Assessing the Nonlinear Relationship between Land Cover Change and PM10 Concentration Change in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. PM10 Monitoring Stations
2.2.2. Satellite Remote-Sensing AOD Dataset
2.2.3. ERA5 Reanalysis of Meteorological Datasets
2.2.4. Dust Emission Dataset
2.2.5. Population Dataset
2.2.6. Vegetation Index Dataset
2.2.7. Land-Cover Dataset
2.3. Methods
2.3.1. Extreme Randomized Trees
2.3.2. Generalized Additive Model
2.3.3. Evaluation Indicators
3. Results
3.1. Spatial and Temporal Variations in Ground-Level PM10 Concentrations
3.2. Land-Cover Change from 2015 to 2021
3.3. Nonlinear Relationship between Land-Cover Change and PM10 Concentrations Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, L.; Gao, T.; Luo, M.; Ge, E.; Yang, Y.; Liu, Z.; Zhao, Y.; Ning, G. Contribution of urbanization to the changes in extreme climate events in urban agglomerations across China. Sci. Total Environ. 2020, 744, 140264. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Feng, R.; Zheng, H.; Gao, H.; Zhang, A.; Huang, C.; Zhang, J.; Luo, K.; Fan, J. Recurrent Neural Network and random forest for analysis and accurate forecast of atmospheric pollutants: A case study in Hangzhou, China. J. Clean. Prod. 2019, 231, 1005–1015. [Google Scholar] [CrossRef]
- Li, Y.; Guan, D.; Tao, S.; Wang, X.; He, K. A review of air pollution impact on subjective well-being: Survey versus visual psychophysics. J. Clean. Prod. 2018, 184, 959–968. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y.; Ziaur Rahman, M. Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh. GeoJournal 2012, 77, 315–330. [Google Scholar] [CrossRef]
- Heald, C.; Spracklen, D. Land use change impacts on air quality and climate. Chem. Rev. 2015, 115, 4476–4496. [Google Scholar] [CrossRef] [PubMed]
- Rovira, J.; Domingo, J.; Schuhmacher, M. Air quality, health impacts and burden of disease due to air pollution (PM10, PM2. 5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Sci. Total Environ. 2020, 703, 135538. [Google Scholar] [CrossRef] [PubMed]
- Stirnberg, R.; Cermak, J.; Andersen, H. An analysis of factors influencing the relationship between satellite-derived AOD and ground-level PM10. Remote Sens. 2018, 10, 1353. [Google Scholar] [CrossRef]
- Chae, S.; Shin, J.; Kwon, S.; Lee, S.; Kang, S.; Lee, D. PM10 and PM2.5 real-time prediction models using an interpolated convolutional neural network. Sci. Rep. 2021, 11, 11952. [Google Scholar] [CrossRef]
- Song, W.; Jia, H.; Huang, J.; Zhang, Y. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China. Remote Sens. Environ. 2014, 154, 1–7. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.; Zhang, L.; Li, Z.; Chen, D.; Zhang, G. Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count. Remote Sens. Environ. 2015, 168, 276–285. [Google Scholar] [CrossRef]
- Stirnberg, R.; Cermak, J.; Fuchs, J.; Andersen, H. Mapping and understanding patterns of air quality using satellite data and machine learning. J. Geophys. Res. -Atmos. 2020, 125, e2019JD031380. [Google Scholar] [CrossRef]
- Huang, K.; Xiao, Q.; Meng, X.; Geng, G.; Wang, Y.; Lyapustin, A.; Gu, D.; Liu, Y. Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain. Environ. Pollut. 2018, 242, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Z.; Cao, C.; Xu, M.; Yang, X.; Wang, K.; Guo, H.; Gao, X.; Li, J.; Shi, Z. Estimation of PM2.5 Concentration across China Based on Multi-Source Remote Sensing Data and Machine Learning Methods. Remote Sens. 2024, 16, 467. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Zhao, R.; Wang, N.; Biswas, A.; Shi, Z. High-resolution prediction of the spatial distribution of PM2.5 concentrations in China using a long short-term memory model. J. Clean. Prod. 2021, 297, 126493. [Google Scholar] [CrossRef]
