Integrating Cloud Computing and Landscape Metrics to Enhance Land Use/Land Cover Mapping and Dynamic Analysis in the Shandong Peninsula Urban Agglomeration
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.3. LULC Mapping
2.3.1. Classifier Selection
2.3.2. Feature Extraction and Combination
2.3.3. Accuracy Assessment
2.4. LULC Dynamics Analysis
2.4.1. Transitions of LULC
2.4.2. Landscape Pattern Analysis
3. Results
3.1. LULC Classification
3.1.1. Performance of Classifiers Under Feature Combinations
3.1.2. Optimization of Feature Combinations
3.1.3. Classification Assessment and Comparison
3.2. Spatio-Temporal Dynamics of LULC
3.2.1. LULC Change and Conversion Analysis
3.2.2. Spatio-Temporal Trends of in Landscape Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LULC | Land use/land cover |
| GEE | Google Earth Engine |
| SPUA | Shandong Peninsula urban agglomeration |
| GTB | Gradient Tree Boost |
| RF | Random Forest |
| APIs | Java and Python Application Programming Interfaces |
| DEM | Digital elevation model |
| NTL | Nighttime light |
| SR | Surface Reflectance |
| TOA | Top of Atmosphere |
| LST | Land surface temperature |
| PGI | Plastic Greenhouse Index |
| PMLI | Plastic-mulched Landcover Index |
| NDVI | Normalized Difference Vegetation Index |
| MNDWI | Modified Normalized Difference Water Index |
| NDBI | Normalized Difference Built-up Index |
| BSI | Bare Soil Index |
| ASM | Angular Second Moment |
| CONT | Contrast |
| CORR | Correlation |
| VAR | Variance |
| IDM | Inverse Difference Moment |
| SAVG | Sum Average |
| ENT | Entropy |
| PA | Producer accuracy |
| UA | User accuracy |
| OA | Overall accuracy |
| Kappa | Kappa coefficient |
| CLUD | China’s Land Use/Cover Dataset |
| CLCD | China Land Cover Dataset |
| SHDI | Shannon’s Diversity Index |
| PD | Patch Density |
| SPLIT | Splitting Index |
| LSI | Landscape Shape Index |
| CONTAG | Contagion |
| R2 | Coefficient of determination |
| POI | Points of interest |
Appendix A

| Remote Sensing Index | Formula |
|---|---|
| Plastic Greenhouse Index (PGI) | |
| Plastic-mulched Landcover Index (PMLI) | |
| Normalized Difference Vegetation Index (NDVI) | |
| Modified Normalized Difference Water Index (MNDWI) | |
| Normalized Difference Built-up Index (NDBI) | |
| Bare Soil Index (BSI) |
| Year | User\Reference Class | Cultivated Land | Forest | Grassland | Water | Built-up Land | Unused Land | PA (%) | UA (%) | OA (%) | Kappa |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2004 | Cultivated land | 130 | 0 | 3 | 3 | 8 | 1 | 97.01 | 89.66 | 92.55 | 0.90 |
| Forest | 0 | 49 | 0 | 0 | 0 | 0 | 96.08 | 100.00 | |||
| Grassland | 3 | 2 | 41 | 0 | 0 | 1 | 89.13 | 87.23 | |||
| Water | 0 | 0 | 0 | 34 | 0 | 0 | 91.89 | 100.00 | |||
| Built-up land | 1 | 0 | 1 | 0 | 59 | 2 | 88.06 | 93.65 | |||
| Unused land | 0 | 0 | 1 | 0 | 0 | 10 | 71.43 | 90.91 | |||
| 2009 | Cultivated land | 142 | 1 | 4 | 0 | 9 | 1 | 96.60 | 90.45 | 92.93 | 0.91 |
| Forest | 0 | 80 | 1 | 0 | 0 | 0 | 96.39 | 98.77 | |||
| Grassland | 0 | 1 | 50 | 0 | 0 | 1 | 90.91 | 96.15 | |||
| Water | 2 | 1 | 0 | 49 | 0 | 1 | 94.23 | 92.45 | |||
| Built-up land | 3 | 0 | 0 | 2 | 43 | 1 | 82.69 | 87.76 | |||
| Unused land | 0 | 0 | 0 | 1 | 0 | 17 | 80.95 | 94.44 | |||
| 2014 | Cultivated land | 138 | 0 | 4 | 0 | 9 | 0 | 93.24 | 91.39 | 91.02 | 0.88 |
| Forest | 1 | 62 | 3 | 0 | 0 | 0 | 98.41 | 93.94 | |||
