Tin Mining and Post-Tin Mining Reclamation Initiatives in Indonesia: With Special Reference to Bangka Belitung Areas
Abstract
1. Introduction
2. Materials and Methods
3. The Historical and Development of the Tin Concession in Indonesia
4. Tin Mining Areas and Practices in Indonesia
5. Impact of Tin Mining
5.1. Impacts on Vegetation Structure and Biomass
5.2. Decrease in Biodiversity
5.3. Effects on Soil Physical, Chemical, and Biological Properties
5.3.1. Soil Physical Properties
5.3.2. Soil Chemical Properties
5.3.3. Soil Biological Properties
5.4. Impact on the Socio-Economic Well-Being of the Local Community
5.4.1. Social Impacts of Tin Mining Operations
- a.
- Poverty Trap due to neglection of local community importance and interest
- b.
- Conflicting interest among stakeholders
- c.
- Weak tin mining governance increasingly risks the expansion of illegal mining
5.4.2. Economic Impact of Tin Mining
- a.
- Revenue generation for the local government and Contribution to regional GDP
- b.
- Job creation and income generation for the local community
- c.
- Economic dependence on a single industry
- d.
- Negative externality at Global Market and domestic level
- e.
- Land use conversion leading to reduced agricultural productivity
6. Some Efforts to Rehabilitate Degraded Land Due to Tin Mining
6.1. Degraded Land After Tin Mining
6.2. Land Use Arrangement in Post-Tin Mining Reclamation: A Landscape
6.2.1. Forest Conservation
6.2.2. Plantation Agriculture
6.2.3. Food Crop Cultivation
6.2.4. Aquaculture Development
6.3. Treatment to Enhance Soil Characteristics
6.4. Species Choice
- a.
- The adaptability of the selected plant species to acidic and nutrient-poor soil conditions. In tree habitus, alternative native species that can be selected include Calophyllum inophyllum, Syzygium grande, Hibiscus tiliaceus, Ficus superba, which have been proven to grow well on marginal soil, and Vitex pinnata which can grow on soil with low humidity levels [138].
- b.
- Plant species that can improve the physical, chemical, and biological characteristics of the soil, especially from the Fabaceae family (legumes), both in shrub habitus (legume cover crop/LCC) and trees. LCC is often a plant that is planted in the early stages after mining, with its role as a soil conditioner and erosion control [139]. In post-tin mining land on Bangka Island, the LCC species Pueraria javanica has the advantage of fast biomass growth and its ability to cover the soil surface. High biomass is also produced from LCC species Calopogonium mucunoides and Mucuna pruriens. The high biomass produced from LCC greens guarantees an increase in organic matter and nitrogen in the soil through symbiosis with Rhizobium [34,140]. A study on degraded land rehabilitation of tin post-mining in Bangka Island showed that in tree habitus, the legume family of the species Gliricida sepium and Enterolobium cyclocarpum had the greatest survival and growth ability, both those treated with planting media and control. The trial also showed that at the age of three years, the fastest growing non-legume tree species was Eucalyptus urophylla [22,141] as shown in Figure 8.
- c.
- The selected species have economic potential for the community, so in addition to being appropriate based on ecological aspects, the community is also encouraged to participate in the land rehabilitation program to ensure its sustainability [22,142]. Several species of economically valuable plants have been proven to be able to grow on post-tin mining land, both in tree habitus and agricultural/annual crops. In tree habitus, species Enterolobium cyclocarpum, Eucalyptus urophylla, Vitex pinnata are species that can produce wood for construction and furniture materials. Calophyllum inophyllum seeds can be processed into biodiesel, so they have the potential to have economic value.
7. Discussion
7.1. Forest Degradation and Biodiversity Loss
7.2. Degradation of Soil Physical, Chemical and Biological Properties
7.3. Socio-Economic Challenges
7.4. Mitigation Strategies and Sustainable Management
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ross, C. The tin frontier: Mining, empire, and environment in Southeast Asia, 1870s–1930s. Environ. Hist. Durh. N. C. 2014, 19, 454–479. [Google Scholar] [CrossRef]
- Assessing the Micro-Macro Dimension of Integration/Disintegration Processes: The Case of Tin Mining in Laos, Macro-Micro Dialogue Studies (WP5 Identity). 2020. Available online: https://shs.hal.science/halshs-03152252v1 (accessed on 16 September 2025).
- Nurtjahya, E.; Agustina, F. Managing the Socio-Economic Impact of Tin Mining on Bangka Island, Indonesia—Preparation for Closure; InfoMine Inc.: Vancouver, BC, Canada, 2015; 1172p. [Google Scholar]
- Ibrahim, I.; Sulista, S.; Pratama, S. Struggling for power over the Bangka coast: Tin amongst the vortex of companies, the state, and residents. Extr. Ind. Soc. 2022, 10, 101055. [Google Scholar] [CrossRef]
- Delfirman; Dzaki, H.M. Shifts in the control of natural resources: An analysis of the resource curse in Tin-Rich Bangka Belitung, Indonesia. Extr. Ind. Soc. 2025, 23, 101682. [Google Scholar] [CrossRef]
- Harahap, F.R. Restorasi Lahan Pasca Tambang Timah di Pulau Bangka. J. Soc. 2016, 6, 61–69. [Google Scholar] [CrossRef]
- Yang, J.H.; Hu, R.Z.; Zhou, M.F.; Lehmann, B.; Zhao, J.H.; Wu, J.H. Cassiterite U–Pb ages from the Tin Islands, Indonesia, the southern end of the Southeast Asian tin province. Miner. Depos. 2025, 1–13. [Google Scholar] [CrossRef]
- Sun, X.; Zheng, M.; Pei, T.; Hollings, P.; Si, X.; Zhang, R. Reassessing the spatial and temporal evolution of the Southeast Asian Tin Belt: Insights into recurrent tin mineralization. Earth-Sci. Rev. 2025, 270, 105233. [Google Scholar] [CrossRef]
- Daulay, H.S.F.; Firmanto, A.B.; Kornarius, Y.P. Indonesian National Tin Production Planning: Conceptual Framework. J. Indones. Sos. Teknol. 2023, 4, 2239–2247. [Google Scholar] [CrossRef]
- Irzon, R. Penambangan timah di Indonesia: Sejarah, masa kini, dan prospeksi. J. Teknol. Miner. Batubara 2021, 17, 179–189. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2023; USGS: Reston, VA, USA, 2023; pp. 1–214.
- BPS-Statistics Indonesia. Statistical Yearbook of Indonesia 2024; BPS Statistics Indonesia: Jakarta, Indonesia, 2024; pp. 1–852.
