Land Use and Water Stress as Determinants of Ecosystem Resilience: A Panel Data Analysis of Biodiversity Loss Drivers in European Countries
Abstract
1. Introduction
2. Materials and Methods
2.1. Fixed and Random-Effects Models
2.2. The Driscoll–Kraay Estimator
2.3. Cluster-Robust Standard Errors Estimator
2.4. Kernel-Based Regularized Least Squares (KRLS)
3. Results
3.1. Input Data
3.2. Fixed Effects Estimators
3.3. KRLS Results
4. Discussion
- (1)
- BER distribution concentrated in the upper part, as shown in Figure 3, highlights that many European countries have high ecosystem resilience scores. This result is in line with the Ecosystem Vitality index scores reported for 180 countries in the world [68]. It is notable that out of the top 20 positions in the 2024 Ecosystem Vitality ranking, countries in Europe occupy 18 of them, with Luxembourg, Germany, Poland, Slovakia, and the Czech Republic earning the top five positions. Serbia, Bosnia and Herzegovina, and Montenegro record the lowest ecosystem vitality scores among the countries of Europe, ranking 55th, 76th, and 85th, while there are no European countries in the lower half of the ranking. The Ecosystem Vitality indicator [69] measures how well countries are protecting, preserving, and enhancing ecosystems and the services they provide.
- (2)
- The results in Table 4 and Figure 6 and Figure 7 confirm hypothesis H1, that forest land share has a positive effect on ecosystem resilience. In recent studies, the critical role of forest structural diversity in ecosystem resilience is emphasized. Ref. [70] shows that stand structural diversity, measured by the Gini coefficient of tree heights, contributes to balanced carbon storage and resilience. This balance can be optimized by means of silvicultural thinning strategies. Ref. [71] proves that in the context of even-aged Norway spruce stands, structural diversity maximizes stand density, volume yield, and growth. Therefore, it has stabilizing ecosystem effects. Protected area expansion and forest management policies can improve forest conservation and recovery [72,73]. However, the perspective of [74] is cautionary. Even if forests contribute to climate change mitigation, their resilience is affected by fires, pests, etc.
- (3)
- Hypothesis H2 is confirmed: water stress negatively influences ecosystem resilience, as justified by Table 4, and Figure 6 and Figure 7. Water scarcity can reduce vegetation productivity by restricting transpiration and photosynthetic activity [60]. This way, biodiversity and habitat quality are reduced. Ref. [75] found that in the Yellow River Basin in China, ecosystem resilience when there are droughts varies in space. Forests resist better but recover more slowly compared to grasslands. The same study found that precipitation, temperature, and plant biodiversity are the main drivers of resilience. Ref. [76] recently assessed the intensity of climate stress, analyzing relevant environmental data from 1996 to 2024, and identified among the key stress factors an increase in water deficits (by +100 mm/year), as well as an increase in maximum temperatures (by +1.50C) during the analyzed period.
- (4)
- Hypothesis H3, agricultural land share has a positive impact on ecosystem resilience, is partially supported. Ecological multifunctionality is increased through sustainable management of grassland and cropland [77]. Agricultural resilience is not determined by what happens on a single farm or field, but on multiple scales [78]. A higher ecological and economic resilience is obtained by producers who set specific goals for a stronger environmental performance [79]. Regenerative or intensive farming profiles tend to be less economically resilient compared to adaptive or sustainable models [80]. There is also evidence against hypothesis H3. Scherzinger et al. [77] prove that intensive land use reduces ecological multifunctionalities, in contrast to sustainable regimes. Jian et al. [81] notice a conflict between agricultural output and supporting ecosystem services under different scenarios on China’s Loess Plateau. They conclude that even “sustainable” land expansion can undermine resilience.
