Interactions Between Soil Texture and Cover Crop Diversity Shape Carbon Dynamics and Aggregate Stability
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Desing
2.3. Soil Sampling and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Organic Matter
3.2. Soil Structure
3.3. Correlation Coefficients Between Soil Organic Matter and Soil Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shepherd, M.A.; Harrison, R.; Webb, J. Managing soil organic matter–implications for soil structure on organic farms. Soil Use Manag. 2002, 18, 284–292. [Google Scholar] [CrossRef]
- Sümmerer, M.; Just, C.; Wiesmeier, M. Soil carbon benchmarks and cropland management effects: Insights from the Bavarian soil organic matter monitoring. Geoderma Reg. 2025, 40, e00909. [Google Scholar] [CrossRef]
- Šimanský, V. Soil organic matter in water-stable aggregates under different soil management practices in a productive vineyard. Arch. Agron. Soil Sci. 2013, 9, 1207–1214. [Google Scholar] [CrossRef]
- Šimanský, V.; Juriga, M. Soil organic carbon sequestration in different size-fractions of water-stable aggregates in Haplic Luvisol after organic amendment. Acta Fytotechn. Zootechn. 2024, 27, 172–178. [Google Scholar] [CrossRef]
- Engedal, T.; Hansen, V.; Rasmussen, J.; Magid, J.; Mueller, C.W.; Thomsen, S.T.; Sorensen, H.; Jensen, L.S. Plant organ rather than cover crop species determines residue incorporation into SOC pools. Soil Biol. Biochem. 2025, 200, 109616. [Google Scholar] [CrossRef]
- Dai, W.; Jenkins, G.F.J.N. Water-stable soil aggregation and associated carbon in a no-till Atwood silt loam soil with cover crops and poultry litter. Soil Till. Res. 2025, 248, 106399. [Google Scholar] [CrossRef]
- Gajewski, P.; Majchrzak, L.; Bocianowski, J.; Kaczmarek, Z. Effects of cover crops and tillage methods on selected physical and water retention properties of Luvisol. Int. Agrophys. 2025, 39, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Souza, V.S.; Canisares, L.P.; Schiebelbein, B.E.; de Castro Santos, D.; Menillo, R.B.; Pinheiro Junior, C.R.; Cherubin, M.R. Cover crops enhance soil health, crop yield and resilience of tropical agroecosystem. Field Crops Res. 2025, 322, 109755. [Google Scholar] [CrossRef]
- Gentsch, N.; Riechers, F.L.; Boy, J.; Schweneker, D.; Feuerstein, U.; Heuermann, D.; Guggenberger, G. Cover crops improve soil structure and change organic carbon distribution in macroaggregate fractions. Soil 2024, 10, 139–150. [Google Scholar] [CrossRef]
- Munna, M.N.H.; Lal, R. Impacts of cover cropping and organic amendments on soil physical quality under temperate climate. Cogent Food Agric. 2025, 11, 2467452. [Google Scholar] [CrossRef]
- Bair, G.J.; Lefroy, R.D.B.; Lisle, L. Soil carbon fractions, based on their degree of oxidation, and the development of a Carbon Management Index for agricultural systems. Austr. J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Janzen, H.H.; Campell, C.A.; Ellert, B.H.; Bremer, E. Soil Organic Matter Dynamics and their Relationship to Soil Quality. In Soil Quality for Crop Production and Ecosystem Health; Gregorich, E.G., Carter, M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Šimanský, V. Contents of labile carbon and nitrogen under different soil management practices in a vineyard in an extremely humid year. Acta Fytotechn. Zootechn. 2017, 20, 16–19. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Do cover crops impact labile C more than total C? Soil Use Manag. 2023, 39, 989–1005. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Šimanský, V.; Wójcik-Gront, E.; Horváthová, J.; Pikuła, D.; Lošák, T.; Parzych, A.; Lukac, M.; Aydın, E. Changes in relationships between humic substances and soil structure following different mineral fertilization of Vitis vinifera L. in Slovakia. Agronomy 2022, 12, 1460. [Google Scholar] [CrossRef]
- Henzel, D.; Junge, S.M.; Joergensen, R.G.; Finckh, M.R. Can potato cropping be made regenerative? Cover crops and dead organic mulch support soil microbial activity. Biol. Fertil. Soils 2025, 61, 735–746. [Google Scholar] [CrossRef]
- Georgiou, K.; Doetterl, S.; Angers, D.; Champiny, R.E.; Cotrufo, M.F.; Craig, M.E.; Grandy, A.S.; Lavallee, J.M.; Lin, Y.; Lugato, E.; et al. Soil carbon saturation: What do we really know? Glob. Change Biol. 2025, 31, e70197. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.H.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Bochníček, O.; Hrušková, K. Climate Atlas of Slovakia; Slovak Hydrometeorological Institute: Bratislava, Slovakia, 2015. [Google Scholar]
- Kožnárová, V.; Klabzuba, J. Recommendation of World Meteorological Organization to describing meteorological or climatological conditions. Rost. Vyr. 2002, 48, 190–192. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 13 June 2025).
