Farmland Abandonment and Afforestation—Socioeconomic and Biophysical Patterns of Land Use Change at the Municipal Level in Galicia, Northwest Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
3. Results
3.1. Observed Trends of Land Use/Cover Change
3.2. Results of the Cluster Analysis
3.3. Biophysical and Socioeconomic Characterization of Clusters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Supplementary Plots
References
- Prados de la Escosura, L.; Sánchez-Alonso, B. El crecimiento económico moderno y su distribución en España. ICE Rev. Econ. 2023, 933, 53–67. [Google Scholar] [CrossRef]
- Collantes Gutiérrez, F.; Pinilla Navarro, V. Peaceful Surrender: The Depopulation of Rural Spain in the Twentieth Century; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2011. [Google Scholar]
- Naredo Pérez, J. La Evolución de la Agricultura en España. Desarrollo Capitalista y crisis de las Formas de Producción Tradicionales; Laia: Barcelona, Spain, 1974. [Google Scholar]
- González-Ávila, S.; López-Leiva, C.; Bunce, R.G.; Elena-Rosselló, R. Changes and drivers in Spanish landscapes at the Rural-Urban Interface between 1956 and 2018. Sci. Total Environ. 2020, 714, 136858. [Google Scholar] [CrossRef]
- Vadell, E.; de Miguel, S.; Pemán, J. Large-scale reforestation and afforestation policy in Spain: A historical review of its underlying ecological, socioeconomic and political dynamics. Land Use Policy 2016, 55, 37–48. [Google Scholar] [CrossRef]
- Serra, P.; Vera, A.; Tulla, A.F.; Salvati, L. Beyond urban–rural dichotomy: Exploring socioeconomic and land-use processes of change in Spain (1991–2011). Appl. Geogr. 2014, 55, 71–81. [Google Scholar] [CrossRef]
- Stellmes, M.; Röder, A.; Udelhoven, T.; Hill, J. Mapping syndromes of land change in Spain with remote sensing time series, demographic and climatic data. Land Use Policy 2013, 30, 685–702. [Google Scholar] [CrossRef]
- Corbelle-Rico, E.; Butsic, V.; Enríquez-García, M.J.; Radeloff, V.C. Technology or policy? Drivers of land cover change in northwestern Spain before and after the accession to European Economic Community. Land Use Policy 2015, 45, 18–25. [Google Scholar] [CrossRef]
- Escudero Gómez, L.A.; García González, J.A.; Martínez Navarro, J.M. Medium-sized Cities in Spain and Their Urban Areas within National Network. Urban Sci. 2019, 3, 5. [Google Scholar] [CrossRef]
- Oñate, J.; Atance, I.; Bardají, I.; Llusia, D. Modelling the effects of alternative CAP policies for the Spanish high-nature value cereal-steppe farming systems. Agric. Syst. 2007, 94, 247–260. [Google Scholar] [CrossRef]
- Moreno, M.V.; Conedera, M.; Chuvieco, E.; Pezzatti, G.B. Fire regime changes and major driving forces in Spain from 1968 to 2010. Environ. Sci. Policy 2014, 37, 11–22. [Google Scholar] [CrossRef]
- Viedma, O.; Moity, N.; Moreno, J.M. Changes in landscape fire-hazard during the second half of the 20th century: Agriculture abandonment and the changing role of driving factors. Agric. Ecosyst. Environ. 2015, 207, 126–140. [Google Scholar] [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape—Wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef]
- Modugno, S.; Balzter, H.; Cole, B.; Borrelli, P. Mapping regional patterns of large forest fires in Wildland—Urban Interface areas in Europe. J. Environ. Manag. 2016, 172, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Chas-Amil, M.L.; García-Martínez, E.; Touza, J. Iberian Peninsula October 2017 wildfires: Burned area and population exposure in Galicia (NW of Spain). Int. J. Disaster Risk Reduct. 2020, 48, 101623. [Google Scholar] [CrossRef]
- López-Iglesias, E. Políticas de movilidad y gestión de tierras; balance de la experiencia de Galicia en las dos últimas décadas. In Transformaciones de la Agricultura y del Medio Rural en la Península Ibérica. Homenaje a Eladio Arnalte Alegre; Ortiz Miranda, D., López Iglesias, E., Oliveira Baptista, F., Eds.; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2023; pp. 80–105. [Google Scholar]
- Hietel, E.; Waldhardt, R.; Otte, A. Linking socio-economic factors, environment and land cover in the German Highlands, 1945–1999. J. Environ. Manag. 2005, 75, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Hietel, E.; Waldhardt, R.; Otte, A. Statistical modeling of land-cover changes based on key socio-economic indicators. Ecol. Econ. 2007, 62, 496–507. [Google Scholar] [CrossRef]
- INE (Spanish National Statistics Institute). Censo Agrario. Año 2020. Available online: https://www.ine.es/censoagrario2020/presentacion/index.htm (accessed on 28 July 2024).
