Towards Well-Being in Old Residential Areas: How Health-Promoting Environments Influence Resident Sentiment Within the 15-Minute Living Circle
Abstract
1. Introduction
- (1)
- What are the dominant built environment factors that influence residents’ sentiments?
- (2)
- How do these dominant factors influence residents’ sentiments?
- (3)
- How do the dominant factors interact with other factors to affect sentiments?
- (4)
- What types of environment-sentiment patterns exist that can guide targeted planning interventions?
2. Literature Review
2.1. Health-Promoting Environment Factors
2.1.1. Land Use Intensity
2.1.2. Healthy Facility
2.1.3. Vegetation and Water
2.1.4. Streetscape Perception
2.2. Methods for Measuring Sentiments
2.3. Methods for Measuring Streetscape Perception
2.4. Methods for Data Analysis
3. Materials and Methods
3.1. Research Framework
3.2. Study Area
3.3. Variables
3.3.1. Sentiment
3.3.2. Land Use Intensity
- Land use mix of function
- 2.
- Building coverage ratio
- 3.
- Street density
- 4.
- Old residential unit density
3.3.3. Healthy Facility
3.3.4. Vegetation and Water
- NDVI
- 2.
- NDWI
- 3.
- LST
3.3.5. Streetscape Perception
- Greenness
- 2.
- Crowdedness
- 3.
- Imageability
- 4.
- Openness
- 5.
- Walkability
- 6.
- Streetlight view index
3.4. Data Collection
3.5. Data Processing
3.5.1. Sentiment Analysis Using BERT
3.5.2. Semantic Segmentation Using DeepLab V3+
3.6. Data Analysis
3.7. Outcomes
3.7.1. Model Interpretability: SHAP Analysis
3.7.2. Cluster Analysis: KMeans
4. Results
4.1. 15-Min Living Circle of the ORAs
4.2. Positive Sentiment Score in the 15-Min Living Circle of the ORAs
4.3. Feature Importance Ranking of Community Health Promotion Factors
4.4. The Nonlinear Relationships Between the Dominant Factors and PSS
4.5. Interaction Effects Between the Dominant Factors and Their Strongest Interacting Factors
4.6. Built Environment—Sentiment Patterns Classification
5. Discussion
5.1. Prioritization in ORAs Retrofit for Sentiment Promotion
5.2. Exploration of the Nonlinear Relationship Between Community Health Promotion Factors and PSS
5.3. Exploration of the Interaction Effects Between Community Health Promotion Factors
5.4. Retrofit Recommendations in ORAs
5.5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ORAs | Old Residential Areas |
PSS | Positive Sentiment Score |
BERT | Bidirectional Encoder Representations from Transformers |
XGBoost | eXtreme Gradient Boosting |
SHAP | Shapley Additive exPlanations |
KMeans | K-Means Clustering |
OSM | OpenStreetMap |
POIs | Point of Interests |
SVIs | Street View Images |
BCR | Building Coverage Ratio |
SD | Street Density |
NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index |
LST | Land Surface Temperature |
References
- He, H.; Sun, R. Sentiment variations affected by urban temperature and landscape across China. Cities 2024, 149, 104933. [Google Scholar] [CrossRef]
- Steptoe, A.; Feldman, P.J. Neighborhood problems as sources of chronic stress: Development of a measure of neighborhood problems, and associations with socioeconomic status and health. Ann. Behav. Med. 2001, 23, 177–185. [Google Scholar] [CrossRef]
- State Council Office of the People’s Republic of China. Guiding Opinions of the General Office of the State Council on Comprehensively Promoting the Renovation of Old Urban Residential Areas. Available online: https://www.gov.cn/zhengce/zhengceku/2020-07/20/content_5528320.htm (accessed on 2 December 2024).
- Journal, E. The Ministry of Housing and Urban Rural Development Has Clarified the Bottom Line Requirements for Urban Renewal—“Retaining, Replacing and Demolishing” and Preventing Large-Scale Demolition and Construction. Available online: https://www.gov.cn/lianbo/bumen/202307/content_6892027.htm (accessed on 7 December 2024).
- The People’s Daily. 170,000 Old Residential Areas in Cities and Towns to Be Renovated. Available online: https://www.gov.cn/xinwen/2019-07/02/content_5405171.htm (accessed on 7 December 2024).
