Conservation Effectiveness and Heterogeneity of the National Park in Promoting Ecosystem Health: Causal Evidence from Huangshan, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.3. Methods
2.3.1. Ecosystem Health Assessment
- (1)
- Ecosystem Vigor (EV)
- (2)
- Ecosystem Services (ES)
- (3)
- Ecosystem Resilience (ER)
2.3.2. Propensity Score Matching for Conservation Effectiveness Assessment
2.3.3. Stratification-Multilevel Method for Heterogeneity Analysis
3. Results
3.1. Spatial-Temporal Patterns of Ecosystem Health
3.2. Effectiveness of the National Park on Promoting EH
3.3. Heterogeneity in the Conservation Effects of the National Park
4. Discussion
4.1. Characteristics of Ecosystem Health Changes in HNP and Its Surrounding Areas
4.2. The Remarkable Contributions of the HNP on Promoting Ecosystem Health
4.3. Heterogeneous Conservation Effects Across Ecological Baselines
4.4. Managerial Implications
4.5. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HNP | Huangshan National Park |
EH | Ecosystem health |
ES | Ecosystem service |
EV | Ecosystem vigor |
ER | Ecosystem resilience |
NPP | Net Primary Productivity |
PSM | Propensity score matching |
ATT | Average treatment effect on the treated group |
Appendix A
a. 2010 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1:1 Nearest Matching | 1:2 Nearest Matching | Optimal Matching | Full Matching | Subclassification Matching | ||||||
Covariate | Before | After | Before | After | Before | After | Before | After | Before | After |
Distance to road (m) | −0.8182 | −0.1277 | −0.8192 | −0.0706 | −0.8182 | −0.1244 | −0.8182 | −0.0818 | −0.8182 | −0.2399 |
Population density (people/km2) | −0.3273 | −0.0814 | −0.3286 | 0.1197 | −0.3273 | 0.0445 | −0.3273 | 0.0778 | −0.3273 | 0.034 |
Elevation (m) | 1.5725 | 0.1623 | 1.575 | −0.0233 | 1.5725 | 0.1465 | 1.5725 | −0.007 | 1.5725 | 0.1448 |
Slope (°) | 0.8536 | 0.076 | 0.8564 | 0.0364 | 0.8536 | 0.0809 | 0.8536 | 0.0894 | 0.8536 | 0.2056 |
Precipitation (mm) | 1.7338 | 0.0913 | 1.7341 | −0.0007 | 1.7338 | 0.1693 | 1.7338 | 0.012 | 1.7338 | 0.1603 |
b. 2015 | ||||||||||
1:1 Nearest Matching | 1:2 Nearest Matching | Optimal Matching | Full Matching | Subclassification Matching | ||||||
Covariate | Before | After | Before | After | Before | After | Before | After | Before | After |
Distance to road (m) | −0.8182 | −0.1077 | −0.8192 | −0.0766 | −0.8182 | −0.0513 | −0.8182 | 0.0169 | −0.8182 | −0.1899 |
Population density (people/km2) | −0.3568 | −0.0299 | −0.3581 | 0.0999 | −0.3568 | −0.0331 | −0.3568 | 0.0519 | −0.3568 | 0.03 |
Elevation (m) | 1.5725 | 0.2525 | 1.575 | −0.0089 | 1.5725 | 0.2583 | 1.5725 | 0.0635 | 1.5725 | 0.166 |
Slope (°) | 0.8536 | 0.0243 | 0.8564 | 0.0043 | 0.8536 | 0.0367 | 0.8536 | 0.075 | 0.8536 | 0.1972 |
Precipitation (mm) | 1.9335 | 0.2925 | 1.9363 | −0.0125 | 1.9335 | 0.3171 | 1.9335 | 0.0624 | 1.9335 | 0.2203 |
c. 2020 | ||||||||||
1:1 Nearest Matching | 1:2 Nearest Matching | Optimal Matching | Full Matching | Subclassification Matching | ||||||
Covariate | Before | After | Before | After | Before | After | Before | After | Before | After |
Distance to road (m) | 0.2891 | −0.1289 | 0.2902 | −0.0849 | 0.2891 | −0.1367 | 0.2891 | −0.2731 | 0.2891 | −0.1395 |
Population density (people/km2) | −0.3486 | 0.0862 | −0.3499 | 0.083 | −0.3486 | 0.1304 | −0.3486 | 0.0761 | −0.3486 | 0.0313 |
Elevation (m) | 1.6004 | 0.0846 | 1.6029 | −0.0117 | 1.6004 | 0.1058 | 1.6004 | −0.0645 | 1.6004 | 0.1503 |
Slope (°) | 0.9046 | −0.0244 | 0.9075 | 0.0375 | 0.9046 | −0.0379 | 0.9046 | −0.0204 | 0.9046 | 0.0849 |
Precipitation (mm) | 2.0914 | 0.1039 | 2.0942 | −0.0038 | 2.0914 | 0.104 | 2.0914 | −0.031 | 2.0914 | 0.2519 |
a. 2010 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Sample | 0–10 km | 10–20 km | 20–30 km | 30–40 km | 40–50 km | |||||||
Covariate | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After |
Distance to road (m) | −0.8192 | −0.0706 | −0.2759 | −0.0357 | −0.9789 | −0.3123 | −0.632 | −0.5859 | −0.6758 | −0.4166 | −1.1445 | −0.271 |
Population density (people/km2) | −0.3286 | 0.1197 | −0.1706 | 0.147 | −0.3839 | 0.184 | 0.261 | 0.11 | −0.9123 | 0.1974 | −0.2728 | 0.1023 |
Elevation (m) | 1.575 | −0.0233 | 1.2523 | 0.0541 | 1.5938 | −0.0257 | 1.7322 | −0.1192 | 1.6958 | −0.1004 | 1.4876 | −0.064 |