- DGC. Catastro Inmobiliario Rústico. Available online: https://www.catastro.hacienda.gob.es/esp/estadistica_10.asp (accessed on 28 July 2024).
- Chas-Amil, M.; Touza, J.; García-Martínez, E. Forest fires in the wildland–urban interface: A spatial analysis of forest fragmentation and human impacts. Appl. Geogr. 2013, 43, 127–137. [Google Scholar] [CrossRef]
- Xunta de Galicia. Plan de Prevención e Defensa Contra os Incendios Forestais de Galicia (PLADIGA); Xunta de Galicia: Santiago de Compostela, Spain, 2023. [Google Scholar]
- López-Iglesias, E.; Sineiro-García, F.; Lorenzana-Fernández, R. Processes of Farmland Abandonment: Land use Change and Structural Adjustment in Galicia (Spain). In Agriculture in Mediterranean Europe: Between Old and New Paradigms; Ortiz-Miranda, D., Moragues-Faus, A., Arnalte-Alegre, E., Eds.; Research in Rural Sociology and Development, Emerald Group Publishing Limited: Leeds, UK, 2013; Chapter 5; pp. 91–120. [Google Scholar] [CrossRef]
- Ministerio para la Transición Ecológica y el Reto Demográfico. Anuario de Estadística Forestal 2021; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2023. [Google Scholar]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- GRASS Development Team. Geographic Resources Analysis Support System (GRASS GIS) Software, Version 8.2; Open Source Geospatial Foundation: Beaverton, OR, USA, 2022. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Mitsuda, Y.; Ito, S. A review of spatial-explicit factors determining spatial distribution of land use/land-use change. Landsc. Ecol. Eng. 2011, 7, 117–125. [Google Scholar] [CrossRef]
- Geist, H.; McConnell, W.; Lambin, E.F.; Moran, E.; Alves, D.; Rudel, T. Causes and trajectories of Land-Use/Cover Change. In Land-Use and Land-Cover Change. Local Processes and Global Impacts; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 41–70. [Google Scholar]
- Díaz-Fierros, F.; Gil, F. Capacidad Productiva de los Suelos de Galicia; Servicio de Publicaciones e Intercambio Científico, Universidade de Santiago de Compostela: Santiago de Compostela, Spain, 1984. [Google Scholar]
- Calvo de Anta, R. El Eucalipto en Galicia. Sus Relaciones con el Medio Natural; Servicio de Publicaciones e Intercambio Científico, Universidade de Santiago de Compostela: Santiago de Compostela, Spain, 1992. [Google Scholar]
- de Freitas, M.; Santos, J.; Alves, D. Land-use and land-cover change processes in the Upper Uruguay Basin: Linking environmental and socioeconomic variables. Landsc. Ecol. 2013, 28, 311–327. [Google Scholar] [CrossRef]
- Ruan, X.; Qiu, F.; Dyck, M. The effects of environmental and socioeconomic factors on land-use changes: A study of Alberta, Canada. Environ. Monit. Assess. 2016, 188, 446. [Google Scholar] [CrossRef]
- Marcos-Martinez, R.; Bryan, B.A.; Connor, J.D.; King, D. Agricultural land-use dynamics: Assessing the relative importance of socioeconomic and biophysical drivers for more targeted policy. Land Use Policy 2017, 63, 53–66. [Google Scholar] [CrossRef]
- Punzo, G.; Castellano, R.; Bruno, E. Exploring land use determinants in Italian municipalities: Comparison of spatial econometric models. Environ. Ecol. Stat. 2022, 29, 727–753. [Google Scholar] [CrossRef]
- Delgado-Artés, R.; Garófano-Gómez, V.; Oliver-Villanueva, J.V.; Rojas-Briales, E. Land use/cover change analysis in the Mediterranean region: A regional case study of forest evolution in Castelló (Spain) over 50 years. Land Use Policy 2022, 114, 105967. [Google Scholar] [CrossRef]
- EEA. Urban Sprawl in Europe; Vol. EEA Report 11/2016; European Environment Agency: Copenhagen, Denmark, 2016.
