Application of High-Spatial-Resolution Imagery and Deep Learning Algorithms to Spatial Allocation of Urban Parks’ Supply and Demand in Beijing, China
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Data Sources and Processing
2.1.1. Remote Sensing Data
2.1.2. Measured Data
2.1.3. Supporting Data
2.2. Green Park Space Extraction
2.3. Capacity of Green Park Space Services
2.3.1. Coverage of the Service Radius of Green Park Spaces
2.3.2. Accessibility of Parks and Green Spaces
2.4. Social Equity in Green Park Spaces
3. Results
3.1. Urban Green Space Extraction Validation and Patterns of Green Space Distribution in Parks
3.2. Capacity of Urban Parks Green Space Services
3.2.1. Service Radius Coverage of Urban Parks and Green Spaces
3.2.2. Accessibility of Urban Parks Green Spaces
3.3. Social Equity in Urban Parks Green Spaces
4. Discussion
4.1. Analysis of Information Extraction Results of Urban Park Green Space
4.2. Service Capacity and Supply–Demand Dynamics of Urban Park Green Spaces
4.3. Equity in the Layout of City Parks and Their Accessibility to Residents
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Yan, J.L.; Lin, L.; Zhou, W.Q. Quantifying the characteristics of particulate matters captured by urban plants using an automatic approach. J. Environ. Sci. 2016, 39, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yan, J.L.; Ma, K.M.; Zhou, W.Q.; Chen, G.J.; Tang, R.L.; Zhang, Y.X. Characterization of particulate matter deposited on urban tree foliage: A landscape analysis approach. Atmos. Environ. 2017, 171, 59–69. [Google Scholar] [CrossRef]
- Millward, A.A.; Sabir, S. Benefits of a forested urban park: What is the value of Allan Gardens to the city of Toronto, Canada? Landsc. Urban Plan. 2011, 100, 177–188. [Google Scholar] [CrossRef]
- Adams, M.P.; Smith, P.L. A systematic approach to model the influence of the type and density of vegetation cover on urban heat using remote sensing. Landsc. Urban Plan. 2014, 132, 47–54. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.; Kaplan, S.; Li, X. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc. Ecol. 2016, 31, 745–760. [Google Scholar] [CrossRef]
- Toparlar, Y.; Blocken, B.; Maiheu, B.V.; Van Heijst, G.J.F. The effect of an urban park on the microclimate in its vicinity: A case study for Antwerp, Belgium. Int. J. Climatol. 2018, 38, e303–e322. [Google Scholar] [CrossRef]
- Thompson, C.W.; Roe, J.; Aspinall, P.; Mitchell, R.; Clow, A.; Miller, D. More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns. Landsc. Urban Plan. 2012, 105, 221–229. [Google Scholar] [CrossRef]
- Tu, X.Y.; Huang, G.L.; Wu, J.G. Review of the relationship between urban greenspace accessibility and human well-being. Acta Ecol. Sin. 2019, 39, 421–431. [Google Scholar]
- Fang, J.X.; Li, S.N.; Zhao, N.; Xu, X.T.; Zhou, Y.B.; Lu, S.W. Uptake and distribution of the inorganic components NH4+ and NO3− of PM2.5 by two Chinese conifers. Sci. Total Environ. 2023, 907, 167573. [Google Scholar] [CrossRef]
- Guan, D.S.; Liu, H.Q.; Mo, D.L. The role of Guangzhou Urban vegetation in removing atmospheric Sulfur. Acta Sci. Nat. Univ. Sunyatseni 1999, 38, 109–113. [Google Scholar]
- Wang, W.; Liu, R.H.; Gan, W.Z. Study on negative air ions concentration in 5 kinds of indoor ornamental plants. Build. Sci. 2018, 34, 21–25. [Google Scholar]
- Li, S.N.; Li, X.H.; Lei, H.J.; Zhao, N.; Xu, X.T.; Lu, S.W. Components and change laws of volatile organic compounds from peach leaves. Non-Wood For. Res. 2023, 41, 40–51+78. [Google Scholar]
- Huang, X.; Xia, J.; Xiao, R.; He, T. Urban expansion patterns of 291 Chinese cities, 1990–2015. Int. J. Digit. Earth 2017, 12, 62–77. [Google Scholar] [CrossRef]