Slope (°) | 0.8564 | 0.0364 | 0.703 | 0.0069 | 0.9053 | 0.1549 | 1.1079 | −0.0835 | 0.9671 | −0.0308 | 0.6415 | −0.031 |
Precipitation (mm) | 1.7341 | −0.0007 | 1.2808 | 0.052 | 1.6407 | −0.1203 | 1.8138 | −0.0508 | 1.8653 | −0.1461 | 1.7898 | −0.2317 |
b. 2015 | ||||||||||||
Total Sample | 0–10 km | 10–20 km | 20–30 km | 30–40 km | 40–50 km | |||||||
Covariate | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After |
Distance to road (m) | −0.8192 | −0.0766 | −0.2759 | −0.0875 | −0.9789 | −0.5116 | −0.632 | −0.8694 | −0.6758 | −0.8904 | −1.1445 | −0.2963 |
Population density (people/km2) | −0.3581 | 0.0999 | −0.2083 | 0.1141 | −0.4176 | 0.0648 | 0.2536 | 0.111 | −0.9543 | 0.3587 | −0.3019 | 0.0935 |
Elevation (m) | 1.575 | −0.0089 | 1.2523 | 0.0618 | 1.5938 | −0.0294 | 1.7322 | −0.2968 | 1.6958 | −0.206 | 1.4876 | −0.087 |
Slope (°) | 0.8564 | 0.0043 | 0.703 | 0.0452 | 0.9053 | 0.0368 | 1.1079 | −0.1367 | 0.9671 | −0.1526 | 0.6415 | −0.0494 |
Precipitation (mm) | 1.9363 | −0.0125 | 1.3983 | 0.0567 | 1.8383 | −0.062 | 2.0502 | −0.1853 | 2.1026 | −0.1024 | 1.9702 | −0.1242 |
c. 2020 | ||||||||||||
Total Sample | 0–10 km | 10–20 km | 20–30 km | 30–40 km | 40–50 km | |||||||
Covariate | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After |
Distance to road (m) | 0.2902 | −0.0849 | 0.4482 | −0.1012 | 0.4011 | −0.2829 | 0.2751 | −0.4227 | 0.1592 | −0.3439 | 0.2018 | −0.0886 |
Population density (people/km2) | −0.3499 | 0.083 | −0.2156 | 0.0907 | −0.4199 | 0.1196 | 0.2606 | 0.0905 | −0.9669 | 0.1948 | −0.3076 | 0.0507 |
Elevation (m) | 1.6029 | −0.0117 | 1.2523 | 0.0428 | 1.5938 | 0.0842 | 1.7322 | −0.0222 | 1.6958 | 0.0551 | 1.4877 | 0.0249 |
Slope (°) | 0.9075 | 0.0375 | 0.703 | 0.0646 | 0.9053 | −0.108 | 1.1079 | −0.1433 | 0.9671 | 0.0075 | 0.6417 | 0.0168 |
Precipitation (mm) | 2.0942 | −0.0038 | 1.3732 | 0.0508 | 1.7769 | 0.1037 | 1.9426 | −0.0349 | 1.9558 | 0.087 | 1.8057 | 0.0357 |
a. 2010 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Sample | 0–10 km | 10–20 km | 20–30 km | 30–40 km | 40–50 km | ||||||||
Covariate | Treated | Control | Treated | Control | Treated | Control | Treated | Control | Treated | Control | Treated | Control | |
Distance to road (m) | before | 2299.2998 | 3750.0526 | 2298.843 | 2788.2403 | 2298.843 | 4034.9366 | 2298.843 | 3419.8323 | 2298.843 | 3497.3887 | 2298.843 | 4328.7817 |
after | 2296.8441 | 2421.7849 | 2304.6852 | 2367.9645 | 2353.2238 | 2907.049 | 2371.4306 | 3410.6341 | 2438.5972 | 3177.4503 | 2340.1089 | 2820.7544 | |
Population density (people/km2) | before | 39.8905 | 75.6599 | 39.9759 | 58.5697 | 39.9759 | 81.8281 | 39.9759 | 11.5188 | 39.9759 | 139.4278 | 39.9759 | 69.7117 |
after | 39.6203 | 26.5857 | 41.068 | 25.0437 | 46.4267 | 26.3709 | 39.2163 | 27.2241 | 48.2512 | 26.7321 | 43.1658 | 32.0079 | |
Elevation (m) | before | 814.6774 | 344.6342 | 814.6798 | 440.3627 | 814.6798 | 338.3007 | 814.6798 | 296.9489 | 814.6798 | 307.821 | 814.6798 | 370.0524 |
after | 722.9438 | 729.9082 | 715.0471 | 698.8864 | 561.4861 | 569.1784 | 534.8763 | 570.5133 | 623.261 | 653.2831 | 659.9815 | 679.1186 | |
Slope (°) | before | 28.6589 | 20.4584 | 28.6397 | 21.9028 | 28.6397 | 19.9634 | 28.6397 | 18.0217 | 28.6397 | 19.3712 | 28.6397 | 22.492 |
after | 27.7201 | 27.3711 | 27.1925 | 27.1263 | 26.5667 | 25.0825 | 25.0202 | 25.8207 | 26.4656 | 26.761 | 27.2732 | 27.5701 | |
Precipitation (mm) | before | 2158.6183 | 1917.4703 | 2158.8503 | 1980.5435 | 2158.8503 | 1930.4489 | 2158.8503 | 1906.347 | 2158.8503 | 1899.1792 | 2158.8503 | 1909.682 |
after | 2119.5538 | 2119.6498 | 2115.3079 | 2108.0651 | 2054.3095 | 2071.0627 | 2047.8952 | 2054.9657 | 2087.6172 | 2107.9552 | 2094.4999 | 2126.7496 | |
b. 2015 | |||||||||||||
Total Sample | 0–10 km | 10–20 km | 20–30 km | 30–40 km | 40–50 km | ||||||||
Covariate | Treated | Control | Treated | Control | Treated | Control | Treated | Control | Treated | Control | Treated | Control | |
Distance to road (m) | before | 2299.2998 | 3750.0526 | 2298.843 | 2788.2403 | 2298.843 | 4034.9366 | 2298.843 | 3419.8323 | 2298.843 | 3497.3887 | 2298.843 | 4328.7817 |
after | 2343.6505 | 2479.3505 | 2260.8373 | 2415.9495 | 2460.4962 | 3367.8896 | 2727.1873 | 4269.2183 | 2949.3417 | 4528.5073 | 2494.007 | 3019.5325 | |