- Shanghai Securities News. The State Council Executive Meeting Released Important Signals: 39,000 Old Urban Residential Areas Will Be Renovated This Year, and “Special Bonds Will Be Issued in Advance” Twice a Month. Available online: https://www.gov.cn/xinwen/2020-04/15/content_5502627.htm (accessed on 7 December 2024).
- Dong, G.; Jiang, Y.; Zhu, N.; Zhang, Y.; Liu, J.; Zhang, C.; Li, Q. Research on Policy Approach and Case Study of Old Residential Area Reconstruction in Urban Renewal. Urban Stud. 2023, 30, 103–110. [Google Scholar] [CrossRef]
- Wen, Y.; Qi, H.; Long, T. Quantitative analysis and design countermeasures of space crime prevention in old residential area quarters. J. Asian Archit. Build. Eng. 2024, 23, 2071–2090. [Google Scholar] [CrossRef]
- Mouratidis, K. Urban planning and quality of life: A review of pathways linking the built environment to subjective well-being. Cities 2021, 115, 103229. [Google Scholar] [CrossRef]
- Li, W.; Sun, R.; He, H.; Chen, L. How does three-dimensional landscape pattern affect urban residents’ sentiments. Cities 2023, 143, 104619. [Google Scholar] [CrossRef]
- Tugade, M.M.; Fredrickson, B.L.; Barrett, L.F. Psychological resilience and positive emotional granularity: Examining the benefits of positive emotions on coping and health. J. Pers. 2004, 72, 1161–1190. [Google Scholar] [CrossRef]
- Cohn, M.A.; Fredrickson, B.L.; Brown, S.L.; Mikels, J.A.; Conway, A.M. Happiness unpacked: Positive emotions increase life satisfaction by building resilience. Emotion 2009, 9, 361–368. [Google Scholar] [CrossRef]
- Fan, C.; Gai, Z.; Li, S.; Cao, Y.; Gu, Y.; Jin, C.; Zhang, Y.; Ge, Y.; Zhou, L. Does the built environment of settlements affect our sentiments? A multi-level and non-linear analysis of Xiamen, China, using social media data. Front. Public Health 2023, 10, 1094036. [Google Scholar] [CrossRef]
- Ji, Q.; Yin, M.; Li, Y.; Zhou, X. Exploring the influence path of high-rise residential environment on the mental health of the elderly. Sustain. Cities Soc. 2023, 98, 104808. [Google Scholar] [CrossRef]
- Gao, M.; Song, K.; Kong, J.; Yuan, Y. Influence Mechanism of Green Space on Older Adults Mental Health: Taking Old Residential Area of Tianjin as an Example. J. Hum. Settl. West. China 2022, 37, 74–80. [Google Scholar] [CrossRef]
- Cui, P.; Li, T.; Xia, Z.; Dai, C. Research on the Effects of Soundscapes on Human Psychological Health in an Old Community of a Cold Region. Int. J. Environ. Res. Public Health 2022, 19, 7212. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Ye, X.; Chen, J.; Kang, J. Effect of the Visual Landscape and Soundscape Factors on Attention Restoration in the Public Space of Old Residential Areas by VR. Int. J. Acoust. Vib. 2023, 28, 300–309. [Google Scholar] [CrossRef]
- Evenson, K.R.; Williamson, S.; Han, B.; McKenzie, T.L.; Cohen, D.A. United States’ neighborhood park use and physical activity over two years: The National Study of Neighborhood Parks. Prev. Med. 2019, 123, 117–122. [Google Scholar] [CrossRef]
- Rui, J. Exploring the association between the settlement environment and residents’ positive sentiments in urban villages and formal settlements in Shenzhen. Sustain. Cities Soc. 2023, 98, 104851. [Google Scholar] [CrossRef]
- Yang, L.; Marmolejo Duarte, C.; Martí Ciriquián, P. Quantifying the relationship between public sentiment and urban environment in Barcelona. Cities 2022, 130, 103977. [Google Scholar] [CrossRef]
- Virgananda, M.A.; Budi, I.; Suryono, R.R. Purchase Intention and Sentiment Analysis on Twitter Related to Social Commerce. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 543–550. [Google Scholar] [CrossRef]
- Sabri, N.M.; Subki, S.; Bahrin, U.F.M.; Puteh, M. Post Pandemic Tourism: Sentiment Analysis using Support Vector Machine Based on TikTok Data. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 323–330. [Google Scholar] [CrossRef]