| Grassland | 1 | 1 | 48 | 0 | 1 | 0 | 87.27 | 94.12 | |||
| Water | 0 | 0 | 0 | 44 | 1 | 1 | 95.65 | 95.65 | |||
| Built-up land | 6 | 0 | 0 | 2 | 48 | 3 | 81.36 | 81.36 | |||
| Unused land | 2 | 0 | 0 | 0 | 0 | 15 | 78.95 | 88.24 | |||
| 2019 | Cultivated land | 148 | 0 | 3 | 2 | 11 | 1 | 95.48 | 89.70 | 91.89 | 0.89 |
| Forest | 0 | 61 | 0 | 0 | 0 | 0 | 96.83 | 100.00 | |||
| Grassland | 2 | 2 | 36 | 0 | 0 | 0 | 82.31 | 90.00 | |||
| Water | 0 | 0 | 0 | 57 | 0 | 0 | 93.44 | 100.00 | |||
| Built-up land | 4 | 0 | 0 | 1 | 55 | 4 | 82.09 | 85.94 | |||
| Unused land | 1 | 0 | 0 | 1 | 1 | 17 | 77.27 | 85.00 | |||
| 2024 | Cultivated land | 107 | 0 | 5 | 0 | 4 | 0 | 94.69 | 92.24 | 93.68 | 0.92 |
| Forest | 0 | 76 | 0 | 0 | 0 | 0 | 98.70 | 100.00 | |||
| Grassland | 1 | 1 | 35 | 1 | 0 | 0 | 83.33 | 92.11 | |||
| Water | 0 | 0 | 0 | 37 | 1 | 0 | 97.37 | 97.37 | |||
| Built-up land | 5 | 0 | 2 | 0 | 74 | 2 | 92.50 | 89.16 | |||
| Unused land | 0 | 0 | 0 | 0 | 1 | 12 | 85.71 | 92.31 |
References
- Duan, X.; Haseeb, M.; Tahir, Z.; Mahmood, S.A.; Tariq, A. Analyzing and predicting land use and land cover dynamics using multispectral high-resolution imagery and hybrid CA-Markov modeling. Land Use Pol. 2025, 157, 107655. [Google Scholar] [CrossRef]
- Krishnan, G.; Shanthi Priya, R.; Senthil, R. Ecological effects of land use and land cover changes on lakes in urban environments. Sustain. Dev. 2024, 32, 6801–6818. [Google Scholar] [CrossRef]
- Pan, X.; She, X.; Li, X.; Zhao, J. Chat-RSC: Interactive remote sensing image classification via large language models. Int. J. Digit. Earth 2025, 18, 2519999. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Lin, A.; Fan, H.; Fan, K.; Xie, J.; Luo, W. A review of crowdsourced geographic information for land-use and land-cover mapping: Current progress and challenges. Int. J. Geogr. Inf. Sci. 2024, 38, 2183–2215. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 12–16 July 2021. [Google Scholar]
- Hao, X.; Qiu, Y.; Jia, G.; Menenti, M.; Ma, J.; Jiang, Z. Evaluation of global land use–land cover data products in Guangxi, China. Remote Sens. 2023, 15, 1291. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, X.; Liu, L. Divergent global land change scenarios from 2001 to 2019. Land Use Pol. 2025, 156, 107605. [Google Scholar] [CrossRef]
- Xing, Y.; Bai, P.; Li, Y. Assessing the reliability of six land cover products for cropland identification in a large irrigation district in China. Trans. GIS 2025, 29, e13287. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, J.; Zhang, X.; Cheng, J.; Yan, Y. Which land cover product provides the most accurate land use land cover map of the Yellow River Basin? Front. Ecol. Evol. 2023, 11, 1275054. [Google Scholar] [CrossRef]
- Santos, P.A.d.; Adami, M.; Picoli, M.C.; Prudente, V.H.; Esquerdo, J.C.; Queiroz, G.R.; Carneiro de Santana, C.T.; Chaves, M.E. Land use and land cover products for agricultural mapping applications in Brazil: Challenges and limitations. Remote Sens. 2025, 17, 2324. [Google Scholar] [CrossRef]
- Chakraborty, T.C.; Venter, Z.S.; Demuzere, M.; Zhan, W.; Gao, J.; Zhao, L.; Qian, Y. Large disagreements in estimates of urban land across scales and their implications. Nat. Commun. 2024, 15, 9165. [Google Scholar] [CrossRef]
- Sun, W.; Ding, X.; Su, J.; Mu, X.; Zhang, Y.; Gao, P.; Zhao, G. Land use and cover changes on the Loess Plateau: A comparison of six global or national land use and cover datasets. Land Use Pol. 2022, 119, 106165. [Google Scholar] [CrossRef]