Population density (people/km2) | before | 36.4278 | 75.0241 | 36.5066 | 58.9943 | 36.5066 | 81.576 | 36.5066 | 9.133 | 36.5066 | 139.5122 | 36.5066 | 69.0929 |
after | 39.0544 | 28.2871 | 38.4965 | 26.1793 | 29.8832 | 22.8872 | 34.8755 | 22.8953 | 58.71 | 19.9926 | 46.2367 | 36.1451 | |
Elevation (m) | before | 814.6774 | 344.6342 | 814.6798 | 440.3627 | 814.6798 | 338.3007 | 814.6798 | 296.9489 | 814.6798 | 307.821 | 814.6798 | 370.0524 |
after | 726.5854 | 729.2512 | 723.4696 | 704.9945 | 559.0807 | 567.8628 | 511.4322 | 600.1312 | 630.3683 | 691.9307 | 603.027 | 629.0275 | |
Slope (°) | before | 28.6589 | 20.4584 | 28.6397 | 21.9028 | 28.6397 | 19.9634 | 28.6397 | 18.0217 | 28.6397 | 19.3712 | 28.6397 | 22.492 |
after | 27.3952 | 27.3541 | 27.6572 | 27.2243 | 26.3665 | 26.0135 | 25.0673 | 26.3775 | 25.2971 | 26.7592 | 26.3219 | 26.7954 | |
Precipitation (mm) | before | 2429.0029 | 2125.386 | 2429.0371 | 2209.4455 | 2429.0371 | 2140.3498 | 2429.0371 | 2107.0823 | 2429.0371 | 2098.8471 | 2429.0371 | 2119.6327 |
after | 2376.1734 | 2378.1334 | 2372.7792 | 2363.8683 | 2285.4191 | 2295.1616 | 2267.1484 | 2296.2406 | 2315.7657 | 2331.8468 | 2312.6804 | 2332.1895 | |
c. 2020 | |||||||||||||
Total Sample | 0–10 km | 10–20 km | 20–30 km | 30–40 km | 40–50 km | ||||||||
Covariate | Treated | Control | Treated | Control | Treated | Control | Treated | Control | Treated | Control | Treated | Control | |
Distance to road (m) | before | 2137.7774 | 1720.1455 | 2136.8252 | 1490.9546 | 2136.8252 | 1558.734 | 2136.8252 | 1740.3323 | 2136.8252 | 1907.4124 | 2136.8252 | 1846.01 |
after | 2162.8421 | 2284.9909 | 2072.9991 | 2218.896 | 2173.1071 | 2580.8344 | 2338.7935 | 2948.025 | 2276.1901 | 2771.8036 | 2094.7608 | 2222.5002 | |
Population density (people/km2) | before | 35.9829 | 73.0048 | 36.0603 | 58.9012 | 36.0603 | 80.5498 | 36.0603 | 8.4471 | 36.0603 | 138.518 | 36.0603 | 68.6497 |
after | 36.7455 | 27.9584 | 35.2438 | 25.6339 | 33.2056 | 20.5373 | 31.8279 | 22.2396 | 38.2269 | 17.5804 | 40.6419 | 35.2743 | |
Elevation (m) | before | 814.6774 | 336.3074 | 814.6798 | 440.3627 | 814.6798 | 338.3007 | 814.6798 | 296.9489 | 814.6798 | 307.821 | 814.6798 | 370.0258 |
after | 757.3263 | 760.8066 | 717.398 | 704.5992 | 633.5675 | 608.3949 | 594.2765 | 600.8972 | 730.7725 | 714.2959 | 703.4744 | 696.0442 | |
Slope (°) | before | 28.6589 | 19.969 | 28.6397 | 21.9028 | 28.6397 | 19.9634 | 28.6397 | 18.0217 | 28.6397 | 19.3712 | 28.6397 | 22.4898 |
after | 28.2641 | 27.9047 | 27.4034 | 26.784 | 25.7991 | 26.8338 | 26.13 | 27.5036 | 27.8387 | 27.7665 | 27.7925 | 27.6312 | |
Precipitation (mm) | before | 2120.3072 | 1827.7762 | 2120.3783 | 1928.273 | 2120.3783 | 1871.8062 | 2120.3783 | 1848.6164 | 2120.3783 | 1846.7676 | 2120.3783 | 1867.7727 |
after | 2089.446 | 2089.9827 | 2068.3312 | 2061.2286 | 2028.807 | 2014.2997 | 2006.2251 | 2011.1011 | 2081.6965 | 2069.5315 | 2060.961 | 2055.9651 |
a. 2010 | ||||
---|---|---|---|---|
EH | ES | ER | EV | |
Treated | 0.4050037 | 0.10959544 | 0.9879207 | 0.6190458 |
Control | 0.3819352 | 0.09890886 | 0.9581496 | 0.6017086 |
b. 2015 | ||||
EH | ES | ER | EV | |
Treated | 0.4321984 | 0.1213692 | 0.9851929 | 0.6829016 |
Control | 0.4171342 | 0.1131893 | 0.9644158 | 0.6810368 |
c. 2020 | ||||
EH | ES | ER | EV | |
Treated | 0.4812389 | 0.1709042 | 0.9865474 | 0.6672542 |
Control | 0.4508396 | 0.1525037 | 0.9549505 | 0.6468838 |
a. 2010 | |||||
---|---|---|---|---|---|
Group | ATT | SE | p-Value | CI_lower | CI_upper |
Total sample | 0.022132 | 0.003349 | 7.33 × 10−11 | 0.015567 | 0.028697 |
0–10 km | 0.0167 | 0.003192 | 2.24 × 10−7 | 0.010443 | 2.30 × 10−2 |
10–20 km | 0.01993 | 0.004436 | 9.61 × 10−6 | 0.011235 | 2.86 × 10−2 |
20–30 km | 0.032232 | 0.00596 | 1.36 × 10−7 | 0.020551 | 0.043913 |
30–40 km | 0.035535 | 0.004354 | 3.90 × 10−15 | 0.027002 | 4.41 × 10−2 |
40–50 km | 0.033678 | 0.004171 | 4.00 × 10−15 | 0.025502 | 4.19 × 10−2 |
b. 2015 | |||||
Group | ATT | SE | p-Value | CI_lower | CI_upper |
Total sample | 0.014491 | 0.003637 | 7.51 × 10−5 | 0.007362 | 0.02162 |
0–10 km | 0.01614 | 0.003801 | 2.49 × 10−5 | 0.00869 | 2.36 × 10−2 |
10–20 km | 0.013009 | 0.006464 | 4.52 × 10−2 | 0.000339 | 2.57 × 10−2 |