- Zhong, Y.Y.; Zhang, T.T.; Ronzoni, G. Sentimental analysis of Facebook reviews: Does hospitality matter in senior living? Int. J. Hosp. Manag. 2023, 112, 103384. [Google Scholar] [CrossRef]
- Su, C.; Chen, Y.; Yin, L.; Guo, S. Research on Perceived Preferences for Garden Plants Based on User-Generated Data and Natural Language Processing: A Case Study of Urban Parks in Wuhan. Chin. Landsc. Archit. 2025, 41, 125–132. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, B. Social Media Users’ Visual and Emotional Preferences of Internet-Famous Sites in Urban Riverfront Public Spaces: A Case Study in Changsha, China. Land 2024, 13, 930. [Google Scholar] [CrossRef]
- Zeng, L.B.; Su, J.W.; Yang, C.; Qian, Y. A Review of Natural Language Processing Technology for Chinese Language and Literature. In Proceedings of the 2022 International Communication Engineering and Cloud Computing Conference (CECCC), Nanjing, China, 28–30 October 2022; pp. 1–6. [Google Scholar]
- Dorostkar, E.; Najarsadeghi, M. How to evaluate urban emotions using twitter social media? Cities 2022, 127, 103713. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Y.; Zhang, P. Socio-Ecological Factors in Building a Healthy Community: A Comparative Study of Healthy Community Assessment Standards. Buildings 2024, 14, 2634. [Google Scholar] [CrossRef]
- China Association for Engineering Construction Standardization, Chinese Society for Urban Studies. Assessment Standard for Healthy Community. Available online: https://www.gongbiaoku.com/book/l2519854upt?query=%E5%81%A5%E5%BA%B7%E7%A4%BE%E5%8C%BA%E8%AF%84%E4%BB%B7%E6%A0%87%E5%87%86 (accessed on 29 September 2023).
- CDC. Fitwel v2.1 Community Site Scorecard. Available online: https://www.fitwel.org/resources/p/fitwel-v21-worksheet-for-site-scorecards-excel-community (accessed on 4 October 2023).
- IWBI. WELL Community Standard. Available online: https://v2.wellcertified.com/en/community/overview (accessed on 5 November 2023).
- Chinese Society for Urban Studies. Assessment Standard for Healthy Retrofitting of Existing Residential Area. Available online: https://www.gongbiaoku.com/book/zty22311osk (accessed on 29 September 2023).
- Liu, S.; Zhao, H.; Huang, Y.; Wei, W.; Xiong, R.; Yun, Y. Study on the Influence of Built Environment in Mountain Cities on the Walking Times of the Elderly:A Case Study of the Central Urban Area of Guiyang. J. Hum. Settl. West. China 2023, 38, 60–67. [Google Scholar] [CrossRef]
- Brownson, R.C.; Hoehner, C.M.; Day, K.; Forsyth, A.; Sallis, J.F. Measuring the Built Environment for Physical Activity: State of the Science. Am. J. Prev. Med. 2009, 36, S99–S123.e112. [Google Scholar] [CrossRef]
- Ewing, R.H.; Clemente, O.; Neckerman, K.M.; Purciel-Hill, M.; Quinn, J.W.; Rundle, A. Measuring Urban Design: Metrics for Livable Places; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Ewing, R.; Handy, S.; Brownson, R.C.; Clemente, O.; Winston, E. Identifying and Measuring Urban Design Qualities Related to Walkability. J. Phys. Act. Health 2006, 3, S223–S240. [Google Scholar] [CrossRef]
- Ewing, R.; Handy, S. Measuring the Unmeasurable: Urban Design Qualities Related to Walkability. J. Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Holy-Hasted, W.; Burchell, B. Does public space have to be green to improve well-being? An analysis of public space across Greater London and its association to subjective well-being. Cities 2022, 125, 103569. [Google Scholar] [CrossRef]
- Song, W.; Cao, S.; Du, M.; Lu, L. Distinctive roles of land-use efficiency in sustainable development goals: An investigation of trade-offs and synergies in China. J. Clean. Prod. 2023, 382, 134889. [Google Scholar] [CrossRef]
- Luo, X.; Niu, S.; Li, X.; Jing, L.; Qin, J.; Tang, Y. Urban Spatial Blessing: Effect of Land Use Intensity on Human Development Index. Land 2025, 14, 1085. [Google Scholar] [CrossRef]
