An Integrated Approach to Identify Functional Areas for Bicycle Use with Spatial–Temporal Information: A Case Study of Seoul, Republic of Korea
Abstract
1. Introduction
1.1. Background and Objectives
1.2. Related Work
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Bicycle Network Data
2.2.2. Bicycle OD Data
2.2.3. POI Data
2.3. Methodology
2.3.1. Method for Defining Spatial Units Using the Bicycle Network
2.3.2. Semantic-Based Data Fusion Method Considering Spatial–Temporal Information
- Semantic-Based Data Fusion Method Using Co-Matrix Factorization
- Method for Extracting Dynamic Temporal Information
- Method for Extracting Static Spatial Information
2.3.3. Clustering and Interpretation Approach for Functional Area Identification
3. Results
3.1. Bicycle Network-Based Spatial Unit Definition
3.2. Semantic Data Fusion with Spatial–Temporal Information
3.2.1. Extraction of Dynamic Temporal Information
3.2.2. Extraction of Static Spatial Information
3.2.3. Integrated Semantic-Based Data Fusion
3.3. Clustering Result and Functional Area Identification
- Cluster 1: Residential-Oriented, Medium-Flow with Strong Latent Zone.
- Cluster 2: Dining-Industrial Mixed, Medium-Flow with Weak Latent Zone.
- Cluster 3: Multi-functional Core, High-Flow with Strong Latent Zone.
- Cluster 4: Dining-Oriented, Medium-Flow with Moderate Latent Zone.
- Cluster 5: Industrial–Green Mixed, Low-Flow with Weak Latent Zone.
3.4. Validation of the Identified Functional Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhai, W.; Bai, X.; Shi, Y.; Han, Y.; Peng, Z.-R.; Gu, C. Beyond Word2vec: An approach for urban functional region extraction and identification by combining Place2vec and POIs. Comput. Environ. Urban Syst. 2019, 74, 1–12. [Google Scholar] [CrossRef]
- Chen, T.-H.K.; Qiu, C.; Schmitt, M.; Zhu, X.X.; Sabel, C.E.; Prishchepov, A.V. Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: A semantic segmentation solution. Remote Sens. Environ. 2020, 251, 112096. [Google Scholar] [CrossRef]
- Du, S.; Du, S.; Liu, B.; Zhang, X. Mapping large-scale and fine-grained urban functional zones from VHR images using a multi-scale semantic segmentation network and object based approach. Remote Sens. Environ. 2021, 261, 112480. [Google Scholar] [CrossRef]
- Hu, S.; He, Z.; Wu, L.; Yin, L.; Xu, Y.; Cui, H. A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data. Comput. Environ. Urban Syst. 2020, 80, 101442. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Y.; Zhao, T.; Angelova, M. Weighted dynamic time warping for traffic flow clustering. Neurocomputing 2022, 472, 266–279. [Google Scholar] [CrossRef]
- Yang, H.; Peng, J.; Zhang, Y.; Luo, X.; Yan, X. Understanding the spatialtemporal impacts of the built environment on different types of metro ridership: A case study in Wuhan, China. Smart Cities 2023, 6, 2282–2307. [Google Scholar] [CrossRef]
- Yang, X.; Bo, S.; Wang, J. Classifying urban functional zones by integrating the homogeneity and structural similarity of POIs. J. Urban Plan. Dev. 2024, 150, 04024052. [Google Scholar] [CrossRef]
- Gao, Q.; Fu, J.; Yu, Y.; Tang, X. Identification of urban regions’ functions in Chengdu, China, based on vehicle trajectory data. PLoS ONE 2019, 14, 0215656. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Y.; Zhang, X.; Wan, Z. Identification of urban functional regions in Chengdu based on taxi trajectory time series data. ISPRS Int. J. Geo-Inf. 2020, 9, 158. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, M.; Wang, Y.; Yang, T.; Yu, H.; Yan, X. Integrating metro passenger flow data to improve the classification of urban functional regions using a heterogeneous graph neural network. Int. J. Digit. Earth 2024, 17, 2443468. [Google Scholar] [CrossRef]
