Visual Gradation of Biological Soil Crust Development: A Simple and Effective Recording Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Refining the Grading Method for Cyanobacterial and Moss Crusts
2.2. Study Site Description
2.3. Field Measurements and Sampling
2.4. Data Analysis
3. Results
3.1. Verification of the Validity of the Grading Method
3.2. Characteristics of Developmental Indicators in Various Grades of Cyanobacterial and Moss Crusts Based on the Grading Method
3.3. Application of Grading Method at Both Regional and Local Scale
3.4. Relationship Between Developmental Grades of Biocrusts and Environmental Factors
4. Discussion
4.1. Simplicity of the Grading Method
4.2. Applicability of the Grading Method at Various Spatial Scales
4.3. Scientificity of the Grading Method
4.4. Future Research Directions on Optimizing the Grading Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weber, B.; Belnap, J.; Büdel, B.; Antoninka, A.J.; Barger, N.N.; Chaudhary, V.B.; Darrouzet-Nardi, A.; Eldridge, D.J.; Faist, A.M.; Ferrenberg, S.; et al. What is a biocrust? A refined, contemporary definition for a broadening research community. Biol. Rev. Camb. Philos. Soc. 2022, 97, 1768–1785. [Google Scholar] [CrossRef]
- Zhou, H.; Gao, Y.; Jia, X.; Wang, M.; Ding, J.; Cheng, L.; Bao, F.; Wu, B. Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us Sandy Land, northwestern China. Soil Biol. Biochem. 2020, 144, 107782. [Google Scholar] [CrossRef]
- Ming, J.; Zhao, Y.; Wu, Q.; He, H.; Gao, L. Soil temperature dynamics and freezing processes for biocrustal soils in frozen soil regions on the Qinghai–tibet plateau. Geoderma 2022, 409, 115655. [Google Scholar] [CrossRef]
- Sun, F.H.; Xiao, B.; Ghanbarian, B. Increasing effect of biocrusts on evaporation is evidenced by simulating evaporation and diffusion experiments and water stable isotope analysis. J. Hydrol. 2024, 637, 131427. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, B.; Li, C.; Yao, M.; Zhang, B.; Li, X. Development of biological soil crust prompts convergent succession of prokaryotic communities. Catena 2020, 187, 104360. [Google Scholar] [CrossRef]
- Zhou, X.; An, X.; De Philippis, R.; Ye, C.; Ke, T.; Zhang, Y.; Chen, L. The facilitative effects of shrub on induced biological soil crust development and soil properties. Appl. Soil Ecol. 2019, 137, 129–138. [Google Scholar] [CrossRef]
- Chen, N.; Wang, X.P.; Zhang, Y.F.; Yu, K.L.; Zhao, C.M. Ecohydrological effects of biological soil crust on the vegetation dynamics of restoration in a dryland ecosystem. J. Hydrol. 2018, 563, 1068–1077. [Google Scholar] [CrossRef]
- Xu, H.K.; Zhang, Y.J.; Shao, X.Q.; Liu, N. Soil nitrogen and climate drive the positive effect of biological soil crusts on soil organic carbon sequestration in drylands: A Meta-analysis. Sci. Total Environ. 2022, 803, 150030. [Google Scholar] [CrossRef]
- Steggles, E.K.; Facelli, J.M.; Ainsley, P.J.; Pound, L.M. Biological soil crust and vascular plant interactions in Western Myall open woodland in South Australia. J. Veg. Sci. 2019, 30, 756–764. [Google Scholar] [CrossRef]
- Su, Y.G.; Chen, Y.W.; Padilla, F.M.; Zhang, Y.M.; Huang, G. The influence of biocrusts on the spatial pattern of soil bacterial communities: A case study at landscape and slope scales. Soil Biol. Biochem. 2020, 142, 107721. [Google Scholar] [CrossRef]
- Bu, C.F.; Li, R.X.; Wang, C.; Bowker, M.A. Successful field cultivation of moss biocrusts on disturbed soil surfaces in the short term. Plant Soil 2018, 429, 227–240. [Google Scholar] [CrossRef]
- Chiquoine, L.P.; Abella, S.R.; Bowker, M.A. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem. Ecol. Appl. 2016, 26, 1260–1272. [Google Scholar] [CrossRef] [PubMed]
- Lan, S.B.; Thomas, A.D.; Rakes, J.B.; Garcia-Pichel, F.; Li, W.; Hu, C.X. Cyanobacterial community composition and their functional shifts associated with biocrust succession in the Gurbantunggut Desert. Environ. Microbiol. Rep. 2021, 13, 884–898. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.R.; Delgado-Baquerizo, M.; Trivedi, P.; He, J.Z.; Wang, J.T.; Singh, B.K. Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biol. Biochem. 2017, 107, 208–217. [Google Scholar] [CrossRef]