- International Tin Association. Global Tin Production Falls in 2024 on Supply Disruptions. Available online: https://www.internationaltin.org/global-tin-production-falls-in-2024-on-supply-disruptions/ (accessed on 28 August 2025).
- Intergovernmental Forum on Mining, Minerals, Metals and Sustainable Development. Global Trends in Artisanal and Small-Scale Mining (ASM): A Review of Key Numbers and Issues; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2017; pp. 1–91. [Google Scholar]
- World Bank. 2023 State of the Artisanal and Small-Scale Mining Sector; Delve: Washington, DC, USA, 2023; pp. 1–144. [Google Scholar]
- Mushia, N.M.; Ramoelo, A.; Ayisi, K.K. The impact of the quality of coal mine stockpile soils on sustainable vegetation growth and productivity. Sustainability 2016, 8, 546. [Google Scholar] [CrossRef]
- Haryadi, D.; Ibrahim, I.; Darwance, D. Environmental issues related to tin mining in Bangka Belitung Islands. People Int. J. Soc. Sci. 2022, 8, 67–85. [Google Scholar] [CrossRef]
- Dehkordi, M.M.; Pournuroz, N.Z.; Soleimani, D.K.; Salmanvandi, H.; Rasouli, K.R.; Ghaffarzadeh, M. Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results Eng. 2024, 23, 102729. [Google Scholar] [CrossRef]
- Wahyono, Y.; Sasongko, N.A.; Trench, A.; Anda, M.; Hadiyanto, H.; Aisyah, N. Evaluating the impacts of environmental and human health of the critical minerals mining and processing industries in Indonesia using life cycle assessment. Case Stud. Chem. Environ. Eng. 2024, 10, 100944. [Google Scholar] [CrossRef]
- Nurtjahya, E.; Franklin, J.; Umroh, A.F. The Impact of tin mining in Bangka Belitung and its reclamation studies. In Proceedings of the Sriwijaya International Conference on Engineering, Science and Technology (SICEST 2016), Bangka Island, Indonesia, 9–10 November 2016; Volume 101, pp. 1–7. [Google Scholar]
- Saputra, M.A.; Sammler, K.G. Volumetric, embodied and geologic geopolitics of the seabed: Offshore tin mining in Indonesia. Territ. Politics Gov. 2024, 1–19. [Google Scholar] [CrossRef]
- Pratiwi; Narendra, B.H.; Siregar, C.A.; Turjaman, M.; Hidayat, A.; Rachmat, H.H.; Mulyanto, B.; Suwardi; Iskandar; Maharani, R.; et al. Managing and reforesting degraded post-mining landscape in Indonesia: A review. Land 2021, 10, 658. [Google Scholar] [CrossRef]
- Shin, Y.J.; Midgley, G.F.; Archer, E.R.M.; Arneth, A.; Barnes, D.K.A.; Chan, L.; Hashimoto, S.; Hoegh-Guldberg, O.; Insarov, G.; Leadley, P.; et al. Actions to halt biodiversity loss generally benefit the climate. Glob. Change Biol. 2022, 28, 2846–2874. [Google Scholar] [CrossRef]
- Kartawisastra, S.; Gani, R.A.; Asmarhansyah, A. Tin mining process and its effects on soils in Bangka Belitung Islands Province, Indonesia. SAINS TANAH J. Soil Sci. Agroclimatol. 2020, 17, 180–189. [Google Scholar]
- Haghighizadeh, A.; Rajabi, O.; Nezarat, A.; Hajyani, Z.; Haghmohammadi, M.; Hedayatikhah, S.; Asl, S.D.; Beni, A.A. Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arab. J. Chem. 2024, 17, 105777. [Google Scholar] [CrossRef]
- Suman, J.; Rakshit, A.; Ogireddy, S.D.; Singh, S.; Gupta, C.; Chandrakala, J. Microbiome as a Key Player in Sustainable Agriculture and Human Health. Front. Soil Sci. 2022, 2, 821589. [Google Scholar] [CrossRef]
- Pratiwi, P.; Santoso, E.; Turjaman, M. Penentuan Dosis Bahan Pembenah (Ameliorant) untuk Perbaikan Tanah dari Tailing Pasir Kuarsa sebagai Media Tumbuh Tanaman Hutan. J. Penelit. Sos. Ekon. Kehutan. 2012, 9, 163–174. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A.A. Typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R. Writing narrative style literature reviews. Med. Writ. 2015, 24, 230–235. [Google Scholar] [CrossRef]
- Green, B.N.; Johnson, C.D.; Adams, A. Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. J. Chiropr. Med. 2006, 5, 101–117. [Google Scholar] [CrossRef]
- Siddaway, A.P.; Wood, A.M.; Hedges, L.V. How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annu. Rev. Psychol. 2019, 70, 747–770. [Google Scholar] [CrossRef] [PubMed]
- Frampton, G.K.; Livoreil, B.; Petrokofsky, G. Eligibility screening in evidence synthesis of environmental management topics. Environ. Evid. 2017, 6, 27. [Google Scholar] [CrossRef]
- Zuo, C.; Yang, X.; Errickson, J.; Li, J.; Hong, Y.; Wang, R. AI-assisted evidence screening method for systematic reviews in environmental research: Integrating ChatGPT with domain knowledge. Environ. Evid. 2025, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Pratiwi; Narendra, B.H.; Mulyanto, B. Soil properties improvement and use of adaptive plants for land rehabilitation of post tin mining closure in Bangka Island, Indonesia. Biodiversitas J. Biol. Divers. 2020, 21, 505–511. [Google Scholar] [CrossRef]
- Swastiwi, A.W.; Nugraha, S.A.; Purnomo, H. Lintas Sejarah Perdagangan Timah di Bangka-Belitung Abad 19–20, 1st ed.; CV. Genta Advertising: Tanjungpinang, Indonesia, 2017; pp. 1–153. [Google Scholar]
- Kaur, A.; Diehl, F. Tin miners and tin mining in Indonesia, 1850–1950. Asian Stud. Rev. 1996, 20, 95–120. [Google Scholar] [CrossRef]
- PT Timah Tbk. Membangun Ketahanan dan Meraih Performa Progresif Building Resilience and Seizing Progressive Performance; PT Timah Tbk: Jakarta, Indonesia, 2021; pp. 1–684. [Google Scholar]
- PT Timah Tbk. Ensuring Strategy to Raising Performance Memastikan Strategi untuk Mengoptimalkan Kinerja; PT Timah Tbk: Jakarta, Indonesia, 2023; pp. 1–684. [Google Scholar]
- Ministry of Energy and Mineral Resources. Indonesia’s Mineral and Coal Resources and Reserves 2025; Ministry of Energy and Mineral Resources: Jakarta, Indonesia, 2024; pp. 1–196.