- Dziadowiec, H.; Gonet, S. Przewodnik Metodyczny do Badań Materii Organicznej Gleb [Methodological Guidebook for the Organic Matter Researches]; PTG: Warszawa, Poland, 1999. (In Polish) [Google Scholar]
- Łoginow, W.; Wisniewski, W.; Gonet, S.S.; Ciescinska, B. Fractionation of organic carbon based on susceptibility to oxidation. Pol. J. Soil Sci. 1987, 20, 47–52. [Google Scholar]
- Vadjunina, A.F.; Korchagina, Z.A. Methods of Study of Soil Physical Properties; Agropromizdat: Moscow, Russia, 1986; p. 560. [Google Scholar]
- Hrivňáková, K.; Makovníková, J.; Barančíková, G.; Bezák, P.; Bezáková, Z.; Dodok, R.; Grečo, V.; Chlpík, J.; Kobza, J.; Lištjak, M.; et al. Jednotné Metodické Postupy Analyzy Pôdy [Uniform Methods of Soil Analyses]; VÚPOP: Bratislava, Slovakia, 2011. (In Slovak) [Google Scholar]
- Šimanský, V.; Jonczak, J.; Pikula, D.; Lukac, M. Grass sward cover improves the sustainability of soil management in a vineyard. Soil Sci. Plant Nutr. 2023, 69, 240–249. [Google Scholar] [CrossRef]
- Campbell, C.A.; McConkey, B.G.; Zentner, R.P.; Sellea, F.; Curtin, D. Long-term effects of tillage and crop rotations on soil organic C and total N in a clay soil in southwestern Saskatchewan. Can. J. Soil Sci. 1996, 76, 395–401. [Google Scholar] [CrossRef]
- Neufeldt, H.; Resck, D.V.S.; Ayarza, M.A. Texture and land-use effects on soil organic matter in Cerrado Oxisols, Central Brazil. Geoderma 1997, 107, 151–164. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismányoky, T.; Lipiec, J.; Tits, M.; Tóth, Z.; Kätterer, T. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: A synthesis of reviews. Mitig. Adapt. Strateg. Glob. Change 2020, 25, 929–952. [Google Scholar] [CrossRef]
- Lal, R. Organic Matter, Effects on Soil Physical Properties and Processes. In Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series; Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Šimanský, V.; Kravka, M.; Jonczak, J. Stability of soil aggregates in loamy soils of Slovakia. J. Elem. 2017, 22, 581–592. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson Press: Upper Saddle River, NJ, USA, 2017; p. 1086. [Google Scholar]
- Plante, A.F.; McGill, W.B. Soil aggregate dynamic and the retention of organic matter in laboratory-incubated soil with differing simulated tillage frequencies. Soil Till. Res. 2002, 66, 79–92. [Google Scholar] [CrossRef]
- McNear, D.H., Jr. The rhizosphere-Roots, soil and everything in between. Nat. Educ. Know. 2013, 4, 1. [Google Scholar]
- Foth, H.D. Fundamentals of Soil Science; JohnWiley & Sons: New York, NY, USA, 1990; p. 360. [Google Scholar]
- Tisdall, J.M.; Oades, J.M. Organic matter and water stable aggregate. Eur. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Schweizer, S.A.; Mueller, C.W.; Höschen, C.; Ivanov, P.; Kögel-Knabner, I. The role of clay content and mineral surface area for soil organic carbon storage in an arable toposequence. Biogeochemistry 2021, 156, 401–420. [Google Scholar] [CrossRef]