- Kumaraperumal, R.; Raj, M.N.; Pazhanivelan, S.; Jagadesh, M.; Selvi, D.; Muthumanickam, D.; Jagadeeswaran, R.; Karthikkumar, A.; Kanna, S.K. Data mining techniques for LULC analysis using sparse labels and multisource data integration for the hilly terrain of Nilgiris district, Tamil Nadu, India. Earth Sci. Inform. 2025, 18, 13. [Google Scholar] [CrossRef]
- Shi, Y.; Jin, N.; Wu, B.; Wang, Z.; Wang, S.; Yu, Q. Effects of machine learning models and spatial resolution on land cover classification accuracy in Dali County, Shaanxi, China. Int. J. Agric. Biol. Eng. 2025, 18, 245–259. [Google Scholar] [CrossRef]
- Bhungeni, O.; Ramjatan, A.; Gebreslasie, M. Evaluating machine-learning algorithms for mapping LULC of the uMngeni Catchment Area, KwaZulu-Natal. Remote Sens. 2024, 16, 2219. [Google Scholar] [CrossRef]
- Ganjirad, M.; Delavar, M.R.; Bagheri, H.; Azizi, M.M. Optimizing urban critical green space development using machine learning. Sust. Cities Soc. 2025, 120, 106158. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, F.; Lyne, V.; Wang, X.; Su, F.; Cao, Q.; He, B. Monitoring of ecological security patterns based on long-term land use changes in Langsa Bay, Indonesia. Int. J. Digit. Earth 2025, 18, 2495740. [Google Scholar] [CrossRef]
- Xu, F.; Xu, Z.; Xu, C.; Yu, T. Automatic extraction of the spatial distribution of Picea schrenkiana in the Tianshan Mountains based on Google Earth Engine and the Jeffries–Matusita distance. Forests 2023, 14, 1373. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; Montalván-Burbano, N.; Carrión-Mero, P.; Rivera-Torres, H.; Sadeck, L.; Adami, M. Google Earth Engine: A global analysis and future trends. Remote Sens. 2023, 15, 3675. [Google Scholar] [CrossRef]
- Chaabani, C.; Salvó, C.S.; Homayouni, S.; Chokmani, K.; Adebanjo, H.M. Cloud computing-based freshwater ice mapping using synthetic aperture radar imagery. Earth Sci. Inform. 2025, 18, 411. [Google Scholar] [CrossRef]
- Anucharn, T.; Hongpradit, P.; Iamchuen, N.; Puttinaovarat, S. Spatial analysis of urban expansion and energy consumption using nighttime light aata: A comparative study of Google Earth Engine and traditional methods for improved living spaces. ISPRS Int. J. Geo-Inf. 2025, 14, 178. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS-J. Photogramm. Remote Sens. 2020, 167, 276–288. [Google Scholar] [CrossRef]
- Sandamali, J.; Narine, L.L. A data-driven, cloud-based approach for forest aboveground biomass mapping using GEDI and other earth observation data: An ecoregion-specific Investigation across the state of Alabama, USA. Geocarto Int. 2025, 40, 2465446. [Google Scholar] [CrossRef]
- Guder, A.C.; Kabeta, W.F. Evaluation of future land use change impacts on soil erosion for Holota watershed, Ethiopia. Sci. Rep. 2025, 15, 6782. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, N.; Pebesma, E.; Câmara, G. Using Google Earth Engine to detect land cover change: Singapore as a use case. Eur. J. Remote Sens. 2018, 51, 486–500. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, B.; Dang, A. A novel geospatial machine learning approach to quantify non-linear effects of land use/land cover change (LULCC) on carbon dynamics. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103712. [Google Scholar] [CrossRef]