- Zhou, C.H.; Zhang, Y. Mini-Park Layout Formation Method in High-Density Cities. Chin. Gard. 2021, 37, 60–65. [Google Scholar]
- Yang, X.; Liu, R.; Su, M.T. A Quantitatively Comparative Study on Green Pattern of Urban Park in Beijing, London, Paris and New York Using Spatial Statistics Model. IOP Conf. Ser. Earth Environ. Sci. 2019, 267, 052004. [Google Scholar]
- Maas, J.; Verheij, R.A.; Groenewegen, P.P.; De Vries, S.; Spreeuwenberg, P. Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Yañez, D.V.; Barboza, E.P.; Cirach, M.; Daher, C.; Nieuwenhuijsen, M.; Mueller, N. An urban green space intervention with benefits for mental health: A health impact assessment of the Barcelona Eixos Verds Plan. Environ. Int. 2023, 174, 107880. [Google Scholar] [CrossRef] [PubMed]
- Yigitcanlar, T.; Kamruzzaman, M.; Teimouri, R.; Degirmenci, K.; Alanjagh, F.A. Association between park visits and mental health in a developing country context: The case of Tabriz, Iran. Landsc. Urban Plan. 2020, 199, 103805. [Google Scholar] [CrossRef]
- Yang, H.; Wen, J.; Lu, Y.; Peng, Q.Z. A quasi-experimental study on the impact of park accessibility on the mental health of undergraduate students. Urban For. Urban Green. 2023, 86, 127979. [Google Scholar] [CrossRef]
- Liang, Y.Q.; Bai, W.L.; Cao, B.X. Study on emergency shelter function of urban green space: A case study at Chaoyang district in Beijing. Harmony and Common Prosperity: Inheritance of Tradition and Sustainable Development: Chinese Society of Landscape Architecture. In Proceedings of the Annual Conference, Volume I; China Urban Construction Design & Research Institute: Beijing, China, 2010; pp. 309–317. [Google Scholar]
- Li, X.L.; Xiu, C.L.; Wei, Y.; He, H.S. Evaluating methodology for the service extent of refugee parks in Changchun, China. Sustainability 2020, 12, 5715. [Google Scholar] [CrossRef]
- Kyando, S.B.; Mziray, L.F. The Kitulo National Park Transformation and the Implications on Sustainable Livelihoods to Adjacent Local Communities in Makete District, Tanzania. Int. J. Environ. Clim. Chang. 2023, 13, 1539–1559. [Google Scholar]
- Zhang, Y.; Li, X.; Su, Q. Does spatial layout matter to theme park tourism carrying capacity? Tour. Manag. 2017, 61, 82–95. [Google Scholar] [CrossRef]
- Yu, W.Y.; Hu, H.; Sun, B.D. Elderly Suitability of Park Recreational Space Layout Based on Visual Landscape Evaluation. Sustainability 2021, 13, 6443. [Google Scholar] [CrossRef]
- Pan, Y.X. Research on the Relationship between Park Green Space Accessibility, Place attachment and health benefit assessment: A case Study of Xiamen Island. People’s City, Planning Empowerment. In Proceedings of the 2023 China Annual Conference on Urban Planning; School of Architecture, Huaqiao University: Quanzhou, China, 2023; pp. 260–273. [Google Scholar]
- Xiao, Z.R.; Huang, W.Y. The Impact of Urban Park Green Space Accessibility on Neighboring Settlements under the Perspective of Social Equity—The Case of Yuexiu Park in Guangzhou. People’s City, Planning for Empowerment. In Proceedings of the Annual Conference on Urban Planning in China 2022 (19 Housing and Community Planning); Guangdong University of Technology: Guangzhou, China, 2023; pp. 912–921. [Google Scholar]
- Di, S.C.; Li, Z.L.; Tang, R.L.; Pan, X.Y.; Liu, H.L.; Niu, Y. Urban green space classification and water consumption analysis with remote-sensing technology: A case study in Beijing, China. Int. J. Remote Sens. 2019, 40, 1909–1929. [Google Scholar] [CrossRef]
- Che, Q.S.; Wang, H.L. A Summary of Study on Urban Green Space; Journal of Shanghai Jiao Tong University, Agricultural Sciences: Shanghai, China, 2001; pp. 229–234. [Google Scholar]
- Huang, C.H.; Yang, J.; Jiang, P. Assessing impacts of urban form on landscape structure of urban green spaces in China using Landsat images based on Google Earth Engine. Remote Sens. 2018, 10, 1569. [Google Scholar] [CrossRef]