- Sosa-Quintero, J.; Godínez-Alvarez, H.; Camargo-Ricalde, S.L.; Gutiérrez-Gutiérrez, M.; Huber-Sannwald, E.; Jiménez-Aguilar, A.; Maya-Delgado, Y.; Mendoza-Aguilar, D.; Montaño, N.M.; Pando-Moreno, M. Biocrusts in Mexican deserts and semideserts: A review of their species composition, ecology, and ecosystem function. J. Arid Environ. 2022, 199, 104712. [Google Scholar] [CrossRef]
- Chamizo, S.; Cantón, Y.; Lázaro, R.; Solé-Benet, A.; Domingo, F. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems 2012, 15, 148–161. [Google Scholar] [CrossRef]
- Zhang, L. Effects of mixed biocrusts on soil nutrients and bacterial community structure: A case study from Hilly Loess Plateau, China. Sci. Rep. 2024, 14, 21265. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, I.; Ehrhardt, F.; Alavoine, G.; Joulian, C.; Issa, O.M.; Valentin, C. Regulation of carbon and nitrogen exchange rates in biological soil crusts by intrinsic and land use factors in the Sahel area. Soil Biol. Biochem. 2014, 72, 133–144. [Google Scholar] [CrossRef]
- Sun, F.; Xiao, B.; Kidron, G.J.; Heitman, J.L. Insights about biocrust effects on soil gas transport and aeration in drylands: Permeability, diffusivity, and their connection to hydraulic conductivity. Geoderma 2022, 427, 116137. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, W.; Wang, N. Effects of covering sand with different soil substrates on the formation and development of artificial biocrusts in a natural desert environment. Soil Tillage Res. 2021, 213, 105081. [Google Scholar] [CrossRef]
- Bengtsson, J. Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Appl. Soil Ecol. 1998, 10, 191–199. [Google Scholar] [CrossRef]
- McLaren, J.R.; Turkington, R. Ecosystem properties determined by plant functional group identity. J. Ecol. 2010, 98, 459–469. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Rosentreter, R. Morphological groups: A framework for monitoring microphytic crusts in arid landscapes. J. Arid Environ. 1999, 41, 11–25. [Google Scholar] [CrossRef]
- Read, C.F.; Duncan, D.H.; Vesk, P.A.; Elith, J. Biocrust morphogroups provide an effective and rapid assessment tool for drylands. J. Appl. Ecol. 2014, 51, 1740–1749. [Google Scholar] [CrossRef]
- Belnap, J.; Wilcox, B.P.; Van Scoyoc, M.W.; Phillips, S.L. Successional stage of biological soil crusts: An accurate indicator of ecohydrological condition. Ecohydrology 2013, 6, 474–482. [Google Scholar] [CrossRef]
- Kidron, G.J.; Lichner, L.; Fischer, T.; Starinsky, A.; Or, D. Mechanisms for biocrust-modulated runoff generation-A review. Earth Sci. Rev. 2022, 231, 104100. [Google Scholar] [CrossRef]
- Webber, C.L.; Bremer, U.F.; Taghizadeh-Mehrjardi, R.; Weber, B.; Rosa, A.; Scholten, T.; Seitz, S. Biological soil crusts as a major ecosystem component in sandization areas of the Brazilian Pampa. Geoderma Reg. 2023, 34, e00682. [Google Scholar] [CrossRef]
- Wang, Y.F.; Xiao, B.; Wang, W.F.; Revillini, D.; Delgado-Baquerizo, M. Biocrust adaptations to microhabitat alter bacterial communities in a semiarid ecosystem. Plant Soil 2023, 492, 413–427. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, M.; Belnap, J. Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China. J. Arid Environ. 2010, 74, 1186–1191. [Google Scholar] [CrossRef]
- Bowker, M.A.; Reed, S.C.; Belnap, J.; Phillips, S.L. Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crusts. Microb. Ecol. 2002, 43, 13–25. [Google Scholar] [CrossRef]
- Housman, D.C.; Powers, H.H.; Collins, A.D.; Belnap, J. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J. Arid Environ. 2006, 66, 620–634. [Google Scholar] [CrossRef]
- Yin, R.; Wu, Y.; Zhang, X.; Ha, S.; Ren, J.; Tian, X.; Wang, J.; Li, Z.; Miao, H. Study on Physicochemical Properties of Biological Crusts and Subsurface Sediments in Southern Edge of Mu Us Desert. J. Soil Water Conserv. 2013, 27, 120–124. [Google Scholar] [CrossRef]