- Du, S.; Zhang, X.; Lei, Y.; Huang, X.; Tu, W.; Liu, B.; Meng, Q.; Du, S. Mapping urban functional zones with remote sensing and geospatial big data: A systematic review. GISci. Remote Sens. 2024, 61, 2404900. [Google Scholar] [CrossRef]
- Chang, X.; Wu, J.; He, Z.; Li, D.; Sun, H.; Wang, W. Understanding user’s travel behavior and city region functions from station-free shared bike usage data. Transp. Res. Part F Traffic Psychol. Behav. 2020, 72, 81–95. [Google Scholar] [CrossRef]
- Zhao, J.; Fan, W.; Zhai, X. Identification of land-use characteristics using bicycle sharing data: A deep learning approach. J. Transp. Geogr. 2020, 82, 102562. [Google Scholar] [CrossRef]
- Lee, J.; Yu, K.; Kim, J. Public bike trip purpose inference using point-of-interest data. ISPRS Int. J. Geo-Inf. 2021, 10, 352. [Google Scholar] [CrossRef]
- Qian, Z.; Liu, X.; Tao, F.; Zhou, T. Identification of urban functional areas by coupling satellite images and taxi GPS trajectories. Remote Sens. 2020, 12, 2449. [Google Scholar] [CrossRef]
- Hu, S.; Gao, S.; Wu, L.; Xu, Y.; Zhang, Z.; Cui, H.; Gong, X. Urban function classification at road segment level using taxi trajectory data: A graph convolutional neural network approach. Comput. Environ. Urban Syst. 2021, 87, 101619. [Google Scholar] [CrossRef]
- Niu, H.; Silva, E.A. Delineating urban functional use from points of interest data with neural network embedding: A case study in Greater London. Comput. Environ. Urban Syst. 2021, 88, 101651. [Google Scholar] [CrossRef]
- Deng, Y.; He, R. Refined Urban Functional Zone Mapping by Integrating Open-Source Data. ISPRS Int. J. Geo-Inf. 2022, 11, 421. [Google Scholar] [CrossRef]
- Jing, C.; Zhang, H.; Xu, S.; Wang, M.; Zhuo, F.; Liu, S. A hierarchical spatial unit partitioning approach for fine-grained urban functional region identification. Trans. GIS 2022, 26, 2691–2715. [Google Scholar] [CrossRef]
- Jing, C.; Hu, Y.; Zhang, H.; Du, M.; Xu, S.; Guo, X.; Jiang, J. Context-aware matrix factorization for the identification of urban functional regions with POI and taxi OD data. ISPRS Int. J. Geo-Inf. 2022, 11, 351. [Google Scholar] [CrossRef]
- Qin, Q.; Xu, S.; Du, M.; Li, S. Identifying urban functional zones by capturing multi-spatial distribution patterns of points of interest. Int. J. Digit. Earth 2022, 15, 2468–2494. [Google Scholar] [CrossRef]
- Yang, M.; Kong, B.; Dang, R.; Yan, X. Classifying urban functional regions by integrating buildings and points-of-interest using a stacking ensemble method. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102753. [Google Scholar] [CrossRef]
- Liu, T.; Cheng, G.; Yang, J. Multi-scale recursive identification of urban functional areas based on multi-source data. Sustainability 2023, 15, 13870. [Google Scholar] [CrossRef]
- Luo, G.; Ye, J.; Wang, J.; Wei, Y. Urban functional zone classification based on POI data and machine learning. Sustainability 2023, 15, 4631. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, J.; Feng, R. A multi-feature fusion method for urban functional regions identification: A case study of Xi’an, China. ISPRS Int. J. Geo-Inf. 2024, 13, 156. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Gao, J.; Zhao, Z.; Sun, J.; Mu, F. Urban functional zone identification based on multimodal data fusion: A case study of Chongqing’s central urban area. Remote Sens. 2025, 17, 990. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y. “Hot street” of crime detection in London borough and lockdown impacts. Geo-Spat. Inf. Sci. 2023, 26, 716–732. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, C.; Rong, J.; Bian, Y.; Wang, Y. Concordance between regional functions and mobility features using bike-sharing and land-use data near metro stations. Sustain. Cities Soc. 2022, 84, 104010. [Google Scholar] [CrossRef]