- Palmero-Iniesta, M.; Pino, J.; Pesquer, L.; Espelta, J. Recent forest area increase in Europe: Expanding and regenerating forests differ in their regional patterns, drivers and productivity trends. Eur. J. For. Res. 2021, 140, 793–805. [Google Scholar] [CrossRef]
- Cervera, T.; Garrabou, R.; Tello, E. Política forestal y evolución de los bosques en Cataluña desde el siglo XIX hasta la actualidad. Investig. Hist. EconóMica 2015, 11, 116–127. [Google Scholar] [CrossRef]
- Corbelle-Rico, E.; Tubío-Sánchez, J.M. Productivism and abandonment: The two sides of forest transition in Galicia (Spain), 1966-2009. Bosque 2018, 39, 457–467. [Google Scholar] [CrossRef]
- Corbelle-Rico, E.; Crecente-Maseda, R. Urbanización, forestación y abandono. Cambios recientes en el paisaje de Galicia, 1985–2005. Rev. Galega Econ. 2014, 23, 35–51. [Google Scholar] [CrossRef]
- Dirección General para la Biodiversidad. Incendios Forestales en España. Año 2006; Ministerio de Medio Ambiente: Madrid, Spain, 2007. [Google Scholar]
- Corbelle-Rico, E.; Sánchez-Fernández, P.; López-Iglesias, E.; Lago-Peñas, S.; Da-Rocha, J.M. Putting land to work: An evaluation of the economic effects of recultivating abandoned farmland. Land Use Policy 2022, 112, 105808. [Google Scholar] [CrossRef]
- Madahi, A.; Palau, E.J.A.; Ortega, C.M. What’s favoring the expansion of new built-up areas? The correlation between transportation infrastructure and land development in Spain from 2006 to 2018. Transp. Res. Procedia 2023, 71, 211–218. [Google Scholar] [CrossRef]
- López-Iglesias, E. Movilidad de la Tierra y dináMica de las Estructuras Agrarias en Galicia; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 1996.
- Observatorio de Mobilidade de Terras. Informe Anual Sobre Prezos e Mobilidade da Terra Rústica en Galicia; Xunta de Galicia: Santiago de Compostela, Spain, 2022. [Google Scholar]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin?—A review. Int. J. Wildland Fire 2008, 17, 713–723. [Google Scholar] [CrossRef]
- Vélez, R. Cambio global e incendios forestales: Perspectivas en la Europa Meridional. Recur. Rurais 2009, 5, 49–54. [Google Scholar] [CrossRef]
- Iriarte-Goñi, I.; Ayuda, M.I. Should Forest Transition Theory include effects on forest fires? The case of Spain in the second half of the twentieth century. Land Use Policy 2018, 76, 789–797. [Google Scholar] [CrossRef]
- Silva, J.S.; Vaz, P.; Moreira, F.; Catry, F.; Rego, F.C. Wildfires as a major driver of landscape dynamics in three fire-prone areas of Portugal. Landsc. Urban Plan. 2011, 101, 349–358. [Google Scholar] [CrossRef]
- Ministerio para la Transición Ecológica y el Reto Demográfico. Estadística de Incendios Forestales. Available online: https://www.miteco.gob.es/es/biodiversidad/temas/incendios-forestales/estadisticas-incendios.html (accessed on 28 July 2024).