20–30 km | 0.043009 | 0.010665 | 8.09 × 10−5 | 0.022105 | 0.063913 |
30–40 km | 0.026267 | 0.007872 | 1.01 × 10−3 | 0.010837 | 4.17 × 10−2 |
40–50 km | 0.017708 | 0.005267 | 8.56 × 10−4 | 0.007383 | 2.80 × 10−2 |
c. 2020 | |||||
Group | ATT | SE | p-Value | CI_lower | CI_upper |
Total sample | 0.029194 | 0.004068 | 1.63 × 10−12 | 0.02122 | 0.037167 |
0–10 km | 0.022292 | 0.003882 | 1.42 × 10−8 | 0.014683 | 2.99 × 10−2 |
10–20 km | 0.041111 | 0.006552 | 1.06 × 10−9 | 0.028269 | 5.40 × 10−2 |
20–30 km | 0.059526 | 0.007609 | 1.08 × 10−13 | 0.044613 | 0.074439 |
30–40 km | 0.037132 | 0.00536 | 1.55 × 10−11 | 0.026627 | 4.76 × 10−2 |
40–50 km | 0.033277 | 0.004954 | 4.21 × 10−11 | 0.023567 | 4.30 × 10−2 |
References
- Terraube, J.; Van Doninck, J.; Helle, P.; Cabeza, M. Assessing the Effectiveness of a National Protected Area Network for Carnivore Conservation. Nat. Commun. 2020, 11, 2957. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, Z.; Jeppesen, E.; Gao, Y.; Liu, Y.; Liu, Y.; Lu, Q.; Wang, C.; Sun, X. Assessment of the Effectiveness of China’s Protected Areas in Enhancing Ecosystem Services. Ecosyst. Serv. 2024, 65, 101588. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, Z.; Mallon, D.; Li, C.; Jiang, Z. Biodiversity Conservation Status in China’s Growing Protected Areas. Biol. Conserv. 2017, 210, 89–100. [Google Scholar] [CrossRef]
- Zhao, C.; Su, S.; Gong, Z.; Lv, C.; Li, N.; Luo, Q.; Zhou, X.; Li, S. Effectiveness of Protected Areas in the Three-River Source Region of the Tibetan Plateau for Biodiversity and Ecosystem Services. Ecol. Indic. 2023, 154, 110861. [Google Scholar] [CrossRef]
- Jiao, W.; Liu, X.; He, S. Establishing an Ecological Monitoring System for National Parks in China: A Theoretical Framework. Ecol. Indic. 2022, 143, 109414. [Google Scholar] [CrossRef]
- Xu, W.; Viña, A.; Kong, L.; Pimm, S.L.; Zhang, J.; Yang, W.; Xiao, Y.; Zhang, L.; Chen, X.; Liu, J.; et al. Reassessing the Conservation Status of the Giant Panda Using Remote Sensing. Nat. Ecol. Evol. 2017, 1, 1635–1638. [Google Scholar] [CrossRef]
- Brodie, J.F.; Mohd-Azlan, J.; Chen, C.; Wearn, O.R.; Deith, M.C.M.; Ball, J.G.C.; Slade, E.M.; Burslem, D.F.R.P.; Teoh, S.W.; Williams, P.J.; et al. Landscape-Scale Benefits of Protected Areas for Tropical Biodiversity. Nature 2023, 620, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xiao, Y.; Zhang, J.; Yang, W.; Zhang, L.; Hull, V.; Wang, Z.; Zheng, H.; Liu, J.; Polasky, S.; et al. Strengthening Protected Areas for Biodiversity and Ecosystem Services in China. Proc. Natl. Acad. Sci. USA 2017, 114, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Shi, K.; Fu, Y.; Zhou, W.; Zhao, R.; Bao, H. Influence Mechanism of Natural Factors and Human Socio-Economic Activities on Ecosystem Health in Arid Regions of Central Asia: A Case Study of Fuyun Area, Northwest China. Ecol. Indic. 2025, 173, 113356. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, J.; Xu, D.; Chen, D.; Tao, J.; Wang, J.; Ma, X. Study on Driving Factors of Island Ecosystem Health and Multi-Scenario Ecology Simulation Using Ecological Conservation and Eco-Friendly Tourism for Achieving Sustainability. J. Environ. Manag. 2025, 373, 123480. [Google Scholar] [CrossRef]
- Chen, M.-H.; Chen, F.; Tang, C.-J.; Lu, Y.; Feng, Y.-X. Integration of DPSIR Framework and TOPSIS Model Reveals Insight into the Coastal Zone Ecosystem Health. Ocean Coast. Manag. 2022, 226, 106285. [Google Scholar] [CrossRef]
- Zhang, S.; Zhenqi, Z.; Tongyan, Z.; Hongrun, J. Assessment of Coastal Zone Ecosystem Health in the Context of Tourism Development: A Case Study of Jiaozhou Bay. Ecol. Indic. 2024, 169, 112874. [Google Scholar] [CrossRef]
- Fernández, R.; Alcocer, J.; Oseguera, L.A. Microcystins Presence Threatens the Ecosystem Health of a Tropical National Park: Lagunas de Montebello, Chiapas. Braz. J. Bot. 2021, 44, 207–212. [Google Scholar] [CrossRef]
- Bouyer, J.; Sana, Y.; Samandoulgou, Y.; Cesar, J.; Guerrini, L.; Kabore-Zoungrana, C.; Dulieu, D. Identification of Ecological Indicators for Monitoring Ecosystem Health in the Trans-Boundary W Regional Park: A Pilot Study. Biol. Conserv. 2007, 138, 73–88. [Google Scholar] [CrossRef]