- Saelens, B.E.; Sallis, J.F.; Black, J.B.; Chen, D. Neighborhood-Based Differences in Physical Activity: An Environment Scale Evaluation. Am. J. Public Health 2003, 93, 1552–1558. [Google Scholar] [CrossRef]
- Agrawal, A.W.; Schimek, P. Extent and correlates of walking in the USA. Transp. Res. Part D Transp. Environ. 2007, 12, 548–563. [Google Scholar] [CrossRef]
- Roozkhosh, F.; Molavi, M.; Salaripour, A. Accessibility, Walkability, Mixed Land Uses. Analyzing Diverse Districts Based on Space Syntax Theory. Int. Rev. Spat. Plan. Sustain. Dev. 2022, 10, 223–239. [Google Scholar] [CrossRef]
- Xia, F.; Lu, P. Can mixed land use promote social integration? Multiple mediator analysis based on spatiotemporal big data in Beijing. Land. Use Policy 2023, 132, 106800. [Google Scholar] [CrossRef]
- Wu, W.; Chen, W.Y.; Yun, Y.; Wang, F.; Gong, Z. Urban greenness, mixed land-use, and life satisfaction: Evidence from residential locations and workplace settings in Beijing. Landsc. Urban Plan. 2022, 224, 104428. [Google Scholar] [CrossRef]
- Dong, H.; Qin, B. Exploring the link between neighborhood environment and mental wellbeing: A case study in Beijing, China. Landsc. Urban Plan. 2017, 164, 71–80. [Google Scholar] [CrossRef]
- Xu, J.; Ma, J.; Tao, S. Examining the nonlinear relationship between neighborhood environment and residents’ health. Cities 2024, 152, 105213. [Google Scholar] [CrossRef]
- Day, K. Built environmental correlates of physical activity in China: A review. Prev. Med. Rep. 2016, 3, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Li, Y. Will the Construction of Sports Facilities Nudge People to Participate in Physical Exercises in China? The Moderating Role of Mental Health. Healthcare 2023, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, M.; Xu, Z.; Ye, Y.; Chen, S.; Pan, Y.; Chen, J. The influence of Community Sports Parks on residents’ subjective well-being: A case study of Zhuhai City, China. Habitat Int. 2021, 117, 102439. [Google Scholar] [CrossRef]
- Ohly, H.; White, M.P.; Wheeler, B.W.; Bethel, A.; Ukoumunne, O.C.; Nikolaou, V.; Garside, R. Attention Restoration Theory: A systematic review of the attention restoration potential of exposure to natural environments. J. Toxicol. Environ. Health Part B 2016, 19, 305–343. [Google Scholar] [CrossRef]
- Pretty, J.; Peacock, J.; Sellens, M.; Griffin, M. The mental and physical health outcomes of green exercise. Int. J. Environ. Health Res. 2005, 15, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Viola, E.; Martorana, M.; Ceriotti, D.; De Vito, M.; De Ambrosi, D.; Faggiano, F. The effects of cultural engagement on health and well-being: A systematic review. Front. Public Health 2024, 12, 1–14. [Google Scholar] [CrossRef]
- Ren, S.; Chen, X. Emotional and semantic analysis of landscape elements in heritage parks: Insights from social media data on visitor perception. Built Herit. 2025, 9, 32. [Google Scholar] [CrossRef]
- Xie, H.; Wang, X.; Wang, Z.; Shi, Z.; Hu, X.; Lin, H.; Xie, X.; Liu, X. Mismatch between infrastructure supply and demand within a 15-minute living circle evaluation in Fuzhou, China. Heliyon 2023, 9, e20130. [Google Scholar] [CrossRef]
- Gao, K.; Yang, Y.; Gil, J.; Qu, X. Data-driven interpretation on interactive and nonlinear effects of the correlated built environment on shared mobility. J. Transp. Geogr. 2023, 110, 103604. [Google Scholar] [CrossRef]
- Horton, D.; Logan, T.M.; Speakman, E.; Skipper, D. Hundreds of grocery outlets needed across the United States to achieve walkable cities. Nat. Commun. 2025, 16, 6051. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Y.; Ren, Y.; Yan, H.; Shen, C. A novel methodology (WM-TCM) for urban health examination: A case study of Wuhan in China. Ecol. Indic. 2022, 136, 108602. [Google Scholar] [CrossRef]