- Ministry of Energy and Mineral Resources. Handbook of Energy and Economic Statistics of Indonesia; Ministry of Energy and Mineral Resources: Jakarta, Indonesia, 2022; pp. 1–111.
- Pradana, R.; Nugraha, E.D.; Omori, Y.; Shilfa, S.N.; Winarni, I.D.; Wahyudi, W. Public exposure from inhalation of radon and thoron around the tin mine and smelter areas in Bangka, Indonesia. Sci. Rep. 2024, 14, 30731. [Google Scholar] [CrossRef]
- Irzon, R.; Sendjadja, P.; Kurnia, I.; Soebandrio, J. Rare Earth Elements Within Tailing of Tin Mining in the Singkep Island. JGSM 2014, 15, 151–153. [Google Scholar]
- Mavis, N.; Adnyano, I.A. Optimalisasi Kinerja Pompa pada Sistem Penyaliran Tambang Sirkulasi Tertutup Penambangan Timah Alluvial. J. GEOSAPTA 2024, 10, 1–8. [Google Scholar] [CrossRef]
- Syafrullah, R.; Parulian, G.G.; Gunawan, G. Sistem vertical digging, benches atau kombinasi? Manakah yang dapat memberikan tingkat keberhasilan paling tinggi dalam aktivitas penambangan kapal keruk? Pros. Temu Profesi Tah. PERHAPI 2019, 1, 125–136. [Google Scholar] [CrossRef]
- Virgiawan, M.R.; Pitulima, J. Green mining: Technical study of off-shore tin mining using cutter suction dredger in Bangka Island, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 599, 012057. [Google Scholar] [CrossRef]
- Hambali, R.; Wahyuni, S. The potential for land erosion due to primary tin mining in Bangka Island. IOP Conf. Ser. Earth Environ. Sci. 2021, 926, 012072. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Gorai, A.K. Assessment of global carbon dynamics due to mining-induced forest cover loss during 2000–2019 using satellite datasets. J. Environ. Manag. 2024, 371, 123271. [Google Scholar] [CrossRef]
- Oktavia, D.; Pratiwi, S.D.; Munawaroh, S.; Hikmat, A.; Hilwan, I. Floristic composition and species diversity in three habitat types of heath forest in Belitung Island, Indonesia. Biodiversitas J. Biol. Divers. 2021, 22, 5555–5563. [Google Scholar] [CrossRef]
- Lee, P.Y.; Rotenberry, J.T. Relationships between bird species and tree species assemblages in forested habitats of eastern North America. J. Biogeogr. 2005, 32, 1139–1150. [Google Scholar] [CrossRef]
- Ony, M.A.; Nowicki, M.; Boggess, S.L.; Klingeman, W.E.; Zobel, J.M.; Trigiano, R.N.; Hadziabdic, D. Habitat fragmentation influences genetic diversity and differentiation: Fine-scale population structure of Cercis canadensis (eastern redbud). Ecol. Evol. 2020, 10, 3655–3670. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef] [PubMed]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Sari, E.; Nugroho, A.P.; Retnaningrum, E.; Prijambada, I.D. Plant Dispersal at Bangka Post-Tin Mining Revegetated Land Correlated with Soil Chemical Physical Properties and Heavy Metal Distribution. In Proceedings of the International Conference on Sustainable Environment, Agriculture and Tourism (ICOSEAT 2022), Bangka Island, Indonesia, 21–23 July 2022; pp. 1–9. [Google Scholar]
- Afzal, M.R.; Naz, M.; Ashraf, W.; Du, D. The Legacy of Plant Invasion: Impacts on Soil Nitrification and Management Implications. Plants 2023, 12, 2980. [Google Scholar] [CrossRef]
- Bangka Slow Loris Nycticebus bancanus: Geographic Distribution and Habitat. 2020. Available online: https://neprimateconservancy.org/ (accessed on 12 July 2025).
- Shanmukha, N.T.; Vinayaka, M.; Lokeshappa, B.; Nadaf, S. Biodiversity loss due to mining activities. In Impact of Societal Development and Infrastructure on Biodiversity Decline; IGI Global: Hershey, PA, USA, 2024; pp. 166–191. [Google Scholar]
- WHO. World Health Statistics 2021: Monitoring Health for the SDGs; World Health Organization: Geneva, Switzerland, 2021; pp. 1–136. [Google Scholar]
- AbdelRahman, M.A.E. An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rend. Lincei 2023, 34, 767–808. [Google Scholar] [CrossRef]
- Fujii, K.; Shibata, M.; Kitajima, K.; Ichie, T.; Kitayama, K.; Turner, B.L. Plant–soil interactions maintain biodiversity and functions of tropical forest ecosystems. Ecol. Res. 2017, 33, 149–160. [Google Scholar] [CrossRef]
- Mensah, A.K. Role of revegetation in restoring fertility of degraded mined soils in Ghana: A review. Int. J. Biodivers. Conserv. 2015, 7, 57–80. [Google Scholar] [CrossRef]
- Nasir, A.N.S.B.; Mustafa, F.B.; Muhammad, Y.S.Y.; Didams, G. A systematic review of soil erosion control practices on the agricultural land in Asia. Int. Soil Water Conserv. Res. 2020, 8, 103–115. [Google Scholar] [CrossRef]
- Richer-de-Forges, A.C.; Arrouays, D.; Libohova, Z.; Chen, S.; Beaudette, D.E.; Bourennane, H. Revealing Topsoil Behavior to Compaction from Mining Field Observations. Land 2024, 13, 909. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.A.; Tung, S.A.; Hafeez, A.; Souliyanonh, B. Soil compaction effects on soil health and cropproductivity: An overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–11067. [Google Scholar] [CrossRef]
- Shaheb, M.R.; Venkatesh, R.; Shearer, S.A. A Review on the Effect of Soil Compaction and its Management for Sustainable Crop Production. J. Biosyst. Eng. 2021, 46, 417–439. [Google Scholar] [CrossRef]
- Hambali, R.; Tae, L.S.; Bachtiar, H.; Denansyah, F.I.; Pamungkas, A. River Sedimentation Due to Tin Mining Activities in Bangka Island. J. Civ. Eng. Forum 2024, 18, 315–326. [Google Scholar] [CrossRef]