- Campbell, A.A.; Cherry, C.R.; Ryerson, M.S.; Yang, X. Factors influencing the choice of shared bicycles and shared electric bikes in Beijing. Transp. Res. Part C Emerg. Technol. 2016, 67, 399–414. [Google Scholar] [CrossRef]
- She, B.; Zhu, X.; Ye, X.; Guo, W.; Su, K.; Lee, J. Weighted network Voronoi Diagrams for local spatial analysis. Comput. Environ. Urban Syst. 2015, 52, 70–80. [Google Scholar] [CrossRef]
- Okabe, A.; Satoh, T.; Furuta, T.; Suzuki, A.; Okano, K. Generalized network Voronoi diagrams: Concepts, computational methods, and applications. Int. J. Geogr. Inf. Sci. 2008, 22, 965–994. [Google Scholar] [CrossRef]
- Kang, C.; Qin, K. Understanding operation behaviors of taxicabs in cities by matrix factorization. Comput. Environ. Urban Syst. 2016, 60, 79–88. [Google Scholar] [CrossRef]
- Kang, C.; Shi, L.; Wang, F.; Liu, Y. How urban places are visited by social groups? Evidence from matrix factorization on mobile phone data. Trans. GIS 2020, 24, 1504–1525. [Google Scholar]
- Lee, C.K.H.; Leung, E.K.H. Spatiotemporal analysis of bike-share demand using DTW-based clustering and predictive analytics. Transp. Res. Part E Logist. Transp. Rev. 2023, 180, 103361. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Yao, Y.; Hong, Y.; He, J.; Jiang, Z.; Sun, J. The Traj2Vec model to quantify residents’ spatial trajectories and estimate the proportions of urban land-use types. Int. J. Geogr. Inf. Sci. 2021, 35, 193–211. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Y.; Zheng, X. Classifying urban functional zones by integrating POIs, Place2vec, and LDA. J. Urban Plan. Dev. 2023, 149, 04023034. [Google Scholar] [CrossRef]
- Yang, X.; Jiao, H.; Wang, J. Classifying Urban Functional Zones by Integrating Place2Vec and GCN. J. Urban Plan. Dev. 2025, 151, 04025008. [Google Scholar] [CrossRef]
- Yan, B.; Janowicz, K.; Mai, G.; Gao, S. From ITDL to place2vec: Reasoning about place type similarity and relatedness by learning embeddings from augmented spatial contexts. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Redondo Beach, CA, USA, 7–10 November 2017; Hoel, E., Newsam, S., Rawada, S., Tamassia, R., Trajcevski, G., Eds.; Association for Computing Machinery: New York, NY, USA, 2017; Volume 35, pp. 1–10. [Google Scholar]
- Zhao, Y.; Ke, S.; Lin, Q.; Yu, Y. Impact of land use on bicycle usage. J. Transp. Land Use 2020, 13, 299–316. [Google Scholar] [CrossRef]
Ref. | Purpose | Spatial Unit | Data | Methodology |
---|---|---|---|---|
Zhai et al. [1] | General | Administrative district | POI | Place2vec, K-means |
Chang et al. [12] | General | Grid | Bicycle GPS, POI | Topic-modeling |
Qian et al. [15] | General | Road and river block | RS image, Taxi GPS | MLC-ResNets, YOLO v3, K-means |
Zhao et al. [13] | General | Parking spot coverage | Bicycle OD, POI | DNN |
Hu et al. [16] | Fine-grained UFZ | Road segment | Taxi GPS, POI | Word2vec, GCNN |
Lee et al. [14] | Trip-purpose inference | Parking spot coverage (Buffer zone) | POI | POI-type embedding, K-means |
Niu & Silva [17] | General | Road block | POI | HSC, Doc2vec |
Deng & He [18] | Fine-grained UFZ | Building-level polygon (Voronoi diagram) | Building, POI | LDA, SVM |
Jing et al. [19] | Fine-grained UFZ | Hierarchical Grid | POI | LDA, Kernel Density |
Jing et al. [20] | General | Road block | Taxi GPS, POI | CCMF, Spectral clustering |
