Analyzing the Losses and Gains of a Land Category: Insights from the Total Operating Characteristic
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.3. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pontius, R.G.; Si, K. The Total Operating Characteristic to Measure Diagnostic Ability for Multiple Thresholds. Int. J. Geogr. Inf. Sci. 2014, 28, 570–583. [Google Scholar] [CrossRef]
- Dybowski, R.; Weller, P.; Chang, R.; Gant, V. Prediction of Outcome in Critically Ill Patients Using Artificial Neural Network Synthesised by Genetic Algorithm. Lancet 1996, 347, 1146–1150. [Google Scholar] [CrossRef]
- Gu, Y.; Li, J.; Guo, D.; Chen, B.; Liu, P.; Xiao, Y.; Yang, K. Identification of 13 Key Genes Correlated With Progression and Prognosis in Hepatocellular Carcinoma by Weighted Gene Co-Expression Network Analysis. Front. Genet. 2020, 11, 153. [Google Scholar] [CrossRef]
- Lindahl, D.; Lanke, J.; Lundin, A.; Palmer, J.; Edenbrandt, L. Improved Classifications of Myocardial Bull’s-Eye Scintigrams with Computer-Based Decision Support System. J. Nucl. Med. 1999, 40, 96–101. [Google Scholar]
- Sun, X.; Li, H.; Song, W.; Jiang, S.; Shen, C.; Wang, X. ROC Analysis of Three-dimensional Psychological Pain in Suicide Ideation and Suicide Attempt among Patients with Major Depressive Disorder. J. Clin. Psychol. 2020, 76, 210–227. [Google Scholar] [CrossRef]
- Ögren, J.Å.; Ögren, J.Å.; Sjöblom, T. Exact Probability Distribution for the ROC Area under Curve. Cancers 2023, 15, 1788. [Google Scholar] [CrossRef]
- Hung, M.; Voss, M.W.; Rosales, M.N.; Li, W.; Su, W.; Xu, J.; Bounsanga, J.; Ruiz-Negrón, B.; Lauren, E.; Licari, F.W. Application of Machine Learning for Diagnostic Prediction of Root Caries. Gerodontology 2019, 36, 395–404. [Google Scholar] [CrossRef]
- Chiu, P.; Tang, H.; Wei, C.; Zhang, C.; Hung, G. NMD-12: A New Machine-Learning Derived Screening Instrument to Detect Mild Cognitive Impairment and Dementia. PLoS ONE 2019, 14, e0213430. [Google Scholar] [CrossRef]
- Alatorre, L.C.; Sánchez-Andrés, R.; Cirujano, S.; Beguería, S.; Sánchez-Carrillo, S. Identification of Mangrove Areas by Remote Sensing: The ROC Curve Technique Applied to the Northwestern Mexico Coastal Zone Using Landsat Imagery. Remote Sens. 2011, 3, 1568–1583. [Google Scholar] [CrossRef]
- Liu, Z.; Pontius, R.G. The Total Operating Characteristic from Stratified Random Sampling with an Application to Flood Mapping. Remote Sens. 2021, 13, 3922. [Google Scholar] [CrossRef]
- Bilintoh, T.M.; Ishola, J.I.; Akansobe, A. Deploying the Total Operating Characteristic to Assess the Relationship between Land Cover Change and Land Surface Temperature in Abeokuta South, Nigeria. Land 2022, 11, 1830. [Google Scholar] [CrossRef]
- Bilintoh, T.M.; Korah, A.; Opuni, A.; Akansobe, A. Comparing the Trajectory of Urban Impervious Surface in Two Cities: The Case of Accra and Kumasi, Ghana. Land 2023, 12, 927. [Google Scholar] [CrossRef]
- Pontius, R.G.J. Metrics That Make a Difference; Shivanand, B., Dragicevic, S., Eds.; Springer Nature: Cham, Switzerland, 2022; ISBN 978-3-030-70764-4. [Google Scholar]
- Naghibi, F.; Delavar, M.R.; Pijanowski, B. Urban Growth Modeling Using Cellular Automata with Multi-Temporal Remote Sensing Images Calibrated by the Artificial Bee Colony Optimization Algorithm. Sensors 2016, 16, 2122. [Google Scholar] [CrossRef]
- Chakraborti, S.; Das, D.N.; Mondal, B.; Shafizadeh-Moghadam, H.; Feng, Y. A Neural Network and Landscape Metrics to Propose a Flexible Urban Growth Boundary: A Case Study. Ecol. Indic. 2018, 93, 952–965. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-valverde, A.; Real, R. AUC: A Misleading Measure of the Performance of Predictive Distribution Models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- e Silva, L.P.; Xavier, A.P.C.; da Silva, R.M.; Santos, C.A.G. Modeling Land Cover Change Based on an Artificial Neural Network for a Semiarid River Basin in Northeastern Brazil. Glob. Ecol. Conserv. 2020, 21, e00811. [Google Scholar] [CrossRef]
- Burns, C.; Alber, M.; Alexander, C. GCE-LTER Data Set Summary. Available online: https://gce-lter.marsci.uga.edu/public/app/dataset_details.asp?accession=GIS-GCET-1810 (accessed on 22 July 2024).