- Cheng, C.R. Information Extraction and Landscape Pattern of Urban Green Space Based on GF-1 Satellite Image: A Case Study of Lanzhou. Master’s Thesis, Lanzhou Jiaotong University, Lanzhou, China, 2017. [Google Scholar]
- Liu, D.W.; Han, L.; Han, X.Y. High spatial resolution remote sensing image classification based on deep learning. Acta Opt. Sin. 2016, 36, 0428001. [Google Scholar]
- Xu, Z.Y.; Zhou, Y.; Wang, S.X.; Wang, L.T.; Wang, Z.Q. U-Net for urban green space classification in Gaofen-2 remote sensing images. J. Image Graph. 2021, 26, 700–713. [Google Scholar]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv 2017, arXiv:1704.06857. [Google Scholar]
- Rahaman, G.M.A.; Lngkvist, M.; Loutfi, A. Deep learning based automated estimation of urban green space index from satellite image: A case study. Urban For. Urban Green. 2024, 97, 128373. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, W.; Ren, Z.P.; Zhao, Y.F.; Liao, Y.L.; Ge, Y.; Wang, J.; He, J.X.; Gu, Y.K.; Wang, Y.X.; et al. Multi-scale Feature Fusion and Transformer Network for urban green space segmentation from high-resolution remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103514. [Google Scholar] [CrossRef]
- Hamaguchi, R.; Hikosaka, S. Building detection from satellite imagery using ensemble of size-specific detectors. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 223–2234. [Google Scholar]
- Gao, L.; Song, W.; Dai, J.; Chen, Y. Road Extraction from High-Resolution Remote Sensing Imagery Using Refined Deep Residual Convolutional Neural Network. Remote Sens. 2019, 11, 552. [Google Scholar] [CrossRef]
- Hoang, N.D.; Tran, X.L. Remote sensing–based urban green space detection using marine predators algorithm optimized machine learning approach. Math. Probl. Eng. 2021, 2021, 5586913. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Fu, W.F.; Zou, W.B. Review of remote sensing image classification based on deep learning. Appl. Res. Comput. 2018, 35, 3521–3525. [Google Scholar]
- Chen, Y.; He, G.; Yin, R.; Zheng, K.; Wang, G. Comparative study of marine ranching recognition in multi-temporal high-resolution remote sensing images based on DeepLab-v3+ and U-Net. Remote Sens. 2022, 14, 5654. [Google Scholar] [CrossRef]
- Aamir, Z.; Seddouki, M.; Himmy, O.; Maanan, M.; Tahiri, M.; Rhinane, H. Rural Settlements Segmentation Based on Deep Learning U-Net Using Remote Sensing Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 1–5. [Google Scholar] [CrossRef]
- Yu, H.; Wang, C.; Li, J.; Sui, Y. Automatic extraction of green tide from GF-3 SAR images based on feature selection and deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10598–10613. [Google Scholar] [CrossRef]
- Ahmed, I.; Chehri, A.; Jeon, G. A sustainable deep learning-based framework for automated segmentation of COVID-19 infected regions: Using U-Net with an attention mechanism and boundary loss function. Electronics 2022, 11, 2296. [Google Scholar] [CrossRef]
- Deng, Q.; Lu, P.; Zhao, S.; Yuan, N. U-Net: A deep-learning method for improving summer precipitation forecasts in China. Atmos. Ocean. Sci. Lett. 2023, 16, 100322. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Fang, C.L.; Mu, X.F.; Li, G.D.; Xu, G.Y. Urban green space quality in China: Quality measurement, spatial heterogeneity pattern and influencing factor. Urban For. Urban Green. 2021, 66, 127381. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, Y.; Yang, G.; Wu, Z.; Mao, F.; Liu, S.; Xu, R.H.; Qu, Z.L.; Xu, B.; Chang, J. Inequalities of urban green space area and ecosystem services along urban center-edge gradients. Landsc. Urban Plan. 2022, 217, 104266. [Google Scholar] [CrossRef]