- Li, Y.P. Study on Characteristics of Soil Nutrients and Carbon Storage in Biocrusts and Underlying Soil of Mu Us Sandland. Master’s Thesis, Northwest A&F University, Xianyang, China, 2018. [Google Scholar]
- Belnap, J.; Phillips, S.L.; Witwicki, D.L.; Miller, M.E. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. J. Arid Environ. 2008, 72, 1257–1264. [Google Scholar] [CrossRef]
- Caster, J.; Sankey, T.T.; Sankey, J.B.; Bowker, M.A.; Buscombe, D.; Duniway, M.C.; Barger, N.; Faist, A.; Joyal, T. Biocrust and the soil surface: Influence of climate, disturbance, and biocrust recovery on soil surface roughness. Geoderma 2021, 403, 115369. [Google Scholar] [CrossRef]
- Ma, X.X.; Zhao, Y.G.; Ma, N.; Li, W.; Sun, H.; Xu, M.X. Effects of grazing on soil organic carbon stocks in the revegetated grasslands on the Loess Plateau, China. J. Appl. Ecol 2022, 33, 67–75. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, D.; Zhang, Z.; Ding, C.; Li, P.; Liu, R.; Zhang, X.; Wen, W. Variation of soil water stability and dominant influencing factors after sparse forestation in the loess alpine hills of northwest China. J. Hydrol. Reg. Stud. 2023, 48, 101458. [Google Scholar] [CrossRef]
- Lan, S.; Wu, L.; Zhang, D.; Hu, C. Effects of light and temperature on open cultivation of desert cyanobacterium Microcoleus vaginatus. Bioresour. Technol. 2015, 182, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Bowker, M.A.; Sun, H.; Zhao, J.; Zhao, Y. Linkages between biocrust development and water erosion and implications for erosion model implementation. Geoderma 2020, 357, 113973. [Google Scholar] [CrossRef]
- Gao, L.Q.; Bowker, M.A.; Xu, M.X.; Sun, H.; Tuo, D.F.; Zhao, Y.G. Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biol. Biochem. 2017, 105, 49–58. [Google Scholar] [CrossRef]
- Li, S.L.; Bowker, M.A.; Xiao, B. Biocrust impacts on dryland soil water balance: A path toward the whole picture. Glob. Change Biol. 2022, 28, 6462–6481. [Google Scholar] [CrossRef] [PubMed]
- Li, X.R.; He, M.Z.; Zerbe, S.; Li, X.J.; Liu, L.C. Micro-geomorphology determines community structure of biological soil crusts at small scales. Earth Surf. Process. Landf. 2010, 35, 932–940. [Google Scholar] [CrossRef]
- Rodríguez-Caballero, E.; Román, J.R.; Chamizo, S.; Roncero Ramos, B.; Cantón, Y. Biocrust landscape-scale spatial distribution is strongly controlled by terrain attributes: Topographic thresholds for colonization in a semiarid badland system. Earth Surf. Process. Landf. 2019, 44, 2771–2779. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y. Precipitation and soil particle size co-determine spatial distribution of biological soil crusts in the Gurbantunggut Desert, China. J. Arid Land 2018, 10, 701–711. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Q.; Li, Q.; Hu, C. Active metabolism and biomass dynamics of biocrusts are shaped by variation in their successional state and seasonal energy sources. Sci. Total Environ. 2022, 831, 154756. [Google Scholar] [CrossRef]
- Zhang, X.C.; Li, J.Y.; Liu, J.L.; Yuan, C.X.; Li, Y.N.; Liu, B.R.; Yan, X.F. Temporal shifts in cyanobacterial diversity and their relationships to different types of biological soil crust in the southeastern Tengger Desert. Rhizosphere 2021, 17, 100322. [Google Scholar] [CrossRef]
- Maestre, F.T.; Delgado-Baquerizo, M.; Jeffries, T.C.; Eldridge, D.J.; Ochoa, V.; Gozalo, B.; Quero, J.L.; García-Gómez, M.; Gallardo, A.; Ulrich, W.; et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. USA 2015, 112, 15684–15689. [Google Scholar] [CrossRef]
- Nevins, C.J.; Inglett, P.W.; Reardon, C.L.; Strauss, S.L. Seasonality drives microbiome composition and nitrogen cycling in soil below biocrusts. Soil Biol. Biochem. 2022, 166, 108551. [Google Scholar] [CrossRef]
Developmental Grades | C I | C II | C III | M I | M II | M III |
---|---|---|---|---|---|---|