- Kou, Z. Research on the Spatial Agglomeration Characteristics and Influencing Factors of Express Delivery Station Based on DNN. Comput. Intell. Neurosci. 2022, 2022, 3817066. [Google Scholar] [CrossRef]
- Poddar, P.; Banavaram, A.A.; Ramanaik, S.; Jayabalan, M.; S, V. How city living affects mental health-a qualitative exploration of urban stressors among adults in a megacity in India. BMC Public Health 2025, 25, 1597. [Google Scholar] [CrossRef]
- Liu, M.; Bai, X.; Luan, D.; Wei, J.; Gong, Y.; Gao, Q. Association between built environments and quality of life among community residents: Mediation analysis of air pollution. Public Health 2022, 211, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, L.; Zhang, Z.; Gao, J. Analysis and optimization of 15-minute community life circle based on supply and demand matching: A case study of Shanghai. PLoS ONE 2021, 16, e0256904. [Google Scholar] [CrossRef] [PubMed]
- Rhew, I.C.; Vander Stoep, A.; Kearney, A.; Smith, N.L.; Dunbar, M.D. Validation of the Normalized Difference Vegetation Index as a Measure of Neighborhood Greenness. Ann. Epidemiol. 2011, 21, 946–952. [Google Scholar] [CrossRef]
- Wang, R.; Browning, M.H.E.M.; Qin, X.; He, J.; Wu, W.; Yao, Y.; Liu, Y. Visible green space predicts emotion: Evidence from social media and street view data. Appl. Geogr. 2022, 148, 102803. [Google Scholar] [CrossRef]
- Wang, R.; Helbich, M.; Yao, Y.; Zhang, J.; Liu, P.; Yuan, Y.; Liu, Y. Urban greenery and mental wellbeing in adults: Cross-sectional mediation analyses on multiple pathways across different greenery measures. Environ. Res. 2019, 176, 108535. [Google Scholar] [CrossRef]
- Subiza-Pérez, M.; Hauru, K.; Korpela, K.; Haapala, A.; Lehvävirta, S. Perceived Environmental Aesthetic Qualities Scale (PEAQS)—A self-report tool for the evaluation of green-blue spaces. Urban For. Urban Green. 2019, 43, 126383. [Google Scholar] [CrossRef]
- Poulsen, M.N.; Nordberg, C.M.; Fiedler, A.; DeWalle, J.; Mercer, D.; Schwartz, B.S. Factors associated with visiting freshwater blue space: The role of restoration and relations with mental health and well-being. Landsc. Urban Plan. 2022, 217, 104282. [Google Scholar] [CrossRef]
- Luo, P.; Yu, B.; Li, P.; Liang, P.; Zhang, Q.; Yang, L. Understanding the relationship between 2D/3D variables and land surface temperature in plain and mountainous cities: Relative importance and interaction effects. Build. Environ. 2023, 245, 110959. [Google Scholar] [CrossRef]
- Qiu, W.; Zhang, Z.; Liu, X.; Li, W.; Li, X.; Xu, X.; Huang, X. Subjective or objective measures of street environment, which are more effective in explaining housing prices? Landsc. Urban Plan. 2022, 221, 104358. [Google Scholar] [CrossRef]
- Ma, X.; Ma, C.; Wu, C.; Xi, Y.; Yang, R.; Peng, N.; Zhang, C.; Ren, F. Measuring human perceptions of streetscapes to better inform urban renewal: A perspective of scene semantic parsing. Cities 2021, 110, 103086. [Google Scholar] [CrossRef]
- Tang, J.; Long, Y. Measuring visual quality of street space and its temporal variation: Methodology and its application in the Hutong area in Beijing. Landsc. Urban Plan. 2019, 191, 103436. [Google Scholar] [CrossRef]
- Nagata, S.; Nakaya, T.; Hanibuchi, T.; Amagasa, S.; Kikuchi, H.; Inoue, S. Objective scoring of streetscape walkability related to leisure walking: Statistical modeling approach with semantic segmentation of Google Street View images. Health Place 2020, 66, 102428. [Google Scholar] [CrossRef]
- Park, K.; Ewing, R.; Sabouri, S.; Larsen, J. Street life and the built environment in an auto-oriented US region. Cities 2019, 88, 243–251. [Google Scholar] [CrossRef]
- Wang, R.; Lu, Y.; Zhang, J.; Liu, P.; Yao, Y.; Liu, Y. The relationship between visual enclosure for neighbourhood street walkability and elders’ mental health in China: Using street view images. J. Transp. Health 2019, 13, 90–102. [Google Scholar] [CrossRef]