- Song, Y.M.; Chen, B.; Ho, H.C.; Kwan, M.P.; Liu, D.; Wang, F.; Wang, J.H.; Cai, J.X.; Li, X.J.; Xu, Y.; et al. Observed inequality in urban greenspace exposure in China. Environ. Int. 2021, 156, 106778. [Google Scholar] [CrossRef] [PubMed]
- China Statistical Yearbook Editorial Committee. China Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- Liu, C.R.; Cui, X.M.; Guo, L.; Wu, L.; Tang, X.M.; Liu, S.H.; Yuan, D.B.; Wang, X. Satellite Laser Altimetry Data-Supported High-Accuracy Mapping of GF-7 Stereo Images. Remote Sens. 2022, 14, 5868. [Google Scholar] [CrossRef]
- Office of the Leading Group of Beijing Municipality for the Seventh National Population Census; Beijing Municipal Bureau of Statistics. Beijing (China) Population Census Yearbook 2020; China Statistics Press: Beijing, China, 2020. [Google Scholar]
- Pooler, J.A. The use of spatial separation in the measurement of transportation accessibility. Transp. Res. Part A Policy Pract. 1995, 29, 421–427. [Google Scholar] [CrossRef]
- Tan, P.Y.; Samsudin, R. Effects of spatial scale on assessment of spatial equity of urban park provision. Landsc. Urban Plan. 2017, 158, 139–154. [Google Scholar] [CrossRef]
- Ulak, M.B.; Yazici, A.; Aljarrah, M. Value of convenience for taxi trips in New York City. Transp. Res. Part A Policy Pract. 2020, 142, 85–100. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, J.; Ma, L.; Huang, C. Factors affecting the use of urban green spaces for physical activities: Views of young urban residents in Beijing. Urban For. Urban Green. 2015, 14, 851–857. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, B.; Sun, Z.; Bao, Z. Landscape perception and recreation needs in urban green space in Fuyang, Hangzhou, China. Urban For. Urban Green. 2013, 12, 44–52. [Google Scholar] [CrossRef]
- Tang, Z.L.; Gu, S. An evaluation of social performance in the distribution of urban parks in the central city of Shanghai: From social equity justice. J. Urban Plan. 2016, 227, 15–21. [Google Scholar]
- Wang, H.F.; Qiu, J.X.; Breuste, J.; Friedman, C.; Zhou, W.Q.; Wang, X.K. Variations of urban greenness across urban structural units in Beijing, China. Urban For. Urban Green. 2013, 12, 554–561. [Google Scholar] [CrossRef]
- Cao, L.X. Research on Green Space Information Extraction and Application Based on Deep Learning Algorithms. Master’s Thesis, Guizhou University, Guiyang, China, 2019. [Google Scholar]
- Chen, Z.; Fei, X.Y.; Gao, X.W.; Wang, Y.X.; Zhao, H.M. Extraction of urban green space with high resolution remote sensing image segmentation. Bull. Surv. Mapp. 2020, 12, 17–20. [Google Scholar]
- Dai, D. Racial/ethnic and socioeconomic disparities in urban green space accessibility: Where to intervene? Landsc. Urban Plan. 2011, 102, 234–244. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Lin, T.; Zhang, G.Q.; Jones, L.; Xue, X.; Ye, H.; Liu, Y.Q. Spatiotemporal patterns and inequity of urban green space accessibility and its relationship with urban spatial expansion in China during rapid urbanization period. Sci. Total Environ. 2022, 809, 151123. [Google Scholar] [CrossRef]
- Fasihi, H.; Parizadi, T. Analysis of spatial equity and access to urban parks in Ilam, Iran. J. Environ. Manag. 2020, 260, 110122. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.L.; Wu, Z.F.; Zhang, H.; Wei, J.Y. Comprehensive evaluation of park green space service capability in central city: Models and cases. Ecol. Environ. Sci. 2020, 29, 1044–1053. [Google Scholar]
- Ye, S.H.; He, K.; Wang, B.Y.; Yu, G. Research on the Planning Layout and Supply Demand Relationship of Pocket Park in Minhang District of Shanghai from the Perspective of Social Equity. Landsc. Archit. 2023, 40, 73–82. [Google Scholar]