- (5)
- The main result of the KRLS model is that the effect of ALS on BER is nonlinear and heterogeneous. The PME distributions in Figure 5 and Figure 6 show a dual pattern: in some contexts, ALS exerts a negative effect on BER, reducing ecosystem stability, while in other contexts it can exert a positive effect on BER, supporting resilience. This mixed role of ALS nuances the results from the fixed-effects model, which only indicated a marginally positive average effect. The KRLS analysis deepens the understanding of why the literature often reports conflicting findings on agriculture–resilience linkages. This duality addresses our third hypothesis (H3), showing that it is only partially confirmed. The BER is appropriate for cross-country comparison, but it conceals local variations in ecological resilience. This limitation is relevant to the KRLS model, which captures heterogeneous relationships. We included both a choropleth map (Figure 2) and a quartile-based classification table (Table A1) to provide a clearer spatial dimension to the econometric analysis. Furthermore, this nonlinear evidence allows us to return explicitly to the research question posed in the Introduction: To what extent do land use and water stress determine ecosystem resilience in European countries? The KRLS findings show that while forest land consistently strengthens resilience (H1 supported) and water stress consistently undermines it (H2 supported), agricultural land represents a contingent driver whose impact depends on the underlying management regime. This insight is central to our study’s contribution, as it emphasizes that policies aimed at expanding agricultural areas must be conditional on adopting ecosystem-friendly practices (e.g., agroecology, buffer zones, and soil conservation).
- (6)
- The results of our study highlight that ecosystem resilience and biodiversity are strongly connected. In our study, with the help of BER, we quantify resilience as the ability of ecosystems to preserve species diversity under climate change. If biodiversity is lost, ecosystems become less resilient and are likely to collapse when faced with WS or changes in land use [57].
- (7)
- We can formulate some policy directions based on our findings. Reforestation programs and forest management policies can improve ecosystems’ resilience. Water management policies should consider boosting investments in protecting water-related ecosystems to strengthen the resilience of ecosystems and thus their biodiversity. Agricultural policies should support agroecological practices, and farmers should implement biodiversity-based strategies to be more supportive of nature.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Country | BER Mean (2007–2024) | Quartile Group |
---|---|---|
Denmark | 0.00 | Group 1 (lowest) |
Hungary | 1.19 | Group 1 (lowest) |
Lithuania | 4.01 | Group 1 (lowest) |
Poland | 5.36 | Group 1 (lowest) |
Belgium | 6.66 | Group 1 (lowest) |
Serbia | 9.62 | Group 1 (lowest) |
Romania | 10.20 | Group 1 (lowest) |
The Netherlands | 13.27 | Group 1 (lowest) |
Germany | 14.54 | Group 1 (lowest) |
Latvia | 16.17 | Group 2 |
Italy | 16.48 | Group 2 |
Estonia | 16.58 | Group 2 |
Czech Republic | 17.16 | Group 2 |
Spain | 20.66 | Group 2 |
France | 21.37 | Group 2 |
Bulgaria | 22.80 | Group 2 |
Slovakia | 23.19 | Group 2 |
United Kingdom | 27.94 | Group 3 |
Greece | 28.35 | Group 3 |
Albania | 28.46 | Group 3 |
Croatia | 28.84 | Group 3 |
Luxembourg | 30.52 | Group 3 |
Portugal | 35.62 | Group 3 |
North Macedonia | 37.46 | Group 3 |
Bosnia and Herzegovina | 38.75 | Group 3 |
Slovenia | 45.71 | Group 4 (highest) |
Ireland | 47.08 | Group 4 (highest) |
Austria | 47.26 | Group 4 (highest) |
Switzerland | 54.04 | Group 4 (highest) |
Finland | 57.85 | Group 4 (highest) |
Sweden | 63.16 | Group 4 (highest) |
Iceland | 100.00 | Group 4 (highest) |
Norway | 100.00 | Group 4 (highest) |
References
- Convention on Biological Diversity. Kunming-Montreal Global Biodiversity Framework. Fifteenth Meeting of the Conference of the Parties (COP 15). 2022. Available online: https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf (accessed on 2 August 2025).
- National Research Council US. Committee on Noneconomic and Economic Value of Biodiversity. Perspectives on Biodiversity: Valuing Its Role in an Everchanging World; National Academies Press (US): Washington, DC, USA, 1999. Available online: https://www.ncbi.nlm.nih.gov/books/NBK224405/ (accessed on 10 August 2025).