- Prescott, C.E.; Frouz, J.; Grayston, S.J.; Quideau, S.A.; Straker, J. Rehabilitating forest soils after disturbance. Glob. Change For. Soils 2019, 13, 309–343. [Google Scholar]
- Wang, Z.; Wang, G.; Ren, T.; Wang, H.; Xu, Q.; Zhang, G. Assessment of soil fertility degradation affected by mining disturbance and land use in a coalfield via machine learning. Ecol. Indic. 2021, 125, 107608. [Google Scholar] [CrossRef]
- Huntley, B.J. Ecology of Angola, 1st ed.; Springer: Cham, Switzerland, 2023; pp. 1–476. [Google Scholar]
- Navarro-Ramos, S.E.; Sparacino, J.; Rodríguez, J.M.; Filippini, E.; Marsal-Castillo, B.E.; García-Cannata, L.; Renison, D.; Torres, R.C. Active revegetation after mining: What is the contribution of peer-reviewed studies? Heliyon 2022, 8, e09179. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.F.; Ahmed, O.H.; Jalloh, M.B.; Omar, L.; Kwan, Y.M.; Musah, A.A.; Poong, K.H. Soil Nutrient Retention and pH Buffering Capacity Are Enhanced by Calciprill and Sodium Silicate. Agronomy 2022, 12, 219. [Google Scholar] [CrossRef]
- Hogarh, J.N.; Adu-Gyamfi, E.; Nukpezah, D.; Akoto, O.; Adu-Kumi, S. Contamination from mercury and other heavy metals in a mining district in Ghana: Discerning recent trends from sediment core analysis. Environ. Syst. Res. 2016, 5, 15. [Google Scholar] [CrossRef]
- Barrow, N.J.; Hartemink, A.E. The effects of pH on nutrient availability depend on both soils and plants. Plant Soil 2023, 487, 21–37. [Google Scholar] [CrossRef]
- Wulandari, D.; Agus, C.; Rosita, R.; Mansur, I.; Maulana, A.F. Impact of Tin Mining on Soil Physio-Chemical Properties in Bangka, Indonesia. J. Sains Teknol. Lingkung. 2022, 14, 114–121. [Google Scholar] [CrossRef]
- Onet, A.; Grenni, P.; Onet, C.; Stoian, V.; Crisan, V. Forest Soil Microbiomes: A Review of Key Research from 2003 to 2023. Forests 2025, 16, 148. [Google Scholar] [CrossRef]
- Wu, H.; Cui, H.; Fu, C.; Li, R.; Qi, F.; Liu, Z.; Yang, G.; Xiao, K.; Qiao, M. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. Sci. Total Environ. 2024, 909, 168627. [Google Scholar] [CrossRef] [PubMed]
- Gunathunga, S.U.; Gagen, E.J.; Evans, P.N.; Erskine, P.D.; Southam, G. Anthropedogenesis in coal mine overburden; the need for a comprehensive, fundamental biogeochemical approach. Sci. Total Environ. 2023, 892, 164515. [Google Scholar] [CrossRef]
- Valliere, J.M.; Wong, W.S.; Nevill, P.G.; Zhong, H.; Dixon, K.W. Preparing for the worst: Utilizing stress-tolerant soil microbial communities to aid ecological restoration in the Anthropocene. Ecol. Solut. Evid. 2020, 1, e12027. [Google Scholar] [CrossRef]
- Ertiban, S.M. Soil Fauna as Webmasters Engineers and Bioindicators in Ecosystems: Implications for Conservation Ecology and Sustainable Agriculture. Am. J. Life Sci. 2019, 7, 17–26. [Google Scholar] [CrossRef]
- Sofo, A.; Mininni, A.N.; Ricciuti, P. Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy 2020, 10, 456. [Google Scholar] [CrossRef]
- Pertiwi; Inonu, I.; Apriyadi, R. Diversity of soil mesofauna at various ages of post-tin mining reclamation land on Bangka Island. IOP Conf. Ser. Earth Environ. Sci. 2023, 1267, 012078. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Soil Reclamation of Abandoned Mine Land by Revegetation: A Review. Int. J. Soil Sediment Water 2010, 3, 13. [Google Scholar]
- Huang, S.; Ge, J. Is there heterogeneity in ESG disclosure by mining companies? A comparison of developed and developing countries. Environ. Impact Assess. Rev. 2024, 104, 107348. [Google Scholar] [CrossRef]
- Hilson, G. Poverty traps in small-scale mining communities: The case of sub-Saharan Africa. Can. J. Dev. Stud. 2012, 33, 180–197. [Google Scholar] [CrossRef]
- Kumah, C.; Hilson, G.; Quaicoe, I. Poverty, adaptation and vulnerability: An assessment of women’s work in Ghana’s artisanal gold mining sector. Area 2020, 52, 617–625. [Google Scholar] [CrossRef]
- Rosyida, I.; Khan, W.; Sasaoka, M. Marginalization of a coastal resource-dependent community: A study on Tin Mining in Indonesia. Extr. Ind. Soc. 2018, 5, 165–176. [Google Scholar] [CrossRef]
- Adrian, K.; Winarno; Hartanto, R.V.P. Analisis Dampak Aktivitas Proyek Tambang Timah di Perairan Laut Pulau Bangka Terhadap Hak atas Pekerjaan Nelayan Traditional: Perspektif Inclusive Citizenship. J. Pendidik. Kewarganegaraan 2021, 11, 76–85. [Google Scholar]
- Bidayani, E.; Kurniawan, K. Conflict Resolution in Coastal Resource Utilization among Fishermen and Unconventional Tin Miners. Society 2020, 8, 13–22. [Google Scholar] [CrossRef]
- Ibrahim, I.; Zukhri, N.; Rendy, R. The Inconsistence of Perceptions and Attitudes of Community Towards the Transition from Tin Mining to Tourism in Bangka Island, Indonesia. Geoj. Tour. Geosites 2022, 14, 708–717. [Google Scholar] [CrossRef]
- Resosudarmo, B.P.; Resosudarmo, I.A.P.; Sarosa, W.; Subiman, N.L. Socioeconomic Conflicts in Indonesia’s Mining Industry. In Exploiting Natural Resources; The Henry L. Stimson Center: Washington, DC, USA, 2009; Volume 1, pp. 33–46. [Google Scholar]
- Rahayu, D.P.; Rahayu, S.; Faisal; Wulandari, C.; Hassan, M.S. Implications of Illegal Community Mining for Economic Development in Bangka Regency, Indonesia. Law Reform. 2023, 19, 270–293. [Google Scholar] [CrossRef]
- Central Bureau of Statistics of Bangka Belitung Islands Province. Kepulauan Bangka Belitung Province in Figures, 1st ed.; BPS Kepulauan Banka Belitung: Kepulauan Bangka Belitun, Indonesia, 2017; pp. 1–487.