- Sanderman, J.; Maddern, T.; Baldock, J. Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals. Biogeochemistry 2014, 121, 409–424. [Google Scholar] [CrossRef]
- Newcomb, C.J.; Qafoku, N.P.; Grate, J.W.; Bailey, V.L.; De Yoreo, J.J. Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding. Nat. Commun. 2017, 8, 396. [Google Scholar] [CrossRef] [PubMed]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Islam, M.R.; Singh, B.; Dijkstra, F.A. Stabilisation of soil organic matter: Interactions between clay and microbes. Biogeochemistry 2022, 160, 145–158. [Google Scholar] [CrossRef]
Month | Total Precipitation | Average Air Temperature | ||||||
---|---|---|---|---|---|---|---|---|
Climatic Normal (mm) | Year 2024 (mm) | Difference (%) | Classification | Climatic Normal (°C) | Year 2024 (°C) | Difference (°C) | Classification | |
August | 54.6 | 38 | 70 | normal | 21.1 | 24.0 | 2.8 | extraordinary warm |
September | 58.1 | 148 | 255 | very wet | 15.9 | 16.8 | 0.9 | normal |
October | 46.1 | 43 | 93 | normal | 10.4 | 11.4 | 1.0 | normal |
November | 44.9 | 14 | 31 | very dry | 5.6 | 3.8 | −1.8 | cold |
Soil Texture | Particle-Size Distribution | Bulk Density (g cm−3) | Soil pH in H2O | Corg (%) | ||
---|---|---|---|---|---|---|
Clay | Silt | Sand | ||||
Silty clay loam | 37.19 | 53.41 | 9.40 | 1.48 | 7.42 | 2.80 |
Sandy loam | 19.12 | 68.97 | 11.91 | 1.51 | 7.36 | 1.82 |
SOM | Soil Structure | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Macro-Aggregates (Size-Fractions in mm) | Micro-Aggregates | ||||||||||
Large | Medium | Small | |||||||||
Corg | CL | AS | MWD | >5 | 3–5 | 2–3 | 1–2 | 0.5–1 | 0.25–0.5 | <0.25 | |
Main effects | |||||||||||
Soil texture | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Soil depth | <0.01 | <0.01 | <0.01 | <0.01 | <0.05 | <0.05 | >0.05 | >0.05 | >0.05 | <0.01 | <0.01 |
Cover crops | <0.01 | <0.01 | <0.01 | <0.05 | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 |
Interactions | |||||||||||
Soil depth × Soil texture | <0.01 | <0.01 | <0.01 | <0.01 | <0.05 | <0.05 | >0.05 | >0.05 | <0.01 | >0.05 | >0.05 |
Soil depth × Cover crops | <0.05 | <0.01 | <0.01 | <0.05 | >0.05 | >0.05 | >0.05 | >0.05 | <0.01 | <0.05 | >0.05 |
Soil texture × Cover crops | <0.01 | <0.01 | <0.01 | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 |
Soil depth × Soil texture × Cover Crops | >0.05 | <0.01 | <0.01 | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 |
Soil Structure | |||||||||
---|---|---|---|---|---|---|---|---|---|
>5 | 3–5 | 2–3 | 1–2 | 0.5–1 | 0.25–0.5 | <0.25 | AS | MWD | |
Together | |||||||||
Corg | 0.735 *** | 0.791 *** | 0.913 *** | 0.904 *** | −0.893 *** | −0.574 ** | −0.786 *** | 0.845 *** | 0.828 *** |
CL | 0.760 *** | 0.795 *** | 0.946 *** | 0.938 *** | −0.919 *** | −0.569 ** | −0.811 *** | 0.878 *** | 0.848 *** |