- Mace, G.; Norris, K.; Fitter, A. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef]
- Giam, X. Global Biodiversity Loss from Tropical Deforestation. Proc. Natl. Acad. Sci. USA 2017, 114, 5775–5777. [Google Scholar] [CrossRef]
- Murray, D.L.; Peers, M.J.L.; Majchrzak, Y.N.; Wehtje, M.; Ferreira, C.; Pickles, R.S.A.; Row, J.R.; Thornton, H.D. Continental divide: Predicting climate-mediated fragmentation and biodiversity loss in the boreal forest. PLoS ONE 2017, 12, e0176706. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Yiew, T.; Habibullah, M.S.; Chen, J.; Mat Kamal, S.N.; Saud, N.A. Research trends in biodiversity loss: A bibliometric analysis. Environ. Sci. Pollut. Res. 2023, 30, 2754–2770. [Google Scholar] [CrossRef] [PubMed]
- Bateman, I.; Balmford, A. Current conservation policies risk accelerating biodiversity loss. Nature 2023, 618, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, E.; Collen, B.; Barausse, A.; Blanchard, J.L.; Costelloe, B.T.; Sullivan, K.M.E.; Underwood, F.M.; Burn, R.W.; Fritz, Z.; Jones, L.P.G.; et al. Making robust policy decisions using global biodiversity indicators. PLoS ONE 2012, 7, e41128. [Google Scholar] [CrossRef]
- Swiss Re Institute. Biodiversity and Ecosystems Services Index: Measuring the Value of Nature. 2025. Available online: https://www.swissre.com/institute/research/topics-and-risk-dialogues/climate-and-natural-catastrophe-risk/expertise-publication-biodiversity-and-ecosystems-services.html#/countries/fr (accessed on 1 August 2025).
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef]
- Di Marco, M.; Ferrier, S.; Harwood, T.D.; Hoskins, A.J.; Watson, J.E.M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 2019, 573, 582–585. [Google Scholar] [CrossRef]
- Veach, V.; Moilanen, A.; Di Minin, E. Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas. PLoS ONE 2017, 12, e0188397. [Google Scholar] [CrossRef]
- Wintle, B.A.; Kujala, H.; Whitehead, A.; Cameron, A.; Veloz, S.; Kukkala, A.; Moilanen, A.; Gordon, A.; Lentini, P.E.; Cadenhead, N.C.R.; et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 909–914. [Google Scholar] [CrossRef]
- Mokany, K.; Ferrier, S.; Harwood, T.D.; Ware, C.; Di Marco, M.; Grantham, H.S.; Venter, O.; Hoskins, A.J.; Watson, J.E. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl. Acad. Sci. USA 2020, 117, 9906–9911. [Google Scholar] [CrossRef]
- Walker, B.H.; Holling, C.S.; Carpenter, S.R.; Kinzig, A.P. Resilience, adaptability and transformability in social—Ecological systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Sterk, M.; van de Leemput, I.; Peeters, E. How to conceptualize and operationalize resilience in socio-ecological systems? Curr. Opin. Env. Sust. 2017, 28, 108–113. [Google Scholar] [CrossRef]
- Cantarello, E.; Newton, A.C.; Martin, P.A.; Evans, P.M.; Gosal, A.; Lucash, M.S. Quantifying resilience of multiple ecosystem services and biodiversity in a temperate forest landscape. Ecol. Evol. 2017, 7, 9661–9675. [Google Scholar] [CrossRef] [PubMed]
- Thompson, I.; Mackey, B.; McNulty, S.; Mosseler, A. Forest Resilience, Biodiversity, and Climate Change: A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems. Secretariat of the Convention on Biological Diversity. 2009. Available online: https://www.cbd.int/doc/publications/cbd-ts-43-en.pdf (accessed on 16 September 2025).
- Oliver, T.; Heard, M.; Isaac, N.; Roy, D.; Procter, D.; Eigenbrod, F.; Freckleton, R.; Hector, A.; Orme, C.D.L.; Petchey, O.L.; et al. Biodiversity and Resilience of Ecosystem Functions. Trends Ecol. Evol 2015, 30, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Vasiliev, D. The role of biodiversity in ecosystem resilience. IOP Conf. Series. Earth Environ. Sci. 2022, 1072, 012012. [Google Scholar] [CrossRef]
- Bryant, T.; Waring, K.; Sánchez, M.A.; Bradford, J.A. Framework for Quantifying Resilience to Forest Disturbance. Front. Forests Glob. Change 2019, 2, 56. [Google Scholar] [CrossRef]
- Ferrier, S.; Harwood, T.D.; Ware, C.; Hoskins, A.J. A globally applicable indicator of the capacity of terrestrial ecosystems to retain biological diversity under climate change: The bioclimatic ecosystem resilience index. Ecol. Ind. 2020, 117, 106554. [Google Scholar] [CrossRef]
- RS The Royal Society. How Do Humans Affect Biodiversity? 2025. Available online: https://royalsociety.org/news-resources/projects/biodiversity/human-impact-on-biodiversity/ (accessed on 1 August 2025).