- Ye, X.; Wang, Y.; Dai, J.; Qiu, W. Generated nighttime street view image to inform perceived safety divergence between day and night in high density cities: A case study in Hong Kong. J. Urban Manag. 2025, 14, 379–401. [Google Scholar] [CrossRef]
- Zunic, A.; Corcoran, P.; Spasic, I. Sentiment Analysis in Health and Well-Being: Systematic Review. JMIR Med. Inform. 2020, 8, e16023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Yan, S.R.; Liu, J.; Xu, P.Q. Popularity influence mechanism of creative industry parks: A semantic analysis based on social media data. Sustain. CITIES Soc. 2023, 90, 104384. [Google Scholar] [CrossRef]
- Liu, J.; Meng, B.; Wang, J.; Chen, S.Y.; Tian, B.; Zhi, G.Q. Exploring the Spatiotemporal Patterns of Residents’ Daily Activities Using Text-Based Social Media Data: A Case Study of Beijing, China. ISPRS Int. J. Geo Inf. 2021, 10, 389. [Google Scholar] [CrossRef]
- Zhou, P.; Qi, X.; Zhao, L. A Cross-Language Attribute-Level Sentiment Analysis Approach Using TinyBERT and GCN. Int. J. Knowl. Manag. 2024, 20, 1–23. [Google Scholar] [CrossRef]
- Rogers, A.; Kovaleva, O.; Rumshisky, A. A Primer in BERTology: What We Know About How BERT Works. Trans. Assoc. Comput. Linguist. 2020, 8, 842–866. [Google Scholar] [CrossRef]
- Cui, Y.; Che, W.; Liu, T.; Qin, B.; Yang, Z. Pre-Training With Whole Word Masking for Chinese BERT. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 3504–3514. [Google Scholar] [CrossRef]
- Mouratidis, K.; Hassan, R. Contemporary versus traditional styles in architecture and public space: A virtual reality study with 360-degree videos. Cities 2020, 97, 102499. [Google Scholar] [CrossRef]
- Wang, L.; Han, X.; He, J.; Jung, T. Measuring residents’ perceptions of city streets to inform better street planning through deep learning and space syntax. ISPRS J. Photogramm. Remote Sens. 2022, 190, 215–230. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the Computer Vision—ECCV 2018, Cham, Swetzerland, 8–14 September 2018; pp. 833–851. [Google Scholar]
- He, P.; Yu, B.; Ma, J.; Luo, K.; Chen, S.; Shen, Z. Exploring the non-linear relationship and synergistic effect between urban built environment and public sentiment integrating macro- and micro-level perspective: A case study in San Francisco. Front. Psychol. 2024, 15, 1276923. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, H.; Yu, B.; Lu, Y.; Cui, J.; Lin, D. Exploring non-linear and synergistic effects of green spaces on active travel using crowdsourced data and interpretable machine learning. Travel Behav. Soc. 2024, 34, 100673. [Google Scholar] [CrossRef]
- Yang, D.; Wang, X.; Han, R. Nonlinear and Synergistic Effects of the Built environment on Street Vitality: The Case of Shenyang. Urban Plan. Forum 2023, 5, 93–102. [Google Scholar] [CrossRef]
- Liu, J.; Ren, K.; Ming, T.; Qu, J.; Guo, W.; Li, H. Investigating the effects of local weather, streamflow lag, and global climate information on 1-month-ahead streamflow forecasting by using XGBoost and SHAP: Two case studies involving the contiguous USA. Acta Geophys. 2023, 71, 905–925. [Google Scholar] [CrossRef]
- Lan, H.; Hou, H.; Gou, Z. A machine learning led investigation to understand individual difference and the human-environment interactive effect on classroom thermal comfort. Build. Environ. 2023, 236, 110259. [Google Scholar] [CrossRef]
- Štrumbelj, E.; Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 2014, 41, 647–665. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Pelegrina, G.D.; Duarte, L.T.; Grabisch, M. A k-additive Choquet integral-based approach to approximate the SHAP values for local interpretability in machine learning. Artif. Intell. 2023, 325, 104014. [Google Scholar] [CrossRef]
- MCA. Shannxi, Xi’an. Available online: http://xzqh.mca.gov.cn/defaultQuery?shengji=%C9%C2%CE%F7%CA%A1%A3%A8%C9%C2%A1%A2%C7%D8%A3%A9&diji=%CE%F7%B0%B2%CA%D0&xianji=-1 (accessed on 9 October 2024).