- International Tin Research Institute. Information Co-Operation Communication Contents: Annual Report 2016; ITRI Ltd.: Hertfordshire, UK, 2016; pp. 1–21. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2021; U.S. Geological Survey: Washington, DC, USA, 2021; pp. 1–200.
- Sulista, S.; Rosyid, F.A. The economic impact of tin mining in Indonesia during an era of decentralisation, 2001–2015: A case study of Kepulauan Bangka Belitung Province. Extr. Ind. Soc. 2022, 10, 101069. [Google Scholar] [CrossRef]
- Arkum, D.; Kuncoro, M.; Darwin, M. The Direct Economic and Fiscal Impact of Tin in Bangka Belitung Island Province, Indonesia, 2004–2013. Int. J. Bus. Econ. Law 2017, 14, 1–15. [Google Scholar]
- Hadi, S.; Saleng, A.; Sumardi, J. Analyzing the Perspective of Indonesia Mining Conflict Regulation. J. Law Policy Glob. 2015, 38, 189–194. [Google Scholar]
- Antoci, A.; Russu, P.; Ticci, E. Mining and local economies: Dilemma between environmental protection and job opportunities. Sustainability 2019, 11, 6244. [Google Scholar] [CrossRef]
- Darwance; Haryadi, D.; Sari, R.; Anwar, M.S.; Satrio, N. Tin Mining in Bangka Belitung Islands and Its Impact on the Reputation of Geographical Indication: A Policymakers Perspective. IOP Conf. Ser. Earth Environ. Sci. 2023, 1181, 012011. [Google Scholar] [CrossRef]
- Yunianto, B. Analysis of Small-Scale Mining in Mineral and Coal Mining Law Number 4/2009 (Inputs for Formulation of Implementing Regulation). Indones. Min. J. 2009, 12, 97–104. [Google Scholar]
- Murty, T.; Yuningsih, H. Upaya Penegakan Hukum Pidana Terhadap Tindak Pidana Penambangan Timah Ilegal di Provinsi Bangka Belitung. Simbur Cahaya 2017, 24, 4348–4374. [Google Scholar]
- Paramitha, A.P.; Pranoto, Y.S.; Purwasih, R. Determinan Keputusan Petani Terhadap Penjualan Lada Putih di Kecamatan Air Gegas Kabupaten Bangka Selatan. J. Integr. Agribus. 2021, 30, 54–69. [Google Scholar] [CrossRef]
- Barchia, M.F.; Amri, K.; Apriantoni, R. Land Degradation and Option of Practical Conservation Concepts in Manna Watershed Bengkulu Indonesia. TERRA J. Land Restor. 2018, 1, 23–30. [Google Scholar] [CrossRef]
- Directorate General of Watershed Management and Forest Rehabilitation. Determination of National Critical Land Maps and Data for 2022; Ministry of Environment and Forestry: Jakarta, Indonesia, 2022; pp. 1–88.
- Kurnia, A.; Rohaenid, N. Identifikasi Logam Berat di Lahan Pasca Tambang Timah di Kepulauan Bangka Belitung. J. Geomin. 2022, 7, 94–103. [Google Scholar] [CrossRef]
- Oktariani, P.; Suwardi; Widjaja, H.; Suryaningtyas, D.; Putri, A. Remediation Technology for Heavy Metal-Contaminated Soil on Copper Post- Mining Land Reclamation. J. Pengelolaan Lingkung. Pertamb. 2024, 1, 44–54. [Google Scholar] [CrossRef]
- Burgess, A.J.; Correa-Cano, M.E.; Parkes, B. The deployment of intercropping and agroforestry as adaptation to climate change. Crop. Environ. 2022, 1, 145–160. [Google Scholar] [CrossRef]
- Rolo, V.; Rivest, D.; Maillard, É.; Moreno, G. Agroforestry potential for adaptation to climate change: A soil-based perspective. Soil Use Manag. 2023, 39, 1006–1032. [Google Scholar] [CrossRef]
- Henri, H.; Hakim, L.; Batoro, J. Kearifan Lokal Masyarakat sebagai Upaya Konservasi Hutan Pelawan di Kabupaten Bangka Tengah, Bangka Belitung. J. Ilmu Lingkung. 2018, 16, 49–57. [Google Scholar] [CrossRef]
- Nurtjahya, E.; Mellawati, J.; Pratama, D.; Rani, R.; Herafi, C. Pertumbuhan Hortikultura di Lahan Bekas Tambang Timah, Bangka. Agrotrop J. Agr. Sci. 2023, 13, 300–311. [Google Scholar] [CrossRef]
- Nurtjahya, E.; Santi, R. Dinamika Transpirasi Berbagai Habitus Tanaman di Lahan Tambang Timah Bangka; Universitas Bangka Belitung: Bangka Belitung, Indonesia, 2018; pp. 1–36. [Google Scholar]
- Priyambada, I.B.; Sumiyati, S.; Puspita, A.S.; Wirawan, R.A. Optimization of organic waste processing using Black Soldier Fly larvae Case study: Diponegoro University. IOP Conf. Ser. Earth Environ. Sci. 2021, 896, 012017. [Google Scholar] [CrossRef]
- Maftukhah, R.; Kral, R.M.; Mentler, A.; Ngadisih, N.; Murtiningrum, M.; Keiblinger, K.M. Post-Tin-Mining Agricultural Soil Regeneration Using Local Resources, Reduces Drought Stress and Increases Crop Production on Bangka Island, Indonesia. Agronomy 2023, 13, 50. [Google Scholar] [CrossRef]
- Triswiyana, I.; Permatasari, A.; Ardiansyah, K. Utilization of Ex Tin Mine Lake for Aquaculture: Case Study of Muntok Sub District, West Bangka Regency. Samakia J. Ilmu Perikan. 2019, 10, 99–104. [Google Scholar] [CrossRef]
- Inonu, I.; Budianta, D.; Umar, M.; Yakup, W.A. Response of Rubber Clones to Frequency of Watering in Sand Tailings Media Derived from Tin Post-Mining. J. Agron. Indones. 2011, 39, 131–136. [Google Scholar]
- Santi, S. Pertumbuhan Nilam (Pogostemon cablin Benth) pada Sandy Tailing Asal Lahan Pasca Penambangan Timah yang Diberi Kompos dan Tanah Kupasan (Overburden). Master’s Thesis, Sriwijaya University, Palembang, Indonesia, 2005. [Google Scholar]
- Lazcano, C.; Dominguez, J. The Use of Vermicompost in Sustainable Agriculture: Impact on Plant Growth and Soil Fertility. In Soil Nutrient; Mohammad, M., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2012; pp. 1–24. [Google Scholar]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Thies, J.E.; Rillig, M.C.; Graber, E.R. Biochar Effects on the Abundance, Activity and Diversity of the Soil Biota. Available online: https://www.researchgate.net/publication/283435189 (accessed on 8 July 2025).