- Mallory, M.L.; Gilchrist, H.G.; Braune, B.M.; Gaston, A.J. Marine Birds as Indicators of Arctic Marine Ecosystem Health: Linking the Northern Ecosystem Initiative to Long-Term Studies. Environ. Monit. Assess. 2006, 113, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, J.; Tao, J.; Wang, P.; Guo, L.; Yang, L. National Park Ecosystem Health Measurement Model Construction and Empirical Study in Huangshan National Park. Acta Ecol. Sin. 2024, 44, 5746–5760. [Google Scholar]
- Ren, Y.; Zhang, F.; Li, J.; Zhao, C.; Jiang, Q.; Cheng, Z. Ecosystem Health Assessment Based on AHP-DPSR Model and Impacts of Climate Change and Human Disturbances: A Case Study of Liaohe River Basin in Jilin Province, China. Ecol. Indic. 2022, 142, 109171. [Google Scholar] [CrossRef]
- Li, S.; Liu, C.; Ge, C.; Yang, J.; Liang, Z.; Li, X.; Cao, X. Ecosystem Health Assessment Using PSR Model and Obstacle Factor Diagnosis for Haizhou Bay, China. Ocean Coast. Manag. 2024, 250, 107024. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, J.; Wu, R.; Ma, Q.; Yang, J. Ecosystem Health Assessment Based on DPSIRM Framework and Health Distance Model in Nansi Lake, China. Stoch. Environ. Res. Risk Assess. 2016, 30, 1235–1247. [Google Scholar] [CrossRef]
- Shu, H.; Xiao, C.; Ma, T.; Sang, W. Ecological Health Assessment of Chinese National Parks Based on Landscape Pattern: A Case Study in Shennongjia National Park. Int. J. Environ. Res. Public Health 2021, 18, 11487. [Google Scholar] [CrossRef]
- He, S.; Su, Y.; Wang, L.; Gallagher, L.; Cheng, H. Taking an Ecosystem Services Approach for a New National Park System in China. Resour. Conserv. Recycl. 2018, 137, 136–144. [Google Scholar] [CrossRef]
- Pu, L.; Lu, C.; Yang, X.; Chen, X. Spatio-Temporal Variation of the Ecosystem Service Value in Qilian Mountain National Park (Gansu Area) Based on Land Use. Land 2023, 12, 201. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, H.; Li, A.; Ma, X.; Sun, A.; Zhang, J. Spatial-Temporal Differentiation and Influencing Factors of Ecosystem Health in Three-River-Source National Park. Ecol. Indic. 2025, 171, 113183. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Cazalis, V.; Dudley, N.; Hoffmann, M.; Rodrigues, A.S.L.; Stolton, S.; Visconti, P.; Woodley, S.; Kingston, N.; Lewis, E.; et al. Area-Based Conservation in the Twenty-First Century. Nature 2020, 586, 217–227. [Google Scholar] [CrossRef]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E.M. One-Third of Global Protected Land Is under Intense Human Pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Joppa, L.N.; Loarie, S.R.; Pimm, S.L. On the Protection of “Protected Areas”. Proc. Natl. Acad. Sci. USA 2008, 105, 6673–6678. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wu, H.; Yang, B. Conserving Habitat and Ecosystem in Protected Areas amid Increasing Intensive Human Modification: A Case Study of China’s Pan-Pearl River Delta. Ecol. Indic. 2023, 154, 110799. [Google Scholar] [CrossRef]
- Schleicher, J.; Eklund, J.; Barnes, M.D.; Geldmann, J.; Oldekop, J.A.; Jones, J.P.G. Statistical Matching for Conservation Science. Conserv. Biol. 2020, 34, 538–549. [Google Scholar] [CrossRef]
- Ferraro, P.J.; Hanauer, M.M.; Sims, K.R.E. Conditions Associated with Protected Area Success in Conservation and Poverty Reduction. Proc. Natl. Acad. Sci. USA 2011, 108, 13913–13918. [Google Scholar] [CrossRef]
- Xia, H.; Li, H.; Prishchepov, A.V. Assessing Forest Conservation Outcomes of a Nature Reserve in a Subtropical Forest Ecosystem: Effectiveness, Spillover Effects, and Insights for Spatial Conservation Prioritization. Biol. Conserv. 2023, 285, 110254. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, J.; Lu, L.; Tang, G.; Yan, B.; Xiao, X.; Han, Y. Eco-Efficiency and Its Determinants at a Tourism Destination: A Case Study of Huangshan National Park, China. Tour. Manag. 2017, 60, 201–211. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, J.; Wang, Y.; Wang, C.; Zhang, H. Can Tourism Development Enhance Livelihood Capitals of Rural Households? Evidence from Huangshan National Park Adjacent Communities, China. Sci. Total Environ. 2020, 748, 141099. [Google Scholar] [CrossRef]
- Xinhua News Agency, China Plans to Expand National Park System. Available online: https://english.www.gov.cn/statecouncil/ministries/202212/29/content_WS63ad525fc6d0a757729e4e36.html (accessed on 6 September 2025).