- Li, X.; Bu, R.; Chang, Y.; Hu, Y.; Wen, Q.; Wang, X.; Xu, C.; Li, Y.; He, H. The response of landscape metrics against pattern scenarios. Inst. Appl. Ecol. 2004, 24, 123–134. [Google Scholar]
- Liu, W.; Xue, Y.; Shang, C. Spatial distribution analysis and driving factors of traditional villages in Henan province: A comprehensive approach via geospatial techniques and statistical models. Herit. Sci. 2023, 11, 185. [Google Scholar] [CrossRef]
- Yang, C.; Yang, L.; Du, Y.; Qi, K. Social Media User’s Activity Classification Integrating Image and Spatiotemporal Information. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 463–470. [Google Scholar] [CrossRef]
- Che, Y.; Li, X.; Liu, X.; Wang, Y.; Liao, W.; Zheng, X.; Zhang, X.; Xu, X.; Shi, Q.; Zhu, J.; et al. 3D-GloBFP: The first global three-dimensional building footprint dataset. Earth Syst. Sci. Data Discuss. 2024, 16, 1–28. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Jinhuakst. ChineseNlpCorpus/datasets/weibo_senti_100k/intro.ipynb. Available online: https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/weibo_senti_100k/intro.ipynb (accessed on 13 December 2024).
- Dong, L.; Jiang, H.; Li, W.; Qiu, B.; Wang, H.; Qiu, W. Assessing impacts of objective features and subjective perceptions of street environment on running amount: A case study of Boston. Landsc. Urban Plan. 2023, 235, 104756. [Google Scholar] [CrossRef]
- He, J.; Zhang, J.; Yao, Y.; Li, X. Extracting human perceptions from street view images for better assessing urban renewal potential. Cities 2023, 134, 104189. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning—With Applications in R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Liu, M.; Li, K.; Li, C. Research on the Relationship Between Residents’ Emotions and Built Environment Based on Weibo Data:Taking Wuhan City as an Example. J. Hum. Settl. West. China 2023, 38, 24–29. [Google Scholar] [CrossRef]
- Wang, M.; Yan, Y.; Li, M.; Zhou, L. Differences in Emotional Preferences toward Urban Green Spaces among Various Cultural Groups in Macau and Their Influencing Factors. Land 2024, 13, 414. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, J.H.; Dong, X.Y.; Zhai, X.K.; Shen, J. Rethinking Cultural Ecosystem Services in Urban Forest Parks: An Analysis of Citizens’ Physical Activities Based on Social Media Data. Forests 2024, 15, 1633. [Google Scholar] [CrossRef]
- Hursh, S.H.; Perry, E.; Drake, D. What informs human-nature connection? An exploration of factors in the context of urban park visitors and wildlife. People Nat. 2024, 6, 230–244. [Google Scholar] [CrossRef]
- Weng, M.; Ding, N.; Li, J.; Jin, X.; Xiao, H.; He, Z.; Su, S. The 15-minute walkable neighborhoods: Measurement, social inequalities and implications for building healthy communities in urban China. J. Transp. Health 2019, 13, 259–273. [Google Scholar] [CrossRef]
- Shan, Z.; An, Y.; Yuan, M.; Huang, Y. Study on Spatial and Temporal Distribution Characteristics and Influencing Factors of Urban Residents’ Sentiment Based on Weibo Data: A Case Study of the Main Urban Area of Wuhan. Urban Stud. 2022, 29, 69–76. [Google Scholar] [CrossRef]
- Rao, F.; Yijun, K.; Heng, N.K.; Qiyang, X.; Zhu, Y. Unravelling the Spatial Arrangement of the 15-Minute City: A Comparative Study of Shanghai, Melbourne, and Portland. Plan. Theory Pract. 2024, 25, 184–206. [Google Scholar] [CrossRef]
- van Maarseveen, R. The urban–rural education gap: Do cities indeed make us smarter?*. J. Econ. Geogr. 2020, 21, 683–714. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wang, X.; Ma, F.; Wong, Y.D. The determinants of customers’ intention to use smart lockers for last-mile deliveries. J. Retail. Consum. Serv. 2019, 49, 316–326. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Yang, S.; Wei, J. Consumer’s intention to use self-service parcel delivery service in online retailing: An empirical study. Internet Res. 2018, 28, 500–519. [Google Scholar] [CrossRef]