- Basche, A.; DeLonge, M. The Impact of Continuous Living Cover on Soil Hydrologic Properties: A Meta-Analysis. Soil Sci. Soc. Am. J. 2017, 81, 1179–1190. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Holman, J.D.; Schlegel, A.J.; Tatarko, J.; Shaver, T.M. Replacing Fallow with Cover Crops in a Semiarid Soil: Effects on Soil Properties. Soil Sci. Soc. Am. J. 2013, 77, 1026–1034. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Asmarhansyah, A.B.; Badayos, R.B.; Sanchez, P.C.; Sta Cruz, P.M.; Florece, L. Land suitability evaluation of abandoned tin-mining areas for agricultural development in Bangka Island, Indonesia. J. Degrad. Min. Lands Manag. 2017, 4, 907–918. [Google Scholar] [CrossRef]
- Subardja, D.; Kasno, A.; Sutono. Teknologi Pencetakan Sawah pada Lahan Bekas Tambang Timah di Bangka Belitung; AGRIS: Rome, Italy, 2012; pp. 1–12. [Google Scholar]
- Liu, Z.; Rong, Q.; Zhou, W.; Liang, G. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. PLoS ONE 2017, 12, e0172767. [Google Scholar] [CrossRef]
- Dariah, A.; Sutono, S.; Nurida, N.L.; Hartatik, W.; Etty, P. The Use of Soil Conditioners to Increase Agricultural Land Productivity. J. Sumberd. Lahan 2015, 9, 67–84. [Google Scholar]
- Kompos Blok Untuk Rehabilitasi Lahan Eks Tambang—AgroIndonesia. Available online: https://agroindonesia.co.id/kompos-blok-untuk-rehabilitasi-lahan-eks-tambang/ (accessed on 9 June 2025).
- Dodi, P.P.; Suryaningtyas, D.T.; Darmawan. Pemanfaatan Biomassa Tanaman Terhadap Karakteristik Kimia Tailing Tambang Timah. Bachelor’s Thesis, IPB University, Bogor, Indonesia, 2015. [Google Scholar]
- Anda, M.; Diah, P.N.; Yulistiani, D.; Sajimin; Suryani, E.; Husnain; Agus, F. Reclamation of post-tin mining areas using forages: A strategy based on soil mineralogy, chemical properties and particle size of the refused materials. Catena 2022, 213, 106140. [Google Scholar] [CrossRef]
- Assyifa, D.N.; Iskandar; Suryaningtyas, D.T. Perbaikan Tanah Berpasir dari Pulau Bangka Menggunakan Kompos Diperkaya FABA pada Pertumbuhan Tanaman Tomat (Solanum lycopersium). Bachelor’s Thesis, IPB University, Bogor, Indonesia, 2022. [Google Scholar]
- Budiman, A.S.; Suryaningtyas, D.T.; Suwardi. Pengaruh Pemberian KomFABA Terhadap Sifat-Sifat Tanah dan Pertumbuhan Tanaman Jagung (Zea mays) pada Tanah Pulau Belitung. Bachelor’s Thesis, IPB University, Bogor, Indonesia, 2022. [Google Scholar]
- Suryaningtyas, D.; Sulistijo, B.; Iskandar; Sudadi, U.; Kusumo, A.; Srihatati, Y. Buku Pegangan untuk Praktik Terbaik dalam Reklamasi Tambang Darat Timah Aluvial di Indonesia; Institus Federal Untuk Kebumian dan Sumber Daya Alam: Jakarta, Indonesia, 2019; pp. 1–95. [Google Scholar]
- Möller, A.; Schütte, P.; Saragi, A.; Ichsan, N.; Franken, G. Pilot reclamation of a tin mining area using biochar on Bangka Island, Indonesia. In Proceedings of the 17th International Conference on Mine Closure, Perth, WA, Australia, 26–28 November 2024; Australian Centre for Geomechanics: Brisbane, Australia, 2024; pp. 473–483. [Google Scholar]
- Gwenzi, W. Rethinking restoration indicators and end-points for post-mining landscapes in light of novel ecosystems. Geoderma 2021, 387, 114944. [Google Scholar] [CrossRef]
- Ethika, A.P.W.; Mulyanto, B.; Asmarhansyah; Subiksa, I.G.M.; Agus, F. Application of ameliorants for of ex-tin mining soil improvement and increasing corn (Zea mays) yield. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012187. [Google Scholar] [CrossRef]
- Lestari, T.; Apriyadi, R.; Hartina. Optimization of maize (Zea mays L.) cultivation in post tin mining land. IOP Conf. Ser. Earth Environ. Sci. 2020, 599, 012047. [Google Scholar] [CrossRef]
- Setyowati, R.D.N.; Amala, N.A.; Aini, N.N.U. Studi Pemilihan Tanaman Revegetasi Untuk Keberhasilan Reklamasi Lahan Bekas Tambang. Al-Ard J. Tek. Lingkung. 2018, 3, 14–20. [Google Scholar] [CrossRef]
- Iskandar; Budi, S.W.; Baskoro, D.P.T.; Suryaningtyas, D.T.; Ghozali, I. Petunjuk Teknis Pemulihan Kerusakan Lahan Akses Terbuka Akibat Kegiatan Pertambangan; Directorate General of Pollution Control and Environmental Damage: Jakarta, Indonesia, 2016; pp. 1–55.