Qin et al. [21] | General | Road block | POI | Word2vec, RF |
Yang et al. [22] | Fine-grained UFZ | Building-level polygon | Building, POI | Stacking Ensemble |
Liu et al. [23] | General | Road block | Taxi GPS, POI | CA-RFM |
Luo et al. [24] | General | Grid | POI | Kernel density, K-star |
Wang & Feng [25] | General | Road block | RS image, Building, POI, Social media | VGG16, BERT, Random Forest |
Zhang et al. [10] | General | Road block | Smart card OD, Building, POI | HGNN |
Zhang et al. [26] | General | Land-use polygons (OSM) | RS image, POI, Smart card OD | TriNet |
Category | POI Type | Count | Related Trip Purpose |
---|---|---|---|
Residential | Detached house | 315,214 | Return home, To visit relatives |
Apartment | 30,311 | ||
Others | 103,969 | ||
Industrial | Public enterprise | 1132 | Go to work, Back to work |
Private company | 92,349 | ||
Factory | 7960 | ||
Public Service | School | 9114 | Go to school |
Academy | 5835 | To attend academy classes | |
Job-related service | 6390 | For job-related (work) reasons | |
Hospital | 2704 | To get medical treatment at the hospital | |
Pharmacy | 5130 | ||
Commercial | Shopping | 29,586 | To buy something (shopping, food packaging, etc.) |
Leisure | 12,002 | For recreation/sports /tourism/leisure | |
Green Space | Park | 1884 | |
Dining | Restaurant | 102,514 | To eat |
Café | 22,826 | ||
Bar | 17,600 | ||
Transportation | Bus stop | 10,905 | To pick up or drop off someone |
Subway station | 1735 | ||
Parking lot | 656 | ||
Total count | 780,016 |
Criterion | Class | Weight Value |
---|---|---|
POI Category | Residential, Industrial, Public Service, Commercial, Dining, | 1 |
Green Space (Park), Transportation | 2 | |
Distance from POI to Bicycle Road Network | 0–10 m | 1 |
10–50 m | 0.50 | |
50–100 m | 0.33 | |
100–500 m | 0.25 | |
≥500 m | 0.20 |
Bicycle Station ID | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bicycle Station ID | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 111 | 112 | … | 5078 | 5301 | 5305 | 5306 | 5751 | 5752 | 5753 | 5851 | 5852 | 5853 | |
102 | 397 | 101 | 99 | 34 | 75 | 284 | 68 | 39 | 19 | 18 | … | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
103 | 77 | 369 | 51 | 52 | 153 | 75 | 56 | 51 | 24 | 29 | … | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
104 | 125 | 53 | 125 | 16 | 38 | 71 | 63 | 32 | 15 | 29 | … | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | |
105 | 33 | 42 | 10 | 104 | 52 | 18 | 116 | 69 | 21 | 50 | … | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
106 | 129 | 198 | 33 | 59 | 505 | 30 | 85 | 222 | 44 | 68 | … | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | |
5752 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
5753 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
5851 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 195 | 10 | 0 | |
5852 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 10 | 0 | |
5853 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Bicycle Station ID | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bicycle Station ID | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 111 | 112 | … | |
102 | 0 | 1.415115 | 6.027184 | 0.550858 | 0.747530 | 9.262674 | 1.389063 | 0.809668 | 0.867471 | 0.442452 | … | |
103 | 1.415115 | 0 | 4.849054 | 0.865617 | 0.582082 | 6.033004 | 3.235862 | 0.963805 | 0.758531 | 1.599929 | … | |
104 | 6.027184 | 4.849054 | 0 | 7.341838 | 8.133845 | 1.489657 | 2.484759 | 7.716670 | 8.134696 | 6.002384 | … | |
105 | 0.550858 | 0.865617 | 7.341838 | 0 | 0.288882 | 7.001657 | 1.915456 | 0.455287 | 0.465555 | 0.470225 | … | |
106 | 0.747530 | 0.582082 | 8.133845 | 0.288882 | 0 | 7.181926 | 2.525698 | 0.284783 | 0.179199 | 1.007133 | … | |