Original SIOSE Class | Assigned Class |
---|---|
Urban and industrial areas, roads, other infrastructures | Built-up areas |
Annual and permanent crops, pastures | Farmland |
Shrublands and rangelands | Shrubland |
Deciduous hardwood forest | Native forest |
Softwood (conifer) forest, perennial hardwood forest | Plantation forest |
Rivers, lakes, rocky areas, burnt areas, beaches | Other areas |
Variable (Units, Year) | Source |
---|---|
Demographic | |
Population density (inhab/km, 2022) | Galician Statistics Institute (IGE), demographic data |
Population change (%, 2000–2022) | |
Ageing index (%, 2022) 1 | |
Population over 65 years (%, 2022) | |
Employment by economic sectors | |
Agriculture and forestry (%, 2022) | Galician Statistics Institute (IGE), affiliations to social security |
Industry (%, 2022) | |
Construction (%, 2022) | |
Services (%, 2022) | |
Economic | |
Gross domestic product per area (EUR/km², 2020) | Galician Statistics Institute (IGE), gross domestic product by municipalities |
Gross disposable income per inhabitant (EUR/inhab, 2020) | Galician Statistics Institute (IGE), household income by municipalities |
Agriculture and forestry | |
Density of farm labor (workers/km2, 2022) | Galician Statistics Institute (IGE), affiliations to social security |
Farm density (farms/km2, 2020) | Spanish Statistics Institute (INE), agricultural census |
Average farm size (ha, 2020) | Spanish Statistics Institute (INE), agricultural census |
Stocking density (livestock equivalent units/km2, 2020) | Spanish Statistics Institute (INE), agricultural census |
Bovine stocking density (animals/km2, 2022) | Galician Statistics Institute (IGE), cattle registration |
Wood extraction (m3/km2-year, 2019–2021) | Galician Statistics Institute (IGE) and Regional Ministry for Rural Affairs |
Land ownership | |
Landowner/inhabitant ratio (2022) | Cadastral Statistics, Spanish Ministry of Economics and IGE (demographic data) |
Average property size (ha/owner, 2022) | Cadastral Statistics, Spanish Ministry of Finances |
Average plot size (ha, 2022) | Cadastral Statistics, Spanish Ministry of Finances |
Average number of plots per owner (num., 2022) | |
Proportion of municipal area occupied by common land (%, 2022) | Galician Statistics Institute (IGE) and Regional Ministry for Rural Affairs |
Wildfires | |
Wildfires smaller than 1 ha (events/km2, 2006–2015) | Wildfire Statistics, Spanish Ministry for Ecologic Transition and Demographic Challenge |
Wildfires larger than 1 ha (events/km2, 2006–2015) | |
Wildfires, total (events/km2, 2006–2015) | |
Burnt area—forest, as percentage of municipal area (%, 2006–2015) | |
Burnt area—shrubland, as percentage of municipal area (%, 2006–2015) | |
Burnt area—total, as percentage of municipal area (%, 2006–2015) | |
Biophysical suitability | |
Areas suitable for maize production (percentage of municipal area) | Díaz-Fierros and Gil, 1984 [30] |
Areas suitable for Eucaliptus globulus (percentage of municipal area) | Calvo de Anta, 1992 [31] |
Land Use/Cover Class | Year | Variation 2005–2017 | |||