- Harwood, T. Landscape Connectedness Under Climate Change in Oxfordshire Implications of the Bioclimatic Ecosystem Resilience Index, Oxford: Environmental Change Institute, University of Oxford. 2024. Available online: https://naturerecovery.ox.ac.uk/wp-content/uploads/2024/08/Landscape-Connectedness-Under-Climate-Change-in-Oxfordshire.pdf (accessed on 17 September 2025).
- Liao, L.; Ma, E.; Long, H.; Peng, X. Land use transition and its ecosystem resilience response in China during 1990–2020. Land 2023, 12, 141. [Google Scholar] [CrossRef]
- Haines-Young, R. Land use and biodiversity relationships. Land Use Policy 2009, 26, S178–S186. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.J.; Jiang, J.; Zhao, Y.G. Direct and indirect effects of agricultural expansion and landscape fragmentation processes on natural habitats. Agric. Ecossyst. Env. 2023, 353, 108555. [Google Scholar] [CrossRef]
- Lanz, B.; Dietz, S.; Swanson, T. The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment. Ecol. Econ. Env. 2018, 144, 260–277. [Google Scholar] [CrossRef]
- Gonthier, D.J.; Ennis, K.K.; Farinas, S.; Hsieh, H.Y.; Iverson, A.L.; Batáry, P.; Rudolphi, J.; Tscharntke, T.; Cardinale, B.J.; Perfecto, I. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. Biol. Sci. 2014, 281, 20141358. [Google Scholar] [CrossRef]
- Perfecto, I.; Vandermeer, J. The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proc. Natl. Acad. Sci. USA 2010, 107, 5786–5791. [Google Scholar] [CrossRef] [PubMed]
- Kremen, C. Reframing the land-sparing/land-sharing de bate for biodiversity conservation. Ann. N. Y. Acad. Sci. 2015, 1355, 52–76. [Google Scholar] [CrossRef] [PubMed]
- Loconto, A.; Desquilbet, M.; Moreau, T.; Couvet, D.; Dorin, B. The land sparing—Land sharing controversy: Tracing the politics of knowledge. Land Use Policy 2020, 96, 103610. [Google Scholar] [CrossRef]
- Augustiny, E.; Frehner, A.; Green, A.; Mathys, A.; Rosa, F.; Pfister, S.; Muller, A. Empirical evidence supports neither land sparing nor land sharing as the main strategy to manage agriculture–biodiversity tradeoffs. PNAS Nexus 2025, 4, pgaf251. [Google Scholar] [CrossRef]
- Ivits, E.; Orlitova, E.; Milego, R.; Maucha, G.; Kosztra, B.; Mancosu, E.; Fons, J.; Gregor, M.; Löhnertz, M.; Hazeu, G. Twenty Years of Land Accounts in Europe. Land 2024, 13, 1350. [Google Scholar] [CrossRef]
- WRI World Resources Institute’s Global Forest Watch Platform. Fires Drove Record-Breaking Tropical Forest Loss in 2024. Data Created and Updated by Peter Potapov, Svetlana Turubanova and Sasha Tyukavina—University of Maryland’s GLAD Lab. 2025. Available online: https://gfr.wri.org/latest-analysis-deforestation-trends?utm_campaign=tcl2024&utm_medium=bitly&utm_source=GFWHomepage (accessed on 3 August 2025).
- Peng, Z.; Duan, Z.; Wang, J. Balancing agricultural productivity and ecosystem resilience: A multi-species interaction and simulation framework. E3S Web Conf. 2025, 630, 02020. [Google Scholar] [CrossRef]
- FAO and UN Water Progress on Level of Water Stress. Global Status and Acceleration Needs for SDG Indicator 6.4.2; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Incorporating Environmental Flows into “Water Stress” Indicator 6.4.2—Guidelines for a Minimum Standard Method for Global Reporting; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; 32p. [Google Scholar]
- Lewandrowski, W.; Stevens, J.C.; Webber, B.L.; Dalziell, E.L.; Trudgen, M.S.; Bateman, A.M.; Erickson, T.E. Global change impacts on arid zone ecosystems: Seedling establishment processes are threatened by temperature and water stress. Ecol. Evol. 2021, 11, 8071–8084. [Google Scholar] [CrossRef]
- Li, D.; Wu, S.; Liu, L.; Zhang, Y.; Li, S. Vulnerability of the global terrestrial ecosystems to climate change. Global Change Biol. 2018, 24, 4095–4106. [Google Scholar] [CrossRef] [PubMed]
- EEA European Environment Agency. Land Use. 2020. Available online: https://www.eea.europa.eu/themes/landuse/intro (accessed on 2 August 2025).