- Nurtjahya, E.; Setiadi, D.; Guhardja, E.; Muhadiono, M.; Setiadi, Y. Establishment of Four Native Tree Species for Potential Revegetating of Tin-Mined Land in Bangka Island, Indonesia. In Proceedings of the Third International Seminar on Mine Closure, Johannesburg, South Africa, 14–17 October 2008; pp. 751–758. [Google Scholar]
- Narendra, B.H.; Pratiwi. Cover crops Growth on Tin-Mined Overburden in Bangka Island. Indones. For. Rehabil. J. 2014, 2, 15–24. [Google Scholar]
- Setyawan, D.; Hermawan, A.; Hanum, H. Revegetation of tin post-mining sites in Bangka Island to enhance soil surface development. IOP Conf. Ser. Earth Environ. Sci. 2019, 393, 012093. [Google Scholar] [CrossRef]
- Narendra, B.H.; Pratiwi, P. Adaptability of some legume trees on quartz tailings of a former tin mining area in Bangka Island, Indonesia. J. Degrad. Min. Lands Manag. 2016, 4, 671–674. [Google Scholar] [CrossRef]
- Agustian, A.; Ariningsih, E.; Indraningsih, K.S.; Saliem, H.P.; Suryani, E.; Susilowati, S.H. Study of the utilization of ex-tin mining land for agriculture: Analysis of land potential and constraints faced. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012086. [Google Scholar] [CrossRef]
- Erthalia, M.; Supriatna, D.A. Land Cover Change of Post-Tin Mining Land Conservation Area and Its Surroundings in Perimping Sub Watershed, Bangka Regency. In Proceedings of the 3rd International Conference on Energy, Environmental and Information System (ICENIS 2018), Semarang, Indonesia, 14–15 August 2018; Volume 73, pp. 1–6. [Google Scholar]
- Scanes, C.G. Human activity and habitat loss: Destruction, fragmentation, and degradation. In Animals and Human Society; Academic Press: London, UK, 2018; pp. 451–482. [Google Scholar]
- van Breugel, M.; Bongers, F.; Norden, N.; Meave, J.A.; Amissah, L.; Chanthorn, W. Feedback loops drive ecological succession: Towards a unified conceptual framework. Biol. Rev. 2024, 99, 928–949. [Google Scholar] [CrossRef]
- Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef]
- Sher, A.; Li, H.; Ullah, A.; Hamid, Y.; Nasir, B.; Zhang, J. Importance of regenerative agriculture: Climate, soil health, biodiversity and its socioecological impact. Discov. Sustain. 2024, 5, 462. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, C.; Li, Q.; Feng, Y.; Zhang, X.; Lu, Y. Heavy Metals Can Affect Plant Morphology and Limit Plant Growth and Photosynthesis Processes. Agronomy 2023, 13, 2601. [Google Scholar] [CrossRef]
- Hou, D.; Xu, M.; Wang, M.; Li, X.; Li, S.; Wang, J. Research on ecological restoration and green reclamation technology of goaf in phosphorus mines. Front. Environ. Sci. 2024, 12, 1343185. [Google Scholar] [CrossRef]
- Abuya, W.O. Mining conflicts and Corporate Social Responsibility: Titanium mining in Kwale, Kenya. Extr. Ind. Soc. 2016, 3, 485–493. [Google Scholar] [CrossRef]
- Worlanyo, A.S.; Jiangfeng, L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 2020, 279, 111623. [Google Scholar] [CrossRef]
- Yousefian, M.; Bascompta, M.; Sanmiquel, L.; Vintró, C. Corporate social responsibility and economic growth in the mining industry. Extr. Ind. Soc. 2023, 13, 101226. [Google Scholar] [CrossRef]
- Williams, A.; Dupuy, K. Deciding over nature: Corruption and environmental impact assessments. Environ. Impact Assess. Rev. 2017, 65, 118–124. [Google Scholar] [CrossRef]
- Haque, S.; Mengersen, K.; Barr, I.; Wang, L.; Yang, W.; Vardoulakis, S. Towards development of functional climate-driven early warning systems for climate-sensitive infectious diseases: Statistical models and recommendations. Environ. Res. 2024, 249, 118568. [Google Scholar] [CrossRef] [PubMed]
- Hallgren, A.; Hansson, A. Conflicting narratives of deep sea mining. Sustainability 2021, 13, 5261. [Google Scholar] [CrossRef]
- Rohman, A.; Hartiwiningsih, R.M. Illegal mining in Indonesia: Need for robust legislation and enforcement. Cogent Soc. Sci. 2024, 10, 2358158. [Google Scholar] [CrossRef]
- Rahmawati, D.A.; Haryono, A.; Endarto, B.; Santoso, B.T.; Kunarso. Legal Framework and Law Enforcement of Illegal Mining in Indonesia: A Normative Jurisdictional Analysis of the Implications of Environmental Law and Criminal Law. West Sci. Law Hum. Rights 2025, 3, 177–184. [Google Scholar] [CrossRef]
- Sarwosaputro, D.S.; Huda, M.N.; Pratama, F.; Krisnawan, J.P. Mining Regulatory: Enforcing The New Government Regulation Against Company Resistance. J. Gov. Regul. 2025, 14, 18–28. [Google Scholar] [CrossRef]
- Nasir, M.; Bakker, L.; van Meijl, T. Environmental Management of Coal Mining Areas in Indonesia: The Complexity of Supervision. Soc. Nat. Resour. 2023, 36, 534–553. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, W.; Zhang, X.; Zhang, X.; Yang, G. Real-Time Monitoring of Underground Miners’ Status Based on Mine IoT System. Sensors 2024, 24, 739. [Google Scholar] [CrossRef]
- Ma, L.; Chen, Q. Design and Application of Intelligent Monitoring and Identification System in Coal Mine. IOP Conf. Ser. Earth Environ. Sci. 2021, 651, 032107. [Google Scholar] [CrossRef]
- Vamshi, D.H.; Reddy, L.R.; Kumar, C.A.; Satyanarayana, A.N. Advanced Safety Monitoring System for Coal Mines Using IOT. IJISRT 2024, 9, 1706–1712. [Google Scholar] [CrossRef]
- World Bank Group. Mine Closure: A Toolbox for Governments; World Bank Energy and Extractive Unit: Washington, DC, USA, 2021; pp. 1–93. [Google Scholar]
- Rahmat, M.A.; Ismail, A.F.; Aziman, E.S.; Rodzi, N.D.; Mohamed, F.; Abdul, R.I. The impact of unregulated industrial tin-tailing processing in Malaysia: Past, present and way forward. Resour. Policy 2022, 78, 102864. [Google Scholar] [CrossRef]