- National Forestry and Grassland Administration of China. Spatial Planning Scheme for National Parks; National Forestry and Grassland Administration of China: Beijing, China, 2022.
- Huangshan Management Committee. Sustainable Development Policy of Huangshan Scenic Area; Huangshan Management Committee: Huangshan, China, 2019.
- Li, W.-B.; Yang, P.-P.; Xia, D.-P.; Huffman, M.A.; Li, M.; Li, J.-H. Ecotourism Disturbance on an Endemic Endangered Primate in the Huangshan Man and the Biosphere Reserve of China: A Way to Move Forward. Biology 2022, 11, 1042. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, D.; Bao, J. Sustainability and Nature-Based Mass Tourism: Lessons from China’s Approach to the Huangshan Scenic Park. J. Sustain. Tour. 2016, 24, 182–202. [Google Scholar] [CrossRef]
- Qian, C.; Sasaki, N.; Jourdain, D.; Kim, S.M.; Shivakoti, P. Local Livelihood under Different Governances of Tourism Development in China—A Case Study of Huangshan Mountain Area. Tour. Manag. 2017, 61, 221–233. [Google Scholar] [CrossRef]
- Huangshan Management Committee. Huangshan Scenic Area 2024 Work Summary and 2025 Work Arrangements; Huangshan Management Committee: Huangshan, China, 2025.
- Hu, H.; Zhang, J.; Wang, C.; Yu, P.; Chu, G. What Influences Tourists’ Intention to Participate in the Zero Litter Initiative in Mountainous Tourism Areas: A Case Study of Huangshan National Park, China. Sci. Total Environ. 2019, 657, 1127–1137. [Google Scholar] [CrossRef] [PubMed]
- Lian, T.; Yu, C. Representation of Online Image of Tourist Destination: A Content Analysis of Huangshan. Asia Pac. J. Tour. Res. 2017, 22, 1063–1082. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, R.; Long, Y.; Hu, J.; Yang, F.; Jin, T.; Wang, J.; Hu, P.; Wu, W.; Diao, Y.; et al. Individual-Level Performance of Nature Reserves in Forest Protection and the Effects of Management Level and Establishment Age. Biol. Conserv. 2019, 233, 23–30. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, L.; Zhang, H. Using Propensity Score Matching Models to Assess the Protection Effectiveness in Pudacuo National Park, China. Ecol. Indic. 2023, 150, 110222. [Google Scholar] [CrossRef]
- Frauman, E.; Banks, S. Gateway Community Resident Perceptions of Tourism Development: Incorporating Importance-Performance Analysis into a Limits of Acceptable Change Framework. Tour. Manag. 2011, 32, 128–140. [Google Scholar] [CrossRef]
- Bennett, N.; Lemelin, R.H.; Koster, R.; Budke, I. A Capital Assets Framework for Appraising and Building Capacity for Tourism Development in Aboriginal Protected Area Gateway Communities. Tour. Manag. 2012, 33, 752–766. [Google Scholar] [CrossRef]
- Su, M.; Xie, H.; Yue, W.; Zhang, L.; Yang, Z.; Chen, S. Urban Ecosystem Health Evaluation for Typical Chinese Cities along the Belt and Road. Ecol. Indic. 2019, 101, 572–582. [Google Scholar] [CrossRef]
- Wei, G.; He, B.-J.; Liu, Y.; Li, R. How Does Rapid Urban Construction Land Expansion Affect the Spatial Inequalities of Ecosystem Health in China? Evidence from the Country, Economic Regions and Urban Agglomerations. Environ. Impact Assess. Rev. 2024, 106, 107533. [Google Scholar] [CrossRef]
- Ye, M.; Liao, L.; Fu, T.; Lan, S. Do Establishment of Protected Areas and Implementation of Regional Policies Both Promote the Forest NPP? Evidence from Wuyi Mountain in China Based on PSM-DID. Glob. Ecol. Conserv. 2024, 55, e03210. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic Changes in the Value of China’s Ecosystem Services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Chakraborti, S.; Joshi, P.K.; Keesstra, S.; Sen, S.; Paul, S.K.; Kreuter, U.; Sutton, P.C.; Jha, S.; Dang, K.B. Ecosystem Service Value Assessment of a Natural Reserve Region for Strengthening Protection and Conservation. J. Environ. Manag. 2019, 244, 208–227. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Liu, Y.; Fei, X.; Yu, W.; Zhang, Z.; Meng, Q. Ecosystem Health Assessment: A Comprehensive and Detailed Analysis of the Case Study in Coastal Metropolitan Region, Eastern China. Ecol. Indic. 2019, 98, 363–376. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Li, T.; Wu, J. Regional Ecosystem Health Response to Rural Land Use Change: A Case Study in Lijiang City, China. Ecol. Indic. 2017, 72, 399–410. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, Q.; Zheng, Y.; Cui, J.; Meng, Q. Ecological Health Assessment of the Middle Route of the South-to-North Water Diversion Project Using an Enhanced VORS Model. Ecol. Indic. 2025, 172, 113281. [Google Scholar] [CrossRef]