- Midekisa, A.; Holl, F.; Savory, D.J.; Andrade-Pacheco, R.; Gething, P.W.; Bennett, A.; Sturrock, H.J.W. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PLoS ONE 2017, 12, e0184926. [Google Scholar] [CrossRef]
- Ma, Y.; Lyu, D.; Sun, K.; Li, S.; Zhu, B.; Zhao, R.; Zheng, M.; Song, K. Spatiotemporal analysis and war impact assessment of agricultural land in Ukraine using RS and GIS technology. Land 2022, 11, 1810. [Google Scholar] [CrossRef]
- Bai, X.; Xiong, K.; Chen, Y.; Liu, Z. Spatiotemporal evolution of landscape stability in World Heritage Karst Sites: A case study of Shibing Karst and Libo-Huanjiang Karst. Herit. Sci. 2024, 12, 215. [Google Scholar] [CrossRef]
- Sun, J.; Luo, L.; Li, L.; Fan, J.; Yang, J.; Tu, R.; Han, Z.; Zhu, X.; He, L.; Shao, J. Monitoring and analysis of land cover changes in Yala National Park, Sri Lanka using Landsat time series (2000~2022). Int. J. Digit. Earth 2025, 18, 2498602. [Google Scholar] [CrossRef]
- Russo, L.F.; Andrello, M.; Giuliani, M.; Ancillotto, L.; Carboni, M.; La Bella, G.; Martelli, F.; Santini, L. Mapping the urban landscape at multiple ecological scales. Urban For. Urban Green. 2025, 110, 128849. [Google Scholar] [CrossRef]
- Liang, J.; Li, X. Characteristics of temporal-spatial differentiation in landscape pattern vulnerability in Nansihu Lake wetland, China. Chin. J. Appl. Ecol. 2018, 29, 626–634. [Google Scholar] [CrossRef]
- Zhang, Z.; He, G.; Cai, W.; Zhu, Q.; Liu, X.; Ding, F.; Cai, Y. Spatial planning constraints will mitigate the fragmentation trajectory of natural and semi-natural landscapes: A case of Lushan City, China. Landsc. Ecol. 2024, 39, 59. [Google Scholar] [CrossRef]
- Hu, C.; Wu, W.; Zhou, X.; Wang, Z. Spatiotemporal changes in landscape patterns in karst mountainous regions based on the optimal landscape scale: A case study of Guiyang City in Guizhou Province, China. Ecol. Indic. 2023, 150, 110211. [Google Scholar] [CrossRef]
- Fu, Y.; Shi, X.; He, J. The spatio-temporal evolution characteristics of landscape fragmentation in Fenhe River Basin. J. Nat. Resour. 2019, 34, 1606–1619. [Google Scholar] [CrossRef]
- Meng, Q. Spatial analysis of environment and population at risk of natural gas fracking in the state of Pennsylvania, USA. Sci. Total Environ. 2015, 515, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Statistical Bulletin of National Economic and Social Development of Shandong Province in 2004. Available online: http://www.shandong.gov.cn/art/2005/2/26/art_305196_10318814.html (accessed on 22 September 2025).
- Statistical Bulletin of National Economic and Social Development of Shandong Province in 2024. Available online: http://www.shandong.gov.cn/art/2025/3/5/art_305196_10353763.html (accessed on 22 September 2025).
- Mehmood, M.S.; Rehman, A.; Sajjad, M.; Song, J.; Zafar, Z.; Shiyan, Z.; Yaochen, Q. Evaluating land use/cover change associations with urban surface temperature via machine learning and spatial modeling: Past trends and future simulations in Dera Ghazi Khan, Pakistan. Front. Ecol. Evol. 2023, 11, 1115074. [Google Scholar] [CrossRef]
- Peng, L.; Huang, K.; Zhang, H.; Sun, W. Exploring the impacts of urbanization on vegetation growth from the perspective of urban expansion patterns and maturity: A case study on 40 large cities in China. Sust. Cities Soc. 2024, 115, 105841. [Google Scholar] [CrossRef]
- Geographic Resources. Available online: http://www.shandong.gov.cn/art/2024/6/17/art_98093_642535.html (accessed on 4 June 2025).