Color | Not obvious slightly grayish | Grey-white, light grey-grey black | Dark brown-black | Not obvious green-light green | Green-dark green | Brownish green |
Surface features | Smooth surface, closely adhering to soil surface features | Intermediate state, slightly rough | Rough surface with pronounced undulations | — | — | — |
Thickness/mm | 1~3 | 3~5 | >5 | 3~7 | 7~12 | >12 |
Moss height/mm | — | — | — | 0~1.5 | 1.5~4 | >4 |
Locations | Average Annual Precipitation/mm | Precipitation Region/mm | Number | Survey Plot Name | Soil Texture | Developmental Grades |
---|---|---|---|---|---|---|
Hangjin Banner, Ordos, Inner Mongolia, China | 261.71 | 200–300 | 1 | Hangjin-1 | Sandy soil | C I, C II, M I |
2 | Hangjin-2 | Loamy sandy soil | M I, M II | |||
Otog Banner, Ordos, Inner Mongolia, China | 293.89 | 3 | Otog-1 | Sandy soil | C I, C II, C III | |
4 | Otog-2 | Sandy soil | C I, C II, M II | |||
5 | Otog-3 | Sandy soil | C II, C III, MII | |||
6 | Otog-4 | Sandy soil | C II, M I | |||
7 | Otog-5a | Sandy soil | C II, M I | |||
8 | Otog-5b | Sandy soil | C II | |||
9 | Otog-5c | Sandy soil | C I, C II, C III, M I | |||
Shapotou District, Zhongwei, Ningxia Province, China | 296.74 | 10 | Shapotou-1 | Sandy soil | C I, C II, C III, M I | |
11 | Shapotou-2 | Sandy soil | C I, C II, C III, M I | |||
12 | Shapotou-3 | Sandy soil | C I, C II, C III, M I | |||
13 | Shapotou-4 | Sandy soil | C II, C III, M I, M II | |||
14 | Shapotou-5 | Sandy soil | C III, M I | |||
Otog Front Banner, Ordos, Inner Mongolia, China | 357.90 | 300–400 | 15 | OtogF-1 | Sandy loam | C II, M II |
Yanchi County, Wuzhong, Ningxia Province, China | 378.47 | 16 | Yanchi-1a | Sandy soil | M I, M II | |
17 | Yanchi-1b | Sandy soil | M II | |||
18 | Yanchi-1c | Loamy sandy soil | M II | |||
19 | Yanchi-2 | Sandy loam | C II, C III, M I | |||
20 | Yanchi-3 | Sandy soil | C II, C III, M II | |||
Dongsheng District, Ordos, Inner Mongolia, China | 415.84 | 400–500 | 21 | Dongsheng-1 | Loamy sandy soil | C III, M II |
22 | Dongsheng-2 | Loamy sandy soil | C III, M II | |||
23 | Dongsheng-3 | Loamy sandy soil | C III, M II | |||
24 | Dongsheng-4 | Sandy loam | C III, M II | |||
25 | Dongsheng-5 | Loamy sandy soil | C III, M II, M III | |||
Shenmu City, Yulin, Shaanxi Province, China | 440.80 | 26 | Shenmu-1 | Sandy soil | M II, M III | |
Jingbian County, Yulin, Shaanxi Province, China | 453.50 | 27 | Jingbian-1 | Sandy soil | M II, M III | |
28 | Jingbian-2a | Sandy soil | M II, M III | |||
29 | Jingbian-2b | Sandy soil | C III, M II, M III |
Developmental Indicators of Biocrusts | Coefficient of Variation | |||||
---|---|---|---|---|---|---|
C I | C II | C III | M I | M II | M III | |
Coverage | 90.23 | 76.44 | 126.29 | 70.79 | 62.50 | 39.27 |
Shear strength | 37.45 | 48.21 | 44.46 | 107.04 | 124.73 | 64.76 |
Penetration resistance | 60.19 | 47.83 | 30.28 | 82.47 | 78.66 | 64.43 |
Chlorophyll a content | 100.50 | 78.66 | 52.65 | 55.97 | 51.52 | 46.34 |
Bulk density | 19.59 | 16.67 | 10.00 | 13.51 | 9.23 | 13.43 |
Environmental Factor | R2 | p |
---|---|---|
Precipitation | 0.838 | 0.001 |
Disturbance intensity | 0.321 | 0.005 |
Soil particle ratio | 0.373 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; He, P.; Xu, J. Visual Gradation of Biological Soil Crust Development: A Simple and Effective Recording Method. Land 2025, 14, 180. https://doi.org/10.3390/land14010180
Zhang X, He P, Xu J. Visual Gradation of Biological Soil Crust Development: A Simple and Effective Recording Method. Land. 2025; 14(1):180. https://doi.org/10.3390/land14010180
Chicago/Turabian StyleZhang, Xinyu, Ping He, and Jie Xu. 2025. "Visual Gradation of Biological Soil Crust Development: A Simple and Effective Recording Method" Land 14, no. 1: 180. https://doi.org/10.3390/land14010180
APA StyleZhang, X., He, P., & Xu, J. (2025). Visual Gradation of Biological Soil Crust Development: A Simple and Effective Recording Method. Land, 14(1), 180. https://doi.org/10.3390/land14010180