- Driscoll, J.C.; Kraay, A.C. Consistent covariance matrix estimation with spatially dependent panel data. Rev. Econ. Stat. 1998, 80, 549–560. [Google Scholar] [CrossRef]
- Cameron, A.C.; Miller, D.L. A practitioner’s guide to cluster-robust inference. J. Human Res. 2015, 50, 317–372. [Google Scholar] [CrossRef]
- Baltagi, B.H. Econometric Analysis of Panel Data, 4th ed.; John Wiley & Sons Ltd.: Chichester, UK, 2008. [Google Scholar]
- Hausman, J.A. Specification tests in econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar] [CrossRef]
- Newey, W.K.; West, K.D. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 1987, 55, 703–708. [Google Scholar] [CrossRef]
- Hoechle, D. Robust standard errors for panel regressions with cross-sectional dependence. Stata J. 2007, 7, 281–312. [Google Scholar] [CrossRef]
- Liang, K.Y.; Zeger, S.L. Longitudinal data analysis using generalized linear models. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- Angrist, J.D.; Pischke, J.-S. Mostly Harmless Econometrics: An Empiricist’s Companion, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Lütkepohl, H.; Xu, F. The role of the log transformation in forecasting economic variables. Empir. Econ. 2012, 42, 619–638. [Google Scholar] [CrossRef]
- Hainmueller, J.; Hazlett, C. Kernel regularized least squares: Reducing misspecification bias with a flexible and interpretable machine learning approach. Political Anal. 2014, 22, 143–148. [Google Scholar] [CrossRef]
- CSIRO Commonwealth Scientific and Industrial Research Organisation. BERI v2: Bioclimatic Ecosystem Resilience Index: 30s Global Time Series. 2024. Available online: https://data.csiro.au/collection/csiro:54238 (accessed on 20 July 2025).
- FAO Food and Agriculture Organization of the United Nations. Data. Land Use. 2025. Available online: https://www.fao.org/faostat/en/#data/RL (accessed on 1 July 2025).
- FAO Food and Agriculture Organization of the United Nations. Data. SDG Indicators. 2025. Available online: https://www.fao.org/faostat/en/#data/SDGB (accessed on 1 July 2025).
- Tscharnkte, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; et al. (Eds.) Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Zenodo: Geneva, Switzerland, 2019. [Google Scholar] [CrossRef]
- FAO Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Townsend, J.R.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Ciais, P.; Wigneron, J.P.; Gentine, P.; Feldman, A.F.; Makowski, D.; Viovy, N.; Kemanian, A.R.; Goll, D.S.; Stoy, P.C.; et al. Global critical soil moisture thresholds of plant water stress. Nat. Commun. 2024, 15, 4826. [Google Scholar] [CrossRef] [PubMed]
- Moss, W.E.; Crausbay, S.D.; Rangwala, I.; Wason, J.W.; Trauernicht, C.; Stevens-Rumann, C.S.; Sala, A.; Rottler, C.M.; Pederson, G.T.; Miller, B.W. Drought as an emergent driver of ecological transformation in the twenty-first century. BioScience 2024, 74, 524–538. [Google Scholar] [CrossRef]
- Fatecha, B.V.; Martínez-Vilalta, J.; Mencuccini, M.; Poyatos, R. Multi-biome assessment of tree water use resilience to drought. Agric. For. Meteorol. 2025, 372, 110666. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data, 2nd ed.; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels; Cambridge Working Papers in Economics No. 0435; University of Cambridge: Cambridge, UK, 2004. [Google Scholar]
- Osuma, G.; Yusuf, N. Towards an optimal renewable energy mix for the European Union: Enhancing energy security and sustainability. J. Knowl. Econ. 2025. [Google Scholar] [CrossRef]
- Machefer, M.; Zampieri, M.; van der Velde, M.; Dentener, F.; Claverie, M.; d’Andrimont, R. Earth observation based multi-scale analysis of crop diversity in the European Union: First insights for agro-environmental policies. arXiv 2024. [Google Scholar] [CrossRef]
- EEA European Environment Agency. Europe’s State of Water 2024: The Need for Improved Water Resilience; EEA Report 07/2024; European Environment Agency: Copenhagen, Denmark, 2024. [CrossRef]
- EPI. Environmental Performance Index. Available online: https://epi.yale.edu/downloads/2024-epi-report-20250106.pdf (accessed on 6 August 2025).