- NASA Jet Propulsion Laboratory. NASADEM Merged DEM Global 1 arc Second V001. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-nasadem-hgt-001 (accessed on 14 October 2024). [CrossRef]
- Zhao, C.; Cao, X.; Chen, X.; Cui, X. A consistent and corrected nighttime light dataset (CCNL 1992-2013) from DMSP-OLS data. Sci. Data 2022, 9, 424. [Google Scholar] [CrossRef]
- Ziegler, A.; König, I.R. Mining data with random forests: Current options for real-world applications. Data Min. Knowl. Discov. 2014, 4, 55–63. [Google Scholar] [CrossRef]
- Mienye, I.D.; Sun, Y. A survey of ensemble learning: Concepts, algorithms, applications, and prospects. IEEE Access 2022, 10, 99129–99149. [Google Scholar] [CrossRef]
- Alciaturi, G.; Wdowinski, S.; García-Rodríguez, M.D.; Fernández, V. Seasonal land use and land cover mapping in South American agricultural watersheds using multisource remote sensing: The case of Cuenca Laguna Merín, Uruguay. Sensors 2025, 25, 228. [Google Scholar] [CrossRef] [PubMed]
- Pande, C.B.; Srivastava, A.; Moharir, K.N.; Radwan, N.; Sidek, L.M.; Alshehri, F.; Pal, S.C.; Tolche, A.D.; Zhran, M. Characterizing land use/land cover change dynamics by an enhanced random forest machine learning model: A Google Earth Engine implementation. Environ. Sci. Eur. 2024, 36, 84. [Google Scholar] [CrossRef]
- Fernando, W.A.M.; Senanayake, I.P. Developing a two-decadal time-record of rice field maps using Landsat-derived multi-index image collections with a random forest classifier: A Google Earth Engine based approach. Inf. Process. Agric. 2024, 11, 260–275. [Google Scholar] [CrossRef]
- Tan, Y.C.; Duarte, L.; Teodoro, A.C. Comparative study of Random Forest and Support Vector Machine for land cover classification and post-wildfire change detection. Land 2024, 13, 1878. [Google Scholar] [CrossRef]
- Selka, I.; Mokhtari, A.M.; Aoul, K.A.T.; Bengusmia, D.; Malika, K.; Djebbar, K.E. Assessing the impact of land use and land cover changes on surface temperature dynamics using Google Earth Engine: A case study of Tlemcen Municipality, Northwestern Algeria (1989–2019). ISPRS Int. J. Geo-Inf. 2024, 13, 237. [Google Scholar] [CrossRef]
- Ali, K.; Johnson, B.A. Land-use and land-cover classification in semi-arid areas from medium-resolution remote-sensing imagery: A deep learning approach. Sensors 2022, 22, 8750. [Google Scholar] [CrossRef]
- Zhao, Z.; Islam, F.; Waseem, L.A.; Tariq, A.; Nawaz, M.; Ul Islam, I.; Bibi, T.; Rehman, N.U.; Ahmad, W.; Aslam, R.W.; et al. Comparison of three machine learning algorithms using Google Earth Engine for land use land cover classification. Rangel. Ecol. Manag. 2024, 92, 129–137. [Google Scholar] [CrossRef]
- Xulu, S.; Phungula, P.T.; Mbatha, N.; Moyo, I. Multi-year mapping of disturbance and reclamation patterns over Tronox’s Hillendale Mine, South Africa with DBEST and Google Earth Engine. Land 2021, 10, 760. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Adili, A.; Wu, B.; Chen, J.; Wu, N.; Ge, Y.; Abuduwaili, J. Assessment of landscape ecological risk and its driving factors for the Ebinur Lake Basin from 1985 to 2022. Land 2024, 13, 1572. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, X.; Li, X. Spatial extent effects of plain landscape patterns. Chin. Agric. Sci. Bull. 2024, 40, 53–65. [Google Scholar]
- Zhang, R.; Liu, X. Study on the extent effect of land use landscape pattern in Tianshui as a case study. Ecol. Sci. 2019, 38, 80–89. [Google Scholar] [CrossRef]