---|---|---|---|---|---|
2005 | 2009 | 2014 | 2017 | ||
Built-up areas | 1896.49 | 1916.19 | 1984.41 | 1928.73 | +1.69% |
Farmland | 6933.70 | 6900.55 | 6718.50 | 6351.03 | −8.40% |
Shrubland | 9216.91 | 9546.39 | 8736.65 | 9112.73 | −1.13% |
Plantation forests | 5248.73 | 5063.77 | 5674.31 | 7236.78 | +37.87% |
Native forests | 4404.62 | 4424.97 | 4791.65 | 3830.99 | −13.02% |
Other areas | 1876.30 | 1724.87 | 1671.22 | 1116.49 | −40.49% |
Variable | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Galicia (Total) |
---|---|---|---|---|---|
Number of municipalities | 32 | 116 | 54 | 111 | 313 |
Area (km2) | 1353 | 9244 | 7496 | 11,480 | 29,572 |
Area (%) | 4.58 | 31.25 | 25.34 | 38.81 | 100 |
Average elevation (m asl) | 125 | 232 | 532 | 646 | 502 |
Plantation forest 2005 (%) | 24.83 | 30.79 | 11.09 | 10.75 | 17.75 |
Plantation forest 2017 (%) | 26.39 | 39.74 | 16.77 | 16.97 | 24.47 |
Native forest 2005 (%) | 7.22 | 8.78 | 17.10 | 19.27 | 14.90 |
Native forest 2017 (%) | 7.20 | 6.71 | 14.03 | 17.95 | 12.96 |
Farmland 2005 (%) | 21.58 | 21.56 | 38.54 | 15.32 | 23.45 |
Farmland 2017 (%) | 19.79 | 20.06 | 36.24 | 13.17 | 21.48 |
Shrublands 2005 (%) | 19.22 | 26.05 | 24.10 | 41.29 | 31.17 |
Shrublands 2017 (%) | 16.85 | 21.63 | 24.51 | 43.96 | 30.82 |
Built-up areas 2005 (%) | 22.81 | 7.17 | 6.57 | 3.75 | 6.41 |
Built-up areas 2017 (%) | 24.51 | 7.43 | 5.74 | 4.17 | 6.52 |
Other areas 2005 (%) | 4.32 | 5.63 | 2.57 | 9.59 | 6.35 |
Other areas 2017 (%) | 5.25 | 4.41 | 2.70 | 3.76 | 3.78 |
Variable | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Kruskal–Wallis Significance |
---|---|---|---|---|---|
Demographic | |||||
Population density 2022 (inhab/km2) | 530.3 (238.1) | 76.0 (68.8) | 21.9 (10.4) | 20.6 (15.9) | 0.000 |
Population change, 2000–2022 (%) | 9.93 (16.70) | −10.15 (20.51) | −26.97 (12.04) | −31.55 (12.24) | 0.000 |
Ageing index, 2022 (%) | 134.9 (26.9) | 219.4 (109.4) | 412.4 (170.3) | 537.2 (236.8) | 0.000 |
Population over 65 years, 2022 (%) | 23.05 (2.83) | 30.21 (6.98) | 37.20 (5.08) | 42.14 (5.54) | 0.000 |
Employment | |||||
Agriculture and forestry (%), 2022 | 3.20 (3.63) | 5.85 (7.12) | 11.60 (12.00) | 9.60 (7.41) | 0.000 |
Industry (%), 2022 | 16.70 (7.78) | 14.75 (4.15) | 11.50 (3.78) | 13.50 (4.44) | 0.000 |
Construction (%), 2022 | 10.40 (3.04) | 8.50 (1.93) | 8.25 (2.30) | 9.10 (2.22) | 0.029 |
Services (%), 2022 | 62.95 (6.96) | 63.60 (9.64) | 62.85 (8.30) | 64.60 (8.75) | 0.771 |
Economic | |||||
Gross domestic product per area (EUR/km2), 2020 | 9632 (3306) | 11,348 (984) | 445 (236) | 283 (198) | 0.000 |
Gross disposable income per inhabitant (EUR/inhab), 2020 | 15,417 (2297) | 13,781 (1326) | 12,635 (1492) | 11,525 (1713) | 0.000 |
Agricultural and forest sectors | |||||
Density of farm labor (workers/km2), 2022 | 1.70 (0.97) | 1.27 (0.68) | 2.15 (0.89) | 0.49 (0.32) | 0.000 |
Farm density (farms/km2), 2020 | 3.24 (1.59) | 2.16 (1.31) | 2.71 (1.51) | 1.81 (1.21) | 0.002 |
Average farm size (ha), 2020 | 2.01 (1.83) | 6.87 (6.20) | 9.87 (7.15) | 6.54 (6.35) | 0.000 |