… | … | … | … | … | … | … | … | … | … | … | … | |
5752 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | … | |
5753 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | … | |
5851 | 1.449870 | 0.659773 | 8.660493 | 0.722720 | 0.323853 | 7.359159 | 3.190453 | 0.471608 | 0.343099 | 2.041195 | … | |
5852 | 2.272780 | 1.498987 | 8.745269 | 1.404750 | 1.011186 | 5.701480 | 3.729711 | 0.828786 | 0.714414 | 2.519627 | … | |
5853 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | … |
Embedding Results (70 dimensions) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bicycle Station ID | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | … | |
102 | 0.416487 | −0.158637 | −0.226452 | 0.254378 | 0.600380 | −0.204288 | 0.291262 | −0.271597 | −0.084234 | 0.358788 | … | |
103 | 0.396833 | −0.165042 | −0.304261 | 0.267791 | 0.563749 | −0.209214 | 0.281475 | −0.292068 | −0.024150 | 0.329308 | … | |
104 | 0.461867 | 0.034045 | −0.287962 | 0.431353 | 0.640563 | −0.420478 | 0.436185 | −0.112449 | −0.110945 | 0.303682 | … | |
105 | 0.633366 | 0.166209 | −0.248414 | 0.559907 | 0.654447 | −0.385225 | 0.476219 | −0.088170 | −0.269816 | 0.326406 | … | |
106 | 0.540244 | 0.024397 | −0.379808 | 0.441713 | 0.577836 | −0.296120 | 0.318313 | −0.184423 | −0.064344 | 0.230602 | … | |
… | … | … | … | … | … | … | … | … | … | … | … | |
5752 | −0.094440 | −0.896108 | 0.297623 | −0.151369 | 0.488541 | 0.009165 | 0.388839 | −0.504931 | −0.091359 | 0.908376 | … | |
5753 | 0.392842 | −0.420355 | −1.375567 | −0.135741 | −0.513409 | 1.289962 | −0.123697 | −0.160912 | −0.757437 | −0.454109 | … | |
5851 | −0.030416 | −0.632836 | 0.040875 | −0.037444 | 0.443812 | 0.006919 | 0.294876 | −0.426770 | 0.048235 | 0.612541 | … | |
5852 | 0.218871 | −0.281096 | −0.230428 | 0.168613 | 0.411862 | −0.051084 | 0.290885 | −0.330305 | −0.012623 | 0.366870 | … | |
5853 | 1.154471 | 0.524940 | −0.619453 | 0.747115 | 0.707610 | −0.258740 | 0.497085 | −0.042117 | −0.558134 | 0.035194 | … |
Bicycle Station ID | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bicycle Station ID | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 111 | 112 | … | |
102 | 0.002537 | 0.002569 | 0.002378 | 0.002566 | 0.002561 | 0.002332 | 0.002522 | 0.002527 | 0.002550 | 0.002526 | … | |
103 | 0.001776 | 0.001791 | 0.001528 | 0.001795 | 0.001805 | 0.001483 | 0.001718 | 0.001804 | 0.001809 | 0.001765 | … | |
104 | 0.001055 | 0.001064 | 0.000916 | 0.001066 | 0.001071 | 0.000890 | 0.001023 | 0.001069 | 0.001073 | 0.001048 | … | |
105 | 0.000824 | 0.000832 | 0.000735 | 0.000833 | 0.000835 | 0.000716 | 0.000806 | 0.000830 | 0.000834 | 0.000819 | … | |
106 | 0.001449 | 0.001462 | 0.001260 | 0.001464 | 0.001471 | 0.001225 | 0.001406 | 0.001468 | 0.001473 | 0.001440 | … | |
… | … | … | … | … | … | … | … | … | … | … | … | |
5752 | −0.000067 | −0.000085 | −0.000399 | −0.000071 | −0.000038 | −0.000431 | −0.000184 | 0.000020 | −0.000008 | −0.000076 | … | |
5753 | 0.000836 | 0.000858 | 0.000999 | 0.000848 | 0.000826 | 0.001005 | 0.000906 | 0.000778 | 0.000803 | 0.000839 | … | |
5851 | 0.001120 | 0.001133 | 0.001020 | 0.001133 | 0.001133 | 0.000997 | 0.001103 | 0.001123 | 0.001131 | 0.001115 | … | |
5852 | 0.000423 | 0.000437 | 0.000563 | 0.000429 | 0.000412 | 0.000572 | 0.000479 | 0.000379 | 0.000396 | 0.000426 | … | |
5853 | −0.000517 | −0.000533 | −0.000660 | −0.000525 | −0.000506 | −0.000668 | −0.000575 | −0.000470 | −0.000489 | −0.000520 | … |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | |||
---|---|---|---|---|---|---|---|
Dynamic Temporal Information | Average OD Trips per Station (Q matrix) | 1761.531 | 1774.680 | 2213.198 | 1808.058 | 1419.763 | |