Clay | 0.871 *** | 0.906 *** | 0.976 *** | 0.904 *** | −0.964 *** | −0.716 *** | −0.913 *** | 0.929 *** | 0.944 *** |
Sandy loam | |||||||||
Corg | n.s. | n.s. | n.s. | n.s. | −0.627 * | 0.599 * | 0.581 * | −0.874 *** | n.s. |
CL | 0.780 ** | n.s. | n.s. | n.s. | −0.650 * | 0.704 * | n.s. | n.s. | n.s. |
Silty clay loam | |||||||||
Corg | −0.634 * | n.s. | n.s. | n.s. | 0.592 * | 0.707 * | 0.769 ** | −0.776 ** | −0.694 * |
CL | −0.900 *** | −0.907 *** | n.s. | 0.856 *** | 0.909 *** | 0.784 ** | 0.820 ** | −0.748 ** | −0.971 *** |
0–10 cm | |||||||||
Corg | 0.912 *** | 0.982 *** | 0.965 *** | 0.953 *** | −0.958 *** | −0.806 ** | −0.934 *** | 0.964 *** | 0.986 *** |
CL | 0.951 *** | 0.967 *** | 0.952 *** | 0.955 *** | −0.975 *** | −0.731 ** | −0.922 *** | 0.995 *** | 0.988 *** |
Clay | 0.941 *** | 0.989 *** | 0.965 *** | 0.971 *** | −0.972 *** | −0.791 ** | −0.947 *** | 0.974 *** | 0.999 *** |
10–20 cm | |||||||||
Corg | 0.985 *** | 0.981 *** | 0.939 *** | 0.808 ** | −0.984 *** | −0.880 *** | −0.963 *** | 0.971 *** | 0.994 *** |
CL | 0.931 *** | 0.929 *** | 0.998 *** | 0.919 *** | −0.970 *** | −0.912 *** | −0.973 *** | 0.988 *** | 0.966 *** |
Clay | 0.968 *** | 0.964 *** | 0.987 *** | 0.876 *** | −0.989 *** | −0.914 *** | −0.980 *** | 0.996 *** | 0.991 *** |
Cover crop mix | |||||||||
Corg | 0.806 ** | 0.820 ** | 0.900 *** | 0.984 *** | −0.898 *** | n.s. | −0.784 ** | 0.883 *** | 0.847 *** |
CL | 0.885 *** | 0.891 *** | 0.948 *** | 0.984 *** | −0.957 *** | n.s. | −0.832 *** | 0.893 *** | 0.914 *** |
Clay | 0.932 *** | 0.954 *** | 0.987 *** | 0.974 *** | −0.955 *** | −0.674 * | −0.919 *** | 0.972 *** | 0.968 *** |
Pea | |||||||||
Corg | 0.693 * | 0.767 ** | 0.953 *** | 0.892 *** | −0.903 *** | −0.718 ** | −0.811 ** | 0.856 *** | 0.816 ** |
CL | 0.687 * | 0.758 ** | 0.955 *** | 0.906 *** | −0.896 *** | −0.728 ** | −0.819 ** | 0.880 *** | 0.811 ** |
Clay | 0.836 *** | 0.884 *** | 0.965 *** | 0.833 *** | −0.973 *** | −0.824 *** | −0.919 *** | 0.915 *** | 0.927 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimanský, V.; Lukac, M. Interactions Between Soil Texture and Cover Crop Diversity Shape Carbon Dynamics and Aggregate Stability. Land 2025, 14, 2044. https://doi.org/10.3390/land14102044
Šimanský V, Lukac M. Interactions Between Soil Texture and Cover Crop Diversity Shape Carbon Dynamics and Aggregate Stability. Land. 2025; 14(10):2044. https://doi.org/10.3390/land14102044
Chicago/Turabian StyleŠimanský, Vladimír, and Martin Lukac. 2025. "Interactions Between Soil Texture and Cover Crop Diversity Shape Carbon Dynamics and Aggregate Stability" Land 14, no. 10: 2044. https://doi.org/10.3390/land14102044
APA StyleŠimanský, V., & Lukac, M. (2025). Interactions Between Soil Texture and Cover Crop Diversity Shape Carbon Dynamics and Aggregate Stability. Land, 14(10), 2044. https://doi.org/10.3390/land14102044