- Yue, W.; Xu, J.; Tan, W.; Zhao, J.; Su, F. Spatial scale analysis of the diversities of urban landscape: A case study within the external circle highway of Shanghai City. Acta Ecol. Sin. 2005, 25, 122–128. [Google Scholar]
- Nie, W.; Yang, F.; Xu, B.; Bao, Z.; Shi, Y.; Liu, B.; Wu, R.; Lin, W. Spatiotemporal evolution of landscape patterns and their driving forces under optimal granularity and the extent at the county and the environmental functional regional scales. Front. Ecol. Evol. 2022, 10, 954232. [Google Scholar] [CrossRef]
- Ai, J.; Yu, K.; Zeng, Z.; Yang, L.; Liu, Y.; Liu, J. Assessing the dynamic landscape ecological risk and its driving forces in an island city based on optimal spatial scales: Haitan Island, China. Ecol. Indic. 2022, 137, 108771. [Google Scholar] [CrossRef]
- Gokool, S.; Mahomed, M.; Brewer, K.; Naiken, V.; Clulow, A.; Sibanda, M.; Mabhaudhi, T. Crop mapping in smallholder farms using unmanned aerial vehicle imagery and geospatial cloud computing infrastructure. Heliyon 2024, 10, e26913. [Google Scholar] [CrossRef]
- Ganjirad, M.; Bagheri, H. Google Earth Engine-based mapping of land use and land cover for weather forecast models using Landsat 8 imagery. Ecol. Inform. 2024, 80, 102498. [Google Scholar] [CrossRef]
- Tesfaye, M.; Breuer, L. Remote sensing with machine learning for multi-decadal surface water monitoring in Ethiopia. Sci. Rep. 2025, 15, 12444. [Google Scholar] [CrossRef] [PubMed]
- Orieschnig, C.A.; Belaud, G.; Venot, J.P.; Massuel, S.; Ogilvie, A. Input imagery, classifiers, and cloud computing: Insights from multi-temporal LULC mapping in the Cambodian Mekong Delta. Eur. J. Remote Sens. 2021, 54, 398–416. [Google Scholar] [CrossRef]
- Jeong, J.; Park, C.R. Developing a mapping procedure for urban forests using online map services and Sentinel-2A images. Urban For. Urban Green. 2023, 89, 128095. [Google Scholar] [CrossRef]
- Safaei, M.; Southworth, J.; Gibbes, C.; Herrero, H.V.; Rahaman, M.; Tefera, B.B.; Blackburn, J.K. Land-cover classification in Addo Elephant National Park: Analyzing the impact of variables, classifiers, and object-based approach. Ecol. Inform. 2025, 90, 103279. [Google Scholar] [CrossRef]
- Sankalpa, J.K.S.; Rathnayaka, A.; Ishani, P.G.N.; Liyanaarachchi, L.; Gayan, M.W.H.; Wijesuriya, W.; Karunaratne, S. Fusion of spectral and topographic features for land use mapping using a machine learning framework for a regional scale application. Environ. Monit. Assess. 2024, 196, 1030. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhong, X.; Deng, S.; Nie, S. Impact of LUCC on landscape pattern in the Yangtze River Basin during 2001-2019. Ecol. Inform. 2022, 69, 101631. [Google Scholar] [CrossRef]
- Guddeti, S.S.; Kurakalva, R.M.; Karuppannan, S. Identification of vulnerable areas using geospatial technologies in the lower Manair River basin of Telangana, Southern India. Geomat. Nat. Hazards Risk 2024, 15, 2296379. [Google Scholar] [CrossRef]
- Patel, S.; Indraganti, M.; Jawarneh, R.N. Land surface temperature responses to land use dynamics in urban areas of Doha, Qatar. Sust. Cities Soc. 2024, 104, 105273. [Google Scholar] [CrossRef]
- Rahimabadi, P.D.; Liu, B.; Azarnivand, H.; Malekian, A.; Damaneh, H.E. The nexus between land use/cover changes and land surface temperature: Remote sensing based two-decadal analysis. J. Arid. Environ. 2024, 225, 105269. [Google Scholar] [CrossRef]