Average Enhanced OD Trips per Station (Q’ matrix) | 3.234 | 2.867 | 3.673 | 3.037 | 2.730 | ||
Static Spatial Information | Frequency Density | Residential | 0.306 | 0.079 | 0.334 | 0.127 | 0.154 |
Industrial | 0.204 | 0.156 | 0.328 | 0.144 | 0.168 | ||
Public Service | 0.220 | 0.147 | 0.351 | 0.146 | 0.136 | ||
Commercial | 0.220 | 0.153 | 0.341 | 0.142 | 0.144 | ||
Green Space | 0.227 | 0.123 | 0.355 | 0.139 | 0.157 | ||
Dining | 0.181 | 0.172 | 0.340 | 0.164 | 0.143 | ||
Transportation | 0.210 | 0.148 | 0.339 | 0.149 | 0.154 | ||
Category Proportion | Residential | 0.195 | 0.081 | 0.140 | 0.126 | 0.146 | |
Industrial | 0.130 | 0.160 | 0.137 | 0.142 | 0.159 | ||
Public Service | 0.140 | 0.150 | 0.147 | 0.145 | 0.128 | ||
Commercial | 0.140 | 0.156 | 0.143 | 0.141 | 0.136 | ||
Green Space | 0.145 | 0.126 | 0.149 | 0.137 | 0.148 | ||
Dining | 0.116 | 0.176 | 0.142 | 0.162 | 0.136 | ||
Transportation | 0.134 | 0.152 | 0.142 | 0.147 | 0.146 |
Cluster | Bicycle Station ID, Name, Location | Satellite Imagery |
---|---|---|
Cluster 1 | ID: 2140 Sillim 1-gyo Intersection (Lat: 37.47842789 Lon: 126.9318619) | |
Cluster 2 | ID: 303 In front of Gwanghwamun Station, Exit 1 (Lat: 37.57176971 Lon: 126.9746628) | |
Cluster 3 | ID: 502 In front of Ttukseom Resort Station, Exit 1 (Lat: 37.53186035 Lon: 127.0671921) | |
Cluster 4 | ID: 421 In front of Mapo-gu District Office (Lat: 37.56574631 Lon: 126.9018631) | |
Cluster 5 | ID: 2322 Samseong Station, Exit 3 (Lat: 37.50809097 Lon: 127.0631027) |
May 2022 (Results of This Study) | May 2025 (Reference Data) | |||
---|---|---|---|---|
Bicycle Station Name | Q Total | Q’ Total | Bicycle Station Name | Q Total |
In front of Ttukseom Resort Station, Exit 1 | 22,268 | 10.193 | Hangang Park Mangwon Entrance | 15,740 |
In front of Yeouinaru Station, Exit 1 | 20,965 | 6.864 | Magongnaru Station, Exit 2 | 15,575 |
Hangang Park Mangwon Entrance | 20,851 | 12.656 | In front of Ttukseom Resort Station, Exit 1 | 13,137 |
Magongnaru Station, Exit 2 | 17,839 | 21.467 | Lotte World Tower | 11,499 |
Bongnimgyo Traffic Island | 14,777 | 13.376 | Magongnaru Station, Exit 3 | 10,211 |
Lotte World Tower | 14,558 | 10.608 | Behind Magongnaru Station, Exit 5 | 10,179 |
Sindaebang Station, Exit 2 | 11,918 | 11.906 | Near Balsan Station, Exits 1 and 9 | 8429 |
In front of Guro Digital Complex Station | 11,679 | 9.691 | Olympic Park Station, Exit 3 | 8361 |
Olympic Park Station, Exit 3 | 11,374 | 12.732 | In front of Yeouinaru Station, Exit 1 | 8313 |
Behind Magongnaru Station, Exit 5 | 10,870 | 19.925 | Yeongdeungpo-gu Office Station, Exit 1 | 8227 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, J. An Integrated Approach to Identify Functional Areas for Bicycle Use with Spatial–Temporal Information: A Case Study of Seoul, Republic of Korea. Land 2025, 14, 2069. https://doi.org/10.3390/land14102069
Lee J, Kim J. An Integrated Approach to Identify Functional Areas for Bicycle Use with Spatial–Temporal Information: A Case Study of Seoul, Republic of Korea. Land. 2025; 14(10):2069. https://doi.org/10.3390/land14102069
Chicago/Turabian StyleLee, Jiwon, and Jiyoung Kim. 2025. "An Integrated Approach to Identify Functional Areas for Bicycle Use with Spatial–Temporal Information: A Case Study of Seoul, Republic of Korea" Land 14, no. 10: 2069. https://doi.org/10.3390/land14102069
APA StyleLee, J., & Kim, J. (2025). An Integrated Approach to Identify Functional Areas for Bicycle Use with Spatial–Temporal Information: A Case Study of Seoul, Republic of Korea. Land, 14(10), 2069. https://doi.org/10.3390/land14102069