- Block, S.; Emerson, J.W.; Esty, D.C.; de Sherbinin, A.; Wendling, Z.A.; Kurczynski, K.; Lin, F.; Xu, C.; Wu, N.; Harwood, J.; et al. Environmental Performance Index; Yale Center for Environmental Law & Policy: New Haven, CT, USA, 2024. [Google Scholar]
- Pretzsch, H.; Hilmers, T. Structural diversity and carbon stock of forest stands: Tradeoff as modified by silvicultural thinning. Eur. J. Forest Res. 2024, 144, 775–796. [Google Scholar] [CrossRef]
- Pretzsch, H.; Hilmers, T.; del Río, M. The effect of structural diversity on the self-thinning line, yield level, and density-growth relationship in even-aged stands of Norway spruce. Forest. Ecol. Manag. 2024, 556, 121736. [Google Scholar] [CrossRef]
- Georgescu, I.; Kinnunen, J.; Nica, I. Assessing Forest Conservation for Finland: An ARDL-Based Evaluation. Sustainability 2024, 16, 612. [Google Scholar] [CrossRef]
- Georgescu, I.; Nica, I. Evaluating the Determinants of Deforestation in Romania: Empirical Evidence from an Autoregressive Distributed Lag Model and the Bayer–Hanck Cointegration Approach. Sustainability 2024, 16, 5297. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Trugman, A.T.; Badgley, G.; Anderson, C.M.; Bartuska, A.M.; Ciais, P.; Cullenward, D.; Field, C.B.; Freeman, J.; Goetz, S.J.; et al. Climate-driven risks to the climate mitigation potential of forests. Science 2020, 368, eaaz7005. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Huang, S.; Singh, V.P.; Huang, Q.; Zhang, H.; Leng, G.; Gao, L.; Li, P.; Guo, W.; Peng, J. Terrestrial ecosystem resilience to drought stress and driving mechanisms thereof in the Yellow River Basin, China. J. Hydrol. 2025, 649, 132480. [Google Scholar] [CrossRef]
- Santibáñez, P.; Zamora, R.; Franchi, J.; Montaner-Fernández, D.; Santibáñez, F. Bioclimatic stress index: A tool to evaluate climate change impact on Mediterranean arid ecosystems. J. Arid Environ. 2025, 229, 105376. [Google Scholar] [CrossRef]
- Scherzinger, F.; Schädler, M.; Reitz, T.; Yin, R.; Auge, H.; Merbach, I.; Roscher, C.; Harpole, W.S.; Blagodatskaya, E.; Siebert, J.; et al. Sustainable land management enhances ecological and economic multifunctionality under ambient and future climate. Nat. Comm. 2024, 15, 4930. [Google Scholar] [CrossRef]
- Arndt, M.; Helming, K. Agricultural diversification across spatial levels—A contribution to resilience and sustainability? Agric. Ecosyst. Environ. 2025, 385, 109547. [Google Scholar] [CrossRef]
- Yletyinen, J.; Kuhmonen, I.; Stahlmann-Brown, P. Resilient and sustainable natural resource production: How are farmers and foresters coping? Ecol. Soc. 2024, 29, 6. [Google Scholar] [CrossRef]
- Volkov, A.; Morkūnas, M.; Žičkienė, A.; Rudienė, E. Will European agriculture be resilient? Assessment of the share and economic resilience levels of the future European farmer profiles: Evidence from Lithuania. Agric. Food Econ. 2025, 13, 16. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, H.; Zhang, J.; Dong, B. Trade-offs between agricultural production and ecosystem services under different land management scenarios in the Loess Plateau of China. Sci. Rep. 2025, 15, 21385. [Google Scholar] [CrossRef]
- Kabisch, N.; Qureshi, S.; Haase, D. Human–environment interactions in urban green spaces—A systematic review of contemporary issues and prospects for future research. Environ. Impact Assess. Rev. 2015, 50, 25–34. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Elmqvist, T.; Setälä, H.; Handel, S.N.; van der Ploeg, S.; Aronson, J.; Blignaut, J.N.; Gómez-Baggethun, E.; Nowak, D.J.; Kronenberg, J.; de Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef]
- EU Cap Network. Biodiversity Actions at Scale—Inspiring Examples from Member States. Output of TG on Enhancing Biodiversity on Farmland for Improved Resilience 2025. Available online: https://eu-cap-network.ec.europa.eu/publications/biodiversity-actions-scale-inspiring-examples-member-states_en#section--resources (accessed on 22 September 2025).