- Shui, C.; Shan, B.; Li, W.; Wang, L.; Liu, Y. Investigating the influence of land cover on land surface temperature. Adv. Space Res. 2025, 75, 2614–2631. [Google Scholar] [CrossRef]
- Cheng, F.; Ou, G.; Wang, M.; Liu, C. Remote sensing estimation of forest carbon stock based on machine learning algorithms. Forests 2024, 15, 681. [Google Scholar] [CrossRef]
- Tassi, A.; Vizzari, M. Object-oriented LULC classification in Google Earth Engine combining SNIC, GLCM, and machine learning algorithms. Remote Sens. 2020, 12, 3776. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Chica-Olmo, M. Land cover change analysis of a Mediterranean area in Spain using different sources of data: Multi-seasonal Landsat images, land surface temperature, digital terrain models and texture. Appl. Geogr. 2012, 35, 208–218. [Google Scholar] [CrossRef]
- Lin, M.; Lin, T.; Sun, C.; Jones, L.; Sui, J.; Zhao, Y.; Liu, J.; Xing, L.; Ye, H.; Zhang, G.; et al. Using the Eco-Erosion Index to assess regional ecological stress due to urbanization—A case study in the Yangtze River Delta urban agglomeration. Ecol. Indic. 2020, 111, 106028. [Google Scholar] [CrossRef]
- Zeng, L.; Yang, L.; Su, L.; Hu, H.; Feng, C. The impact of policies on land use and land cover changes in the Beijing-Tianjin-Hebei-Tianjin-Hebei region in China. Environ. Impact Assess. Rev. 2025, 110, 107676. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, J. Heterogeneity of wetland landscapes and their relationships with anthropogenic disturbances and precipitation in a semiarid region of China. Environ. Monit. Assess. 2022, 194, 786. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Li, C.; Chen, L. Multi-scale analysis of the influence of urban landscape pattern on land surface temperature: A case study of Shanghai. Chin. Landsc. Archit. 2025, 41, 86–93. [Google Scholar] [CrossRef]
- Shandong Province: Within Three Years, It Will Focus on Implementing Afforestation on Barren Hills and Returning Farmland to Forest. Available online: https://www.jnnews.tv/yaowen/2014/03-13/8Dg9m6a1.html (accessed on 21 June 2025).
- Opinions of the People’s Government of Shandong Province on Carrying Out the “Green All Over Qilu, Beautiful Shandong” Land Greening Action. Available online: http://m.shandong.gov.cn/art/2017/11/16/art_2259_23804.html (accessed on 21 June 2025).
- Notice of the General Office of the People’s Government of Shandong Province on Printing and Distributing the Action Plan for Accelerating Large-Scale Land Greening (Currently Valid). Available online: http://dnr.shandong.gov.cn/zwgk_324/zcwj/202004/t20200416_3074585.html (accessed on 7 July 2025).












| Dataset | Band | Year | Resolution |
|---|---|---|---|
| USGS Landsat 5 Level 2, Collection 2, Tier 1 | SR_B1 (blue), SR_B2 (green), SR_B3 (red), SR_B4 (nir), SR_B5 (swir1), SR_B7 (swir2) | 2004 2009 | 30 m |
| USGS Landsat 5 TM Collection 2 Tier 1 TOA Reflectance | B6 (thermal infrared 1) | ||
| USGS Landsat 8 Level 2, Collection 2, Tier 1 | SR_B2 (blue), SR_B3 (green), SR_B4 (red), SR_B5 (nir), SR_B6 (swir1), SR_B7 (swir2) | 2014 2019 2024 | |
| USGS Landsat 8 Collection 2 Tier 1 TOA Reflectance | B10 (thermal infrared 1) | ||
| NASA 30m Digital Elevation Model [43] | elevation | 2000 | |
| Consistent and Corrected Nighttime Light Dataset from DMSP-OLS (1992–2013) v1 [44] | b1 (corrected nighttime light intensity) | 2004 2009 | 1000 m |