Stocking density (livestock equivalent units/km2), 2020 | 4.68 (5.94) | 19.67 (19.27) | 91.90 (47.06) | 12.27 (14.95) | 0.000 |
Bovine stocking density (animals/km2), 2022 | 2.41 (2.88) | 12.68 (16.29) | 71.58 (35.27) | 8.25 (8.51) | 0.000 |
Wood extraction (m3/km2-year), 2019–2021 | 299.18 (265.59) | 364.88 (351.94) | 243.41 (214.22) | 24.95 (27.02) | 0.000 |
Land ownership | |||||
Landowner/inhabitant ratio, 2022 | 0.41 (0.23) | 1.28 (0.79) | 1.67 (0.69) | 2.91 (1.29) | 0.000 |
Average property size (ha/owner), 2022 | 0.39 (0.12) | 1.00 (0.69) | 2.36 (1.03) | 1.78 (1.17) | 0.000 |
Average plot size (ha/plot), 2022 | 0.14 (0.05) | 0.22 (0.11) | 0.44 (0.17) | 0.20 (0.14) | 0.000 |
Average number of plots per owner, 2022 | 2.37 (0.81) | 4.68 (1.53) | 5.85 (1.80) | 8.83 (3.28) | 0.000 |
Proportion of municipal area occupied by common land (%), 2022 | 1.17 (1.73) | 6.01 (8.91) | 8.83 (11.03) | 35.44 (27.99) | 0.000 |
Wildfire events | |||||
Wildfires smaller than 1 ha (events/km2), 2006–2015 | 1.66 (0.92) | 0.77 (0.69) | 0.62 (0.36) | 1.02 (0.84) | 0.000 |
Wildfires larger than 1 ha (events/km2), 2006–2015 | 0.18 (0.08) | 0.24 (0.19) | 0.28 (0.22) | 0.38 (0.32) | 0.000 |
Wildfires, total (events/km2), 2006–2015 | 1.86 (0.96) | 1.11 (0.97) | 0.88 (0.53) | 1.38 (1.10) | 0.000 |
Burnt area—forest, as percentage of municipal area (%), 2006–2015 | 1.06 (1.24) | 1.78 (2.41) | 0.51 (0.48) | 1.55 (1.70) | 0.000 |
Burnt area—shrubland, as percentage of municipal area (%), 2006–2015 | 0.42 (0.51) | 0.90 (1.21) | 1.25 (1.31) | 3.64 (4.19) | 0.000 |
Burnt area—total, as percentage of municipal area (%), 2006–2015 | 1.59 (1.82) | 3.14 (4.18) | 1.74 (1.69) | 6.20 (6.18) | 0.000 |
Biophysical suitability | |||||
Area suitable for maize production, as percentage of municipal area (%) | 59.64 (25.17) | 39.13 (15.63) | 58.65 (20.42) | 24.27 (19.22) | 0.000 |
Area suitable for eucalyptus, as percentage of municipal area (%) | 100.00 (0.00) | 91.68 (12.32) | 59.95 (59.37) | 25.36 (37.03) | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corbelle-Rico, E.; López-Iglesias, E. Farmland Abandonment and Afforestation—Socioeconomic and Biophysical Patterns of Land Use Change at the Municipal Level in Galicia, Northwest Spain. Land 2024, 13, 1394. https://doi.org/10.3390/land13091394
Corbelle-Rico E, López-Iglesias E. Farmland Abandonment and Afforestation—Socioeconomic and Biophysical Patterns of Land Use Change at the Municipal Level in Galicia, Northwest Spain. Land. 2024; 13(9):1394. https://doi.org/10.3390/land13091394
Chicago/Turabian StyleCorbelle-Rico, Eduardo, and Edelmiro López-Iglesias. 2024. "Farmland Abandonment and Afforestation—Socioeconomic and Biophysical Patterns of Land Use Change at the Municipal Level in Galicia, Northwest Spain" Land 13, no. 9: 1394. https://doi.org/10.3390/land13091394
APA StyleCorbelle-Rico, E., & López-Iglesias, E. (2024). Farmland Abandonment and Afforestation—Socioeconomic and Biophysical Patterns of Land Use Change at the Municipal Level in Galicia, Northwest Spain. Land, 13(9), 1394. https://doi.org/10.3390/land13091394