- European Commission. New EU Forest Strategy for 2030. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021DC0572 (accessed on 22 September 2025).
- WISE Freshwater Information System for Europe. Country Profiles on Urban Waste Water Treatment 2020. Available online: https://water.europa.eu/freshwater/countries/uwwt (accessed on 22 September 2025).
Variable | Full Name | Institution/Database | Measurement | Access Link |
---|---|---|---|---|
BER | Bioclimatic Ecosystem Resilience Index | CSIRO BERI v2 dataset | Index (0–100) | CSIRO Data |
ALS | Agricultural Land Share | FAO Land use statistics | % of total land area | FAOSTAT |
FLS | Forest Land Share | FAO Land use statistics | % of total land area | FAOSTAT |
WS | Level of Water Stress | FAO SDG Indicator 6.4.2 | % of renewable freshwater resources withdrawn | FAOSTAT |
BER | ALS | FLS | WS | |
---|---|---|---|---|
Mean | 3.099 | 3.556 | 3.367 | 2.163 |
Median | 3.217 | 3.781 | 3.511 | 2.139 |
Maximum | 4.605 | 4.292 | 4.301 | 4.335 |
Minimum | 0.095 | 0.990 | −0.916 | −1.238 |
Std. Dev. | 0.923 | 0.688 | 0.857 | 1.208 |
Skewness | −0.986 | −2.216 | −3.437 | −0.460 |
Kurtosis | 4.462 | 7.697 | 16.826 | 2.729 |
Variable | VIF | 1/VIF |
---|---|---|
WS | 1.44 | 0.695367 |
ALS | 1.32 | 0.755629 |
FLS | 1.2 | 0.834557 |
Variable | Coefficient | Std. Error | t-Statistic | p-Value | 95% CI Lower | 95% CI Upper |
---|---|---|---|---|---|---|
ALS | 0.0206 | 0.0101 | 2.0300 | 0.0580 | −0.0008 | 0.0420 |
FLS | 0.2867 | 0.0519 | 5.5200 | 0.0000 | 0.1771 | 0.3963 |
WS | −0.0424 | 0.0076 | −5.5700 | 0.0000 | −0.0585 | −0.0264 |
Constant | 2.1518 | 0.1449 | 14.8500 | 0.0000 | 1.8460 | 2.4576 |
Variable | Coefficient | Std. Error | t-Statistic | p-Value | 95% CI Lower | 95% CI Upper |
---|---|---|---|---|---|---|
ALS | 0.0206 | 0.0236 | 0.8700 | 0.3880 | −0.0275 | 0.0687 |
FLS | 0.2867 | 0.1622 | 1.7700 | 0.0870 | −0.0441 | 0.6176 |
WS | −0.0424 | 0.0240 | −1.7600 | 0.0880 | −0.0915 | 0.0066 |
Constant | 2.1518 | 0.5700 | 3.7800 | 0.0010 | 0.9899 | 3.3137 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgescu, I.; Băncescu, M. Land Use and Water Stress as Determinants of Ecosystem Resilience: A Panel Data Analysis of Biodiversity Loss Drivers in European Countries. Land 2025, 14, 1946. https://doi.org/10.3390/land14101946
Georgescu I, Băncescu M. Land Use and Water Stress as Determinants of Ecosystem Resilience: A Panel Data Analysis of Biodiversity Loss Drivers in European Countries. Land. 2025; 14(10):1946. https://doi.org/10.3390/land14101946
Chicago/Turabian StyleGeorgescu, Irina, and Mioara Băncescu. 2025. "Land Use and Water Stress as Determinants of Ecosystem Resilience: A Panel Data Analysis of Biodiversity Loss Drivers in European Countries" Land 14, no. 10: 1946. https://doi.org/10.3390/land14101946
APA StyleGeorgescu, I., & Băncescu, M. (2025). Land Use and Water Stress as Determinants of Ecosystem Resilience: A Panel Data Analysis of Biodiversity Loss Drivers in European Countries. Land, 14(10), 1946. https://doi.org/10.3390/land14101946