- Lv, T.; Zeng, C.; Lin, C.; Liu, W.; Cheng, Y.; Li, Y. Towards an Integrated Approach for Land Spatial Ecological Restoration Zoning Based on Ecosystem Health Assessment. Ecol. Indic. 2023, 147, 110016. [Google Scholar] [CrossRef]
- Pan, Z.; He, J.; Liu, D.; Wang, J. Predicting the Joint Effects of Future Climate and Land Use Change on Ecosystem Health in the Middle Reaches of the Yangtze River Economic Belt, China. Appl. Geogr. 2020, 124, 102293. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Su, H.; Pan, J.; Sun, Y.; Zhu, J.; Fang, J.; Tang, Z. Assessing the Effectiveness of Global Protected Areas Based on the Difference in Differences Model. Ecol. Indic. 2021, 130, 108078. [Google Scholar] [CrossRef]
- An, L.; Shen, L.; Zhong, S.; Li, D.; Zhu, Y. Conservation Effects of Transboundary Protected Areas on Mitigating Anthropogenic Pressure across China’s Borders. Resour. Conserv. Recycl. 2025, 212, 107976. [Google Scholar] [CrossRef]
- Imbens, G.W.; Rubin, D.B. Causal Inference in Statistics, Social, and Biomedical Sciences; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-0-521-88588-1. [Google Scholar]
- Xie, Y.; Brand, J.E.; Jann, B. Estimating Heterogeneous Treatment Effects with Observational Data—Yu Xie, Jennie E. Brand, Ben Jann, 2012. Sociol. Methodol. 2012, 42, 314–347. [Google Scholar] [CrossRef] [PubMed]
- Drechsler, M.; Johst, K.; Ohl, C.; Wätzold, F. Designing Cost-Effective Payments for Conservation Measures to Generate Spatiotemporal Habitat Heterogeneity. Conserv. Biol. 2007, 21, 1475–1486. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zhang, J.; Xue, H.; Wang, J.; Li, A. Spatiotemporal Variations in Carbon Sources and Sinks in National Park Ecosystem and the Impact of Tourism. Sustainability 2024, 16, 7895. [Google Scholar] [CrossRef]
- Yang, H.; Hu, D.; Xu, H.; Zhong, X. Assessing the Spatiotemporal Variation of NPP and Its Response to Driving Factors in Anhui Province, China. Environ. Sci. Pollut. Res. 2020, 27, 14915–14932. [Google Scholar] [CrossRef]
- Fuller, C.; Ondei, S.; Brook, B.W.; Buettel, J.C. First, Do No Harm: A Systematic Review of Deforestation Spillovers from Protected Areas. Glob. Ecol. Conserv. 2019, 18, e00591. [Google Scholar] [CrossRef]
- Ford, S.A.; Jepsen, M.R.; Kingston, N.; Lewis, E.; Brooks, T.M.; MacSharry, B.; Mertz, O. Deforestation Leakage Undermines Conservation Value of Tropical and Subtropical Forest Protected Areas. Glob. Ecol. Biogeogr. 2020, 29, 2014–2024. [Google Scholar] [CrossRef]
- Yu, H.; Chen, C.; Shao, C. Spatial and Temporal Changes in Ecosystem Service Driven by Ecological Compensation in the Xin’an River Basin, China. Ecol. Indic. 2023, 146, 109798. [Google Scholar] [CrossRef]
- Wang, J.-H.Z. National Parks in China: Parks for People or for the Nation? Land Use Policy 2019, 81, 825–833. [Google Scholar] [CrossRef]
- Ament, J.M.; Cumming, G.S. Scale Dependency in Effectiveness, Isolation, and Social-ecological Spillover of Protected Areas. Conserv. Biol. 2016, 30, 846–855. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, G.; Zhou, W.; Liu, Y.; Cheng, H.; Su, X. Protected Areas Have Remarkable Spillover Effects on Forest Conservation on the Qinghai-Tibet Plateau. Divers. Distrib. 2022, 28, 2944–2955. [Google Scholar] [CrossRef]
- Black, B.; Anthony, B.P. Counterfactual Assessment of Protected Area Avoided Deforestation in Cambodia: Trends in Effectiveness, Spillover Effects and the Influence of Establishment Date. Glob. Ecol. Conserv. 2022, 38, e02228. [Google Scholar] [CrossRef]
- Beunen, R.; Regnerus, H.D.; Jaarsma, C.F. Gateways as a Means of Visitor Management in National Parks and Protected Areas. Tour. Manag. 2008, 29, 138–145. [Google Scholar] [CrossRef]
- Gong, J.; Fan, S.; Knight, D.W. Household Livelihood Adaptive Strategies in Gateway Communities of New National Parks. Asia Pac. J. Tour. Res. 2025, 30, 1065–1081. [Google Scholar] [CrossRef]
- Yao, X.; Zhou, L.; Wu, T.; Yang, X.; Ren, M. Ecosystem Services in National Park of Hainan Tropical Rainforest of China: Spatiotemporal Dynamics and Conservation Implications. J. Nat. Conserv. 2024, 80, 126649. [Google Scholar] [CrossRef]
- Powlen, K.A.; Gavin, M.C.; Jones, K.W. Management Effectiveness Positively Influences Forest Conservation Outcomes in Protected Areas. Biol. Conserv. 2021, 260, 109192. [Google Scholar] [CrossRef]
- Geldmann, J.; Coad, L.; Barnes, M.D.; Craigie, I.D.; Woodley, S.; Balmford, A.; Brooks, T.M.; Hockings, M.; Knights, K.; Mascia, M.B.; et al. A Global Analysis of Management Capacity and Ecological Outcomes in Terrestrial Protected Areas. Conserv. Lett. 2018, 11, e12434. [Google Scholar] [CrossRef]