- Liu, Z. TOC Curve Generator 2020. Available online: https://lazygis.github.io/projects/TOCCurveGenerator (accessed on 22 July 2024).
- Gómez, C.; White, J.C.; Wulder, M.A. Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef]
- Pontius, R.G.; Krithivasan, R.; Sauls, L.; Yan, Y.; Zhang, Y. Methods to Summarize Change among Land Categories across Time Intervals. J. Land Use Sci. 2017, 12, 218–230. [Google Scholar] [CrossRef]
- Houet, T.; Loveland, Æ.T.R.; Napton, Æ.D.; Barnes, Æ.C.A.; Sayler, K. Exploring Subtle Land Use and Land Cover Changes: A Framework for Future Landscape Studies. Landsc. Ecol. 2010, 25, 249–266. [Google Scholar] [CrossRef]
- Pierre, C.; Hiernaux, P.; Rajot, J.L.; Kergoat, L.; Webb, N.P.; Touré, A.A.; Marticorena, B.; Bouet, C. Wind Erosion Response to Past and Future Agro-Pastoral Trajectories in the Sahel (Niger). Landsc. Ecol. 2022, 37, 529–550. [Google Scholar] [CrossRef]
- Dodd, L.E.; Pepe, M.S. Partial AUC Estimation and Regression. Biometrics 2003, 59, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking Receiver Operating Characteristic Analysis Applications in Ecological Niche Modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Jackson, J.M.; Pimsler, M.L.; Jeannet, K.; James, J.B.K.; James, D.H.; Dillon, M.E.; Lozier, J.D. Distance, Elevation and Environment as Drivers of Diversity and Divergence in Bumble Bees across Latitude and Altitude. Mol. Ecol. 2018, 27, 2926–2942. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Klanderud, K.; Finegan, B.; Veintimilla, D.; Bermeo, D.; Murrieta, E.; Delgado, D.; Sheil, D. Forest Ecology and Management How Forest Structure Varies with Elevation in Old Growth and Secondary Forest in Costa Rica. For. Ecol. Manag. 2020, 469, 118191. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Tayyebi, A.; Ahmadlou, M.; Delavar, M.R.; Hasanlou, M. Integration of Genetic Algorithm and Multiple Kernel Support Vector Regression for Modeling Urban Growth. Comput. Environ. Urban Syst. 2017, 65, 28–40. [Google Scholar] [CrossRef]
Symbol | Meaning |
---|---|
T | Index for a threshold |
Ht | Hits, which is the number of observations that are reference presence and diagnosed presence at threshold t |
Mt | Misses, which is the number of observations that are reference presence and diagnosed absence at threshold t |
Ft | False Alarms, which is the number of observations that are reference absence and diagnosed presence at threshold t |
Ct | Correct Rejections, which is the number of observations that are reference absence and diagnosed absence at threshold t |
P | Number of observations that are reference presence, also known as Abundance |
Q | Number of observations that are reference absence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilintoh, T.M.; Pontius, R.G., Jr.; Liu, Z. Analyzing the Losses and Gains of a Land Category: Insights from the Total Operating Characteristic. Land 2024, 13, 1177. https://doi.org/10.3390/land13081177
Bilintoh TM, Pontius RG Jr., Liu Z. Analyzing the Losses and Gains of a Land Category: Insights from the Total Operating Characteristic. Land. 2024; 13(8):1177. https://doi.org/10.3390/land13081177
Chicago/Turabian StyleBilintoh, Thomas Mumuni, Robert Gilmore Pontius, Jr., and Zhen Liu. 2024. "Analyzing the Losses and Gains of a Land Category: Insights from the Total Operating Characteristic" Land 13, no. 8: 1177. https://doi.org/10.3390/land13081177
APA StyleBilintoh, T. M., Pontius, R. G., Jr., & Liu, Z. (2024). Analyzing the Losses and Gains of a Land Category: Insights from the Total Operating Characteristic. Land, 13(8), 1177. https://doi.org/10.3390/land13081177