- Huan, Y.; Manteghi, G. From Abandoned Tin Mine Opencast Site to Urban Regeneration. Int. J. Infrastruct. Res. Manag. 2022, 10, 91–103. [Google Scholar]
- Wang, H.; Zhou, W.; Guan, Y.; Wang, J.; Ma, R. Monitoring the ecological restoration effect of land reclamation in open-pit coal mining areas: An exploration of a fusion method based on ZhuHai-1 and Landsat 8 data. Sci. Total Environ. 2023, 904, 166324. [Google Scholar] [CrossRef]
- Majid, R.N.F.; Munibah, K.; Suryaningtyas, R.A.D.T. Sustainable Spatial Management Strategy for Mining Activities in Central Bangka Regency. Master’s Thesis, IPB University, Bogor, Indonesia, 2025. [Google Scholar]
- Winata, D.G.; Mulyanto, B.; Suryaningtyas, D.T. Exploring land cover dynamics: Open mining activities footprint in Central Bangka District, Indonesia. J. Degrad. Min. Lands Manag. 2025, 12, 8051–8063. [Google Scholar] [CrossRef]
No. | Practices | Description |
---|---|---|
1. | Land-based tin mining | Vegetation is removed to access mining deposits, followed by stripping, which involves the excavation of overburden—layers of topsoil and sediment that do not contain tin—using heavy machinery such as bulldozers and excavators. The tin ore grade in Bangka Belitung averages 0.5–1.5 kg Sn per m3 of sediment [42]. After hydraulic mining (high-pressure water jets), the resulting slurry yields: tin ore concentrate amounted 30–40% Sn; and tailings: amounted 90% of processed volume, mainly quartz sand and clay. For every 10 tonnes of slurry, only 30–40 kg of tin metal equivalent is recovered. The process generates millions of tonnes of tailings annually, much of which is poorly managed and contributes to land degradation [42,43]. |
2. | Offshore tin mining | The use of a stripping suction vessel to lift the top layer of seabed sediment consisting of mud, sand, and gravel to a depth of about 20 m. The material is immediately extracted, and the non-tin-containing material is dumped to the other side. Next, a dredger is used to extract the sediment containing tin, producing a tin ore concentrate with a content of about 20–30% Sn. The use of more efficient tools, such as bucket wheel dredges, can directly suck up tin-rich sediment without using conveyors [44,45]. |
No. | Media Names | News Title |
---|---|---|
1 | www.kompas.id | Bangka Belitung Three Century Stuck in Tin Conflict |
Refusing Tin Mining Hundreds of Bangka Fishermen to Sit on Suction Boats | ||
2 | detik.com | Illegal Mining Control Leads to Riot, Police: Arrogant |
3 | inews.id | Raids Illegal Tin Mine in Belo Laut Mangrove Forest Police Seize 13 Machines |
There are 2 Tin Mining Accidents in Bangka, 3 People were Killed by Buried in the Ground | ||
Fishermen and Miners Clash in Bangka, the Police Have Not Conducted Investigations | ||
Control of Illegal Tin Mining in Pangkalpinang Is Not Right on Target | ||
4 | www.liputan6.com | Tin Miners Demonstration in Bangka Chaotic |
Police Detain Two New Suspects in Tin Conflict | ||
5 | www.antaranews.com | Police Arrest Two Coordinators of Brutal Demonstration in Bangka Belitung |
6 | www.suara.com | WALHI Babel Records 1,053,253 Hectares of Forest in Babel Damaged due to tin mining |
7 | bangka.tribunnews.com | Illegal Tin Mine Damages PDAM Raw Water Source in Bangka Belitung. |
8 | wowbabel.com | 100 thousand Hectares of Forest Damaged by Mining |
Year | Local Workers | Expatriates | Total of Workers | ||
---|---|---|---|---|---|
Number | % | Number | % | ||
2009 | 3478 | 76 | 1092 | 24 | 4570 |
2010 | 3162 | 77 | 961 | 23 | 4123 |
2011 | 2988 | 76 | 960 | 24 | 3948 |
2012 | 3439 | 76 | 1059 | 24 | 4498 |
2013 | 3555 | 76 | 1097 | 24 | 4652 |
Average | 3324 | 76 | 1034 | 23 | 4358 |
Parameters | Locations | ||
---|---|---|---|
Bangka | Central Bangka | Central Bangka | |
pH H2O | 4.75 | 4.64 | 6.5 |
Organic-C (%) | 0.27 | 0.29 | 0.64 |
Total-N (%) | 0.03 | 0.03 | 0.67 |
P-Bray 1 (µg g−1) | 8.25 | 0.75 | 0.40 |
Exchangeable-K (cmolc kg−1) | 0.32 | 0.06 | 0.29 |
Exchangeable-Na (cmolc kg−1) | 0.44 | 0.65 | 1.37 |
Exchangeable-Ca (cmolc kg−1) | 0.25 | 0.20 | 0.58 |
Exchangeable-Mg (cmolc kg−1) | 0.06 | 0.15 | 1.26 |
CEC (cmolc kg−1) | 4.35 | 6.61 | 6.91 |
Texture | Sand | Sand | Sand |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratiwi; Narendra, B.H.; Siregar, C.A.; Iskandar; Mulyanto, B.; Suwardi; Suryaningtyas, D.T.; Dharmawan, I.W.S.; Suharti, S.; Marsandi, F. Tin Mining and Post-Tin Mining Reclamation Initiatives in Indonesia: With Special Reference to Bangka Belitung Areas. Land 2025, 14, 1947. https://doi.org/10.3390/land14101947
Pratiwi, Narendra BH, Siregar CA, Iskandar, Mulyanto B, Suwardi, Suryaningtyas DT, Dharmawan IWS, Suharti S, Marsandi F. Tin Mining and Post-Tin Mining Reclamation Initiatives in Indonesia: With Special Reference to Bangka Belitung Areas. Land. 2025; 14(10):1947. https://doi.org/10.3390/land14101947
Chicago/Turabian StylePratiwi, Budi Hadi Narendra, Chairil Anwar Siregar, Iskandar, Budi Mulyanto, Suwardi, Dyah Tjahyandari Suryaningtyas, I Wayan Susi Dharmawan, Sri Suharti, and Fenky Marsandi. 2025. "Tin Mining and Post-Tin Mining Reclamation Initiatives in Indonesia: With Special Reference to Bangka Belitung Areas" Land 14, no. 10: 1947. https://doi.org/10.3390/land14101947
APA StylePratiwi, Narendra, B. H., Siregar, C. A., Iskandar, Mulyanto, B., Suwardi, Suryaningtyas, D. T., Dharmawan, I. W. S., Suharti, S., & Marsandi, F. (2025). Tin Mining and Post-Tin Mining Reclamation Initiatives in Indonesia: With Special Reference to Bangka Belitung Areas. Land, 14(10), 1947. https://doi.org/10.3390/land14101947