, R.; Nawab, A.; Kumar, A.; et al. Assessing the feasibility of integrating ecosystem-based with engineered water resource governance and management for water security in semi-arid landscapes: A case study in the Banas catchment, Rajasthan, India. Sci. Total Environ. 2018, 612, 1249–1265. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, X.; Wu, J.; Qiao, W.; Liu, Y. Planning a water-constrained ecological restoration pattern to enhance sustainable landscape management in drylands. J. Environ. Manag. 2023, 335, 117514. [Google Scholar] [CrossRef] [PubMed]





| Serial Number | Data Name | Time Range | Spatial Accuracy | Source |
|---|---|---|---|---|
| 1 | Basin boundary vector | 2024 | 1 m | Global Change Research Data Publishing&Repository (www.geodoi.ac.cn, accessed on 24 February 2025) |
| 2 | Distribution of river systems | 2024 | 1 m | Global Change Research Data Publishing&Repository (www.geodoi.ac.cn, accessed on 24 February 2025) |
| 3 | Digital Elevation Model (DEM) | 2020 | 30 m | Geospatial Data Cloud (www.gscloud.cn, accessed on 5 March 2025) |
| 4 | Administrative division | 2020 | - | Geospatial Data Cloud (www.gscloud.cn, accessed on 5 March 2025) |
| 5 | Land use type | 1990, 2000, 2010, 2020 | 30 m | National Cryosphere Desert Data Center (www.ncdc.ac.cn, accessed on 5 March 2025) |
| 6 | Average annual surface temperature | 1990, 2000, 2010, 2020 | 30 m | National Earth System Science Data Center (www.geodata.cn, accessed on 5 March 2025) |
| 7 | Annual surface rainfall | 1990, 2000, 2010, 2020 | 30 m | National Earth System Science Data Center (www.geodata.cn, accessed on 5 March 2025) |
| 8 | NDVI Index | 1990, 2000, 2010, 2020 | 30 m | Google Earth Engine (https://code.earthengine.google.com, accessed on 15 March 2025) |
| 9 | Physical and chemical properties of soil | 2020 | 1 km | Harmonized World Soils Database version 2.0 (HWSD v2.0) |
| 10 | Soil salinity index | 1990, 2000, 2010, 2020 | 1 km | Harmonized World Soils Database version 2.0 (HWSD v2.0) |
| 12 | Slope factor | 2020 | 30 m | Geospatial Data Cloud (www.gscloud.cn, accessed on 7 March 2025) |
| 13 | Slope length factor | 2020 | 30 m | Geospatial Data Cloud (www.gscloud.cn, accessed on 7 March 2025) |
| 16 | Rainfall erosion factor | 1990, 2000, 2010, 2020 | 30 m | National Earth System Science Data Center (www.geodata.cn, accessed on 7 March 2025) |
| 17 | Net primary productivity (NPP) | 1990, 2000, 2010, 2020 | 30 m | Google Earth Engine (https://code.earthengine.google.com, accessed on 7 March 2025) |
| Area in 1990 (km2) | Area in 2000 (km2) | Area in 2010 (km2) | Area in 2020 (km2) | |
|---|---|---|---|---|
| Cultivated land | 5876.42 | 6211.50 | 7890.97 | 9167.24 |
| Forest | 27.80 | 41.80 | 49.26 | 80.87 |
| Grassland | 18,911.69 | 18,921.11 | 18,934.84 | 17,816.74 |
| Water bodies | 249.59 | 258.32 | 315.90 | 269.17 |
| Glacier and snow cover | 2061.58 | 2151.95 | 2858.62 | 2349.41 |
| Bare land | 30,172.10 | 29,679.18 | 26,984.91 | 27,160.48 |
| Construction land | 9.79 | 45.08 | 274.45 | 464.91 |
| Wetland | 0.00 | 0.00 | 0.01 | 0.14 |
| Ecosystem Service | 1990 | 2000 | 2010 | 2020 |
|---|---|---|---|---|
| Food production | 10.36 | 10.65 | 12.13 | 12.91 |
| Raw material production | 1.46 | 1.52 | 1.71 | 1.83 |
| Climate regulation | 36.63 | 37.68 | 44.76 | 40.75 |
| Water conservation | 53.24 | 55.32 | 68.13 | 60.32 |
| Soil retention | 41.39 | 41.94 | 44.61 | 44.04 |
| Biodiversity conservation | 35.15 | 35.48 | 37.39 | 36.07 |
| Cultural and recreational services | 10.81 | 11.25 | 14.50 | 12.14 |
| Total ESV | 189.05 | 193.84 | 223.26 | 208.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, G.; Lv, G.; Yang, J. Ecological Risk Assessment of the Aksu River Basin Based on Ecological Service Value. Land 2025, 14, 2092. https://doi.org/10.3390/land14102092
Xia G, Lv G, Yang J. Ecological Risk Assessment of the Aksu River Basin Based on Ecological Service Value. Land. 2025; 14(10):2092. https://doi.org/10.3390/land14102092
Chicago/Turabian StyleXia, Guozhu, Guanghui Lv, and Jianjun Yang. 2025. "Ecological Risk Assessment of the Aksu River Basin Based on Ecological Service Value" Land 14, no. 10: 2092. https://doi.org/10.3390/land14102092
APA StyleXia, G., Lv, G., & Yang, J. (2025). Ecological Risk Assessment of the Aksu River Basin Based on Ecological Service Value. Land, 14(10), 2092. https://doi.org/10.3390/land14102092