- Chai, H.J. Analysis of the Coordination Relationship between the Green Principle of Civil Law and Environmental Law in Environmental Pollution and Ecological Destruction. J. Environ. Public Health 2022, 1, 2536704. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhu, A.N.; Wang, J.Q.; Lu, T.F. Supply and demand analysis of urban park distribution based on social equity and justice: A case study of Xuhui District, Shanghai. Acta Ecol. Sin. 2019, 39, 7035–7046. [Google Scholar]
- Qiu, J.; Xie, J.C.; Yew, M.K.; Ding, T.C.; Le, Y.Y.; Lu, Y.X. Research on fairness evaluation of park and green space layout in five urban areas of Chengdu city. Shanxi Archit. 2024, 50, 10–13+37. [Google Scholar]
- Zhao, P.J.; Liu, D.; Zhao, Y.; Hu, H.Y. Long commutes and transport inequity in China’s growing megacity: New evidence from Beijing using mobile phone data. Travel Behav. Soc. 2020, 20, 248–263. [Google Scholar] [CrossRef]
- Zhu, Z.J.; Li, Z.G.; Chen, H.S.; Liu, Y.; Zeng, J. Subjective well-being in China: How much does commuting matter? Transportation 2019, 46, 1505–1524. [Google Scholar] [CrossRef]
- Zhong, W.J.; Schroeder, T.; Bekkering, J. Designing with nature: Advancing three-dimensional green spaces in architecture through frameworks for biophilic design and sustainability. Front. Archit. Res. 2023, 12, 732–753. [Google Scholar] [CrossRef]
- Ma, G.X.; Zhai, X.Q.; Hu, Y.L.; Cheng, B.K.; Wang, P. Based on the “sponge city” construction concept of three-dimensional greening engineering construction technology analysis. China Build. Decor. Furnish. 2023, 18, 154–156. [Google Scholar]
Payload | Wave Band | Spectral Range (um) | Wave Band | Spatial Resolution (m) | Width (km) |
---|---|---|---|---|---|
In all colors | 1 | 0.45–0.90 | Pan | Rear view: 0.65 m, forward vision 0.8 m | ≥20 |
Multispectral | 2 | 0.45–0.52 | Blue | Rear view: 2.6 m | |
3 | 0.52–0.59 | Green | |||
4 | 0.63–0.69 | Red | |||
5 | 0.77–0.89 | NIR |
Evaluation Indicators | Formula |
---|---|
User’s Accuracy, UA | |
Producer’s Accuracy, PA | |
Overall Accuracy, OA | |
Kappa Coefficient, Kappa |
Classification Method | Classification | PA (%) | UA (%) | OA (%) | Kappa Coefficient |
---|---|---|---|---|---|
Beijing Urban Green Space Extraction Classification System | Trees and shrubs | 96.81 | 88.56 | 94.31 | 0.88 |
Grassland | 57.47 | 91.34 | |||
Non-greenfield | 99.58 | 96.67 | |||
SVM | Trees and shrubs | 85.07 | 75.32 | 83.63 | 0.71 |
Grassland | 99.05 | 51.89 | |||
Non-greenfield | 80.61 | 99.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Li, S.; Lei, H.; Zhao, N.; Liu, C.; Fang, J.; Liu, X.; Lu, S.; Xu, X. Application of High-Spatial-Resolution Imagery and Deep Learning Algorithms to Spatial Allocation of Urban Parks’ Supply and Demand in Beijing, China. Land 2024, 13, 1007. https://doi.org/10.3390/land13071007
Li B, Li S, Lei H, Zhao N, Liu C, Fang J, Liu X, Lu S, Xu X. Application of High-Spatial-Resolution Imagery and Deep Learning Algorithms to Spatial Allocation of Urban Parks’ Supply and Demand in Beijing, China. Land. 2024; 13(7):1007. https://doi.org/10.3390/land13071007
Chicago/Turabian StyleLi, Bin, Shaoning Li, Hongjuan Lei, Na Zhao, Chenchen Liu, Jiaxing Fang, Xu Liu, Shaowei Lu, and Xiaotian Xu. 2024. "Application of High-Spatial-Resolution Imagery and Deep Learning Algorithms to Spatial Allocation of Urban Parks’ Supply and Demand in Beijing, China" Land 13, no. 7: 1007. https://doi.org/10.3390/land13071007
APA StyleLi, B., Li, S., Lei, H., Zhao, N., Liu, C., Fang, J., Liu, X., Lu, S., & Xu, X. (2024). Application of High-Spatial-Resolution Imagery and Deep Learning Algorithms to Spatial Allocation of Urban Parks’ Supply and Demand in Beijing, China. Land, 13(7), 1007. https://doi.org/10.3390/land13071007