- Andam, K.S.; Ferraro, P.J.; Pfaff, A.; Sanchez-Azofeifa, G.A.; Robalino, J.A. Measuring the Effectiveness of Protected Area Networks in Reducing Deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 16089–16094. [Google Scholar] [CrossRef]
- Liu, F.; Liang, Z.; Ye, J.; Li, J.; Yang, F.; Li, Z.; Cui, D.; Yan, L.; Li, B.; Hu, J. Conservation Implications of Climatically Heterogeneous Areas for Species Diversity in a Biodiversity Hotspot. J. Environ. Manag. 2024, 371, 123275. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Watson, J.E.M.; Sun, S.; Qi, W.; Wang, Z.; Liu, J. Mixed Effectiveness of Global Protected Areas in Resisting Habitat Loss. Nat. Commun. 2024, 15, 8389. [Google Scholar] [CrossRef]
- Murdoch, W.; Ranganathan, J.; Polasky, S.; Regetz, J. Using Return on Investment to Maximize Conservation Effectiveness in Argentine Grasslands. Proc. Natl. Acad. Sci. USA 2010, 107, 20855–20862. [Google Scholar] [CrossRef]
- Xue, S.; Fang, Z.; Bai, Y.; Alatalo, J.M.; Yang, Y.; Zhang, F. The Next Step for China’s National Park Management: Integrating Ecosystem Services into Space Boundary Delimitation. J. Environ. Manag. 2023, 329, 117086. [Google Scholar] [CrossRef] [PubMed]
- Brennan, A.; Naidoo, R.; Greenstreet, L.; Mehrabi, Z.; Ramankutty, N.; Kremen, C. Functional Connectivity of the World’s Protected Areas. Science 2022, 376, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Oldekop, J.A.; Holmes, G.; Harris, W.E.; Evans, K.L. A Global Assessment of the Social and Conservation Outcomes of Protected Areas. Conserv. Biol. 2015, 30, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Arnell, A.; de Lamo, X.; García-Rangel, S.; Lewis, M.; Mark, J.; Merow, C.; Miles, L.; Ondo, I.; Pironon, S.; et al. Areas of Global Importance for Conserving Terrestrial Biodiversity, Carbon and Water. Nat. Ecol. Evol. 2021, 5, 1499–1509. [Google Scholar] [CrossRef]
Data Name | Data Source | Resolution | Data Usage |
---|---|---|---|
The average market value of major crops | National Farm Product Cost–benefit Survey from the National Development and Reform Commission. https://www.ndrc.gov.cn/fgsj/ (accessed on 5 March 2025) | Yearbook data | Qualification of ecosystem health |
Net Primary Productivity (NPP) | Resource and Environmental Science and Data Platform of the Chinese Academy of Sciences http://www.resdc.cn/ (accessed on 21 October 2024) | 30 m | Qualification of ecosystem health |
Land use data | Resource and Environmental Science and Data Platform of the Chinese Academy of Sciences http://www.resdc.cn/ (accessed on 21 October 2024) | 30 m | Qualification of ecosystem health |
Elevation | Geospatial data cloud https://www.gscloud.cn/ (accessed on 21 October 2024) | 30 m | Counterfactual analysis of conservation effects and heterogeneity |
Slope | Geospatial data cloud https://www.gscloud.cn/ (accessed on 21 October 2024) | 30 m | Counterfactual analysis of conservation effects and heterogeneity |
Road data | OpenstreetMap https://www.openstreetmap.org (accessed on 1 February 2025) | Vector data | Counterfactual analysis of conservation effects and heterogeneity |
Mean annual precipitation | China Meteorological Data Network http://data.cma.cn/ (accessed on 21 October 2024) | 1000 m | Counterfactual analysis of conservation effects and heterogeneity |
Landscape Type | Grassland | Cropland | Forestland | Construction Land | Water | Unused Land |
---|---|---|---|---|---|---|
0.8 | 0.3 | 0.6 | 0.2 | 0.7 | 0.1 | |
0.6 | 0.5 | 1.0 | 0.3 | 0.8 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhang, J.; Qian, Z.; Dong, Y.; Ma, X. Conservation Effectiveness and Heterogeneity of the National Park in Promoting Ecosystem Health: Causal Evidence from Huangshan, China. Land 2025, 14, 1948. https://doi.org/10.3390/land14101948
Wang T, Zhang J, Qian Z, Dong Y, Ma X. Conservation Effectiveness and Heterogeneity of the National Park in Promoting Ecosystem Health: Causal Evidence from Huangshan, China. Land. 2025; 14(10):1948. https://doi.org/10.3390/land14101948
Chicago/Turabian StyleWang, Tian, Jinhe Zhang, Zhangrui Qian, Yingjia Dong, and Xiaobin Ma. 2025. "Conservation Effectiveness and Heterogeneity of the National Park in Promoting Ecosystem Health: Causal Evidence from Huangshan, China" Land 14, no. 10: 1948. https://doi.org/10.3390/land14101948
APA StyleWang, T., Zhang, J., Qian, Z., Dong, Y., & Ma, X. (2025). Conservation Effectiveness and Heterogeneity of the National Park in Promoting Ecosystem Health: Causal Evidence from Huangshan, China. Land, 14(10), 1948. https://doi.org/10.3390/land14101948