- Li, J.; Zhu, H.; Fu, L. Spatial-temporal variation of emotional experience of domestic tourists in Xi’an City based on bigdata. Arid Land Geogr. 2020, 43, 1067–1076. [Google Scholar] [CrossRef]
- Chen, J.; Fu, Y.; Ma, S.; Chen, Q.; Zhang, W.; Huang, J. Research on the supply-demand balance evaluation and driving mechanism of community public service facilities. PLoS ONE 2025, 20, e0322109. [Google Scholar] [CrossRef]
- Zhang, M.; Shen, T.; Li, Y.; Li, Q.; Lou, Y. Exploring the complex associations between community public spaces and healthy aging: An explainable analysis using catboost and SHAP. BMC Public Health 2025, 25, 2200. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yang, H.; Lin, Y.; Xie, J.; Xie, Y.; Ding, Z. Exploring the association between the built environment and positive sentiments of tourists in traditional villages in Fuzhou, China. Ecol. Inform. 2024, 80, 102465. [Google Scholar] [CrossRef]
- Xu, Z.; Ziqi, S.; Yufu, Z.; Lingyun, H.; Mingyu, L.; Yang, Y. Evaluating 15-minute walkable life circles for the senior: A case study of Jiande, China. J. Asian Archit. Build. Eng. 2025, 24, 3160–3176. [Google Scholar] [CrossRef]
Category | Domains | Variables | Source |
---|---|---|---|
Dependent Variable | Sentiment | Positive sentiment score (PPS) | Weibo data |
Independent Variable | Land use intensity | Land use mix of function | POIs |
Building coverage ratio (BCR) | OSM and building footprint data | ||
Street density (SD) | |||
Old residential unit density | POIs | ||
Healthy facility | Public transport station density | POIs | |
Parking density | |||
Sports density | |||
Education density | |||
Medical density | |||
Culture facility density | |||
Park and plaza density | |||
Scenic spot density | |||
Supermarket density | |||
Public toilet density | |||
Package station density | |||
Pet service density | |||
Vegetation and water | Normalized Difference Water Index (NDVI) | Landsat 8 | |
Normalized Difference Water Index (NDWI) | |||
Land Surface Temperature (LST) | |||
Streetscape perception | Greenness | SVIs | |
Crowdedness | |||
Imageability | |||
Openness | |||
Walkability | |||
Streetlight view index |
MSE | RMSE | MAE | MAPE | R2 | |
---|---|---|---|---|---|
Training set | 0.001571 | 0.039638 | 0.027216 | 0.069255 | 0.934281 |
Testing set | 0.003441 | 0.058658 | 0.039155 | 0.119638 | 0.853763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Chen, Y.; Liu, J.; Salvadeo, P. Towards Well-Being in Old Residential Areas: How Health-Promoting Environments Influence Resident Sentiment Within the 15-Minute Living Circle. Land 2025, 14, 2035. https://doi.org/10.3390/land14102035
Zhao J, Chen Y, Liu J, Salvadeo P. Towards Well-Being in Old Residential Areas: How Health-Promoting Environments Influence Resident Sentiment Within the 15-Minute Living Circle. Land. 2025; 14(10):2035. https://doi.org/10.3390/land14102035
Chicago/Turabian StyleZhao, Jiaying, Yang Chen, Jiaping Liu, and Pierluigi Salvadeo. 2025. "Towards Well-Being in Old Residential Areas: How Health-Promoting Environments Influence Resident Sentiment Within the 15-Minute Living Circle" Land 14, no. 10: 2035. https://doi.org/10.3390/land14102035
APA StyleZhao, J., Chen, Y., Liu, J., & Salvadeo, P. (2025). Towards Well-Being in Old Residential Areas: How Health-Promoting Environments Influence Resident Sentiment Within the 15-Minute Living Circle. Land, 14(10), 2035. https://doi.org/10.3390/land14102035