| VIIRS Stray Light Corrected Nighttime Day/Night Band Composites Version 1 | avg_rad (average DNB radiance values) | 2014 2019 2024 | 463.83 m |
| Category | Feature | Number |
|---|---|---|
| Spectral bands | BLUE, GREEN, RED, NIR, SWIR1, SWIR2 | 6 |
| Remote sensing indices | PGI, PMLI, NDVI, MNDWI, NDBI, BSI | 6 |
| Texture features | ASM, CONT, CORR, VAR, IDM, SAVG, ENT | 7 |
| Topographic features | ELEVATION, SLOPE, ASPECT | 3 |
| Land surface temperature | LST | 1 |
| Nighttime light | NTL | 1 |
| Metric | Formula | Unit | Explanation |
|---|---|---|---|
| SHDI | \ | Higher values indicate greater landscape richness. | |
| PD | No. per 100 ha | Higher values indicate a more uneven spatial distribution of different patch types. | |
| SPLIT | \ | Higher values indicate a more fragmented landscape. | |
| LSI | \ | Higher values indicate increased complexity in landscape shapes. | |
| CONTAG | % | Higher values indicate stronger connectivity among landscape-dominant patches. |
| Feature Combination | RF | GTB | ||
|---|---|---|---|---|
| OA | Kappa | OA | Kappa | |
| C1 | 88.17% | 0.85 | 90.30% | 0.87 |
| C2 | 88.24% | 0.85 | 90.39% | 0.88 |
| C3 | 90.57% | 0.88 | 92.66% | 0.90 |
| C4 | 91.14% | 0.89 | 93.22% | 0.91 |
| C5 | 92.20% | 0.90 | 93.20% | 0.91 |
| Metric | Scale Size (km) | Nugget | Sill | Nugget/Sill (%) | R2 | Best Model |
|---|---|---|---|---|---|---|
| SHDI | 1.80 | 7.50 × 10−3 | 0.094 | 7.98 | 0.706 | Exponential |
| 3.00 | 7.00 × 10−3 | 0.090 | 7.78 | 0.771 | Exponential | |
| 4.20 | 7.50 × 10−3 | 0.092 | 8.07 | 0.938 | Exponential | |
| 5.40 | 6.90 × 10−3 | 0.093 | 7.39 | 0.945 | Exponential | |
| 6.60 | 5.30 × 10−3 | 0.091 | 5.82 | 0.945 | Exponential | |
| 7.80 | 7.90 × 10−3 | 0.085 | 9.26 | 0.932 | Exponential | |
| 9.00 | 8.10 × 10−3 | 0.092 | 8.81 | 0.947 | Exponential | |
| PD | 1.80 | 11.77 | 35.01 | 33.62 | 0.848 | Spherical |
| 3.00 | 8.17 | 25.46 | 32.09 | 0.845 | Exponential | |
| 4.20 | 6.91 | 20.96 | 32.97 | 0.865 | Exponential | |
| 5.40 | 4.33 | 17.27 | 25.07 | 0.847 | Exponential | |
| 6.60 | 5.54 | 24.04 | 23.04 | 0.893 | Spherical | |
| 7.80 | 3.59 | 14.51 | 24.74 | 0.884 | Exponential | |
| 9.00 | 5.27 | 20.26 | 26.01 | 0.883 | Spherical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Chen, L.; Zhang, T.; Teng, G.; Ma, L. Integrating Cloud Computing and Landscape Metrics to Enhance Land Use/Land Cover Mapping and Dynamic Analysis in the Shandong Peninsula Urban Agglomeration. Land 2025, 14, 1997. https://doi.org/10.3390/land14101997
Xiao J, Chen L, Zhang T, Teng G, Ma L. Integrating Cloud Computing and Landscape Metrics to Enhance Land Use/Land Cover Mapping and Dynamic Analysis in the Shandong Peninsula Urban Agglomeration. Land. 2025; 14(10):1997. https://doi.org/10.3390/land14101997
Chicago/Turabian StyleXiao, Jue, Longqian Chen, Ting Zhang, Gan Teng, and Linyu Ma. 2025. "Integrating Cloud Computing and Landscape Metrics to Enhance Land Use/Land Cover Mapping and Dynamic Analysis in the Shandong Peninsula Urban Agglomeration" Land 14, no. 10: 1997. https://doi.org/10.3390/land14101997
APA StyleXiao, J., Chen, L., Zhang, T., Teng, G., & Ma, L. (2025). Integrating Cloud Computing and Landscape Metrics to Enhance Land Use/Land Cover Mapping and Dynamic Analysis in the Shandong Peninsula Urban Agglomeration. Land, 14(10), 1997. https://doi.org/10.3390/land14101997