- Huang, D.; He, B.; Wei, L.; Sun, L.; Li, Y.; Yan, Z.; Wang, X.; Chen, Y.; Li, Q.; Feng, S. Impact of land cover on air pollution at different spatial scales in the vicinity of metropolitan areas. Ecol. Indic. 2021, 132, 108313. [Google Scholar] [CrossRef]
- Xian, C.; Zhang, X.; Zhang, J.; Fan, Y.; Zheng, H.; Salzman, J.; Ouyang, Z. Recent patterns of anthropogenic reactive nitrogen emissions with urbanization in China: Dynamics, major problems, and potential solutions. Sci. Total Environ. 2019, 656, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Vadrevu, K.; Ohara, T.; Justice, C. Land cover, land use changes and air pollution in Asia: A synthesis. Environ. Res. Lett. 2017, 12, 120201. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.; Liu, Y.; Chen, X.; Chang, M.; Fan, Q.; Chan, P.; Wang, X.; Dai, J. Impact of land-use change on atmospheric environment using refined land surface properties in the Pearl River Delta, China. Adv. Meteorol. 2016, 2016, 3830592. [Google Scholar] [CrossRef]
- Tao, W.; Liu, J.; Ban-Weiss, G.A.; Zhang, L.; Zhang, J.; Yi, K.; Tao, S. Potential impacts of urban land expansion on Asian airborne pollutant outflows. J. Geophys. Res-Atmos. 2017, 122, 7646–7663. [Google Scholar] [CrossRef]
- Sun, L.; Wei, J.; Duan, D.; Guo, Y.; Yang, D.; Jia, C.; Mi, X. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China. J. Atmos. Solar -Terr. Phys. 2016, 142, 43–54. [Google Scholar] [CrossRef]
- Yoo, J.-M.; Jeong, M.-J.; Kim, D.; Stockwell, W.R.; Yang, J.-H.; Shin, H.-W.; Lee, M.-I.; Song, C.-K.; Lee, S.-D. Spatiotemporal variations of air pollutants (O3, NO2, SO2, CO, PM10, and VOCs) with land-use types. Atmos. Chem. Phys. 2015, 15, 10857–10885. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, Y.; Geng, G.; Liu, H.; Man, H.; Lv, Z.; He, K.; de Hoogh, K. Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China. Environ. Pollut. 2017, 226, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Viana, M.; Hammingh, P.; Colette, A.; Querol, X.; Degraeuwe, B.; de Vlieger, I.; Van Aardenne, J. Impact of maritime transport emissions on coastal air quality in Europe. Atmos. Environ. 2014, 90, 96–105. [Google Scholar] [CrossRef]
- Liu, J.; Yan, G.; Wu, Y.; Wang, Y.; Zhang, Z.; Zhang, M. Wetlands with greater degree of urbanization improve PM2.5 removal efficiency. Chemosphere 2018, 207, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, R.; Shaheen, A.; Wang, F.; Ge, Q.; Wu, R.; Lelieveld, J.; Wang, J.; Su, X. Fine particulate matter (PM2.5) trends from land surface changes and air pollution policies in China during 1980–2020. J. Environ. Manag. 2023, 326, 116847. [Google Scholar] [CrossRef] [PubMed]
- Bertazzon, S.; Johnson, M.; Eccles, K.; Kaplan, G.G. Accounting for spatial effects in land use regression for urban air pollution modeling. Spat. Spatio-Temporal Epidemiol. 2015, 14, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, J.; Ghosh, J.K.; Ritz, B. Estimating spatiotemporal variability of ambient air pollutant concentrations with a hierarchical model. Atmos. Environ. 2013, 71, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Dai, F.; Yang, B.; Zhu, S. Effects of neighborhood green space on PM2.5 mitigation: Evidence from five megacities in China. Build. Environ. 2019, 156, 33–45. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Li, Q.; Zhao, J.; Guo, X.; Ying, H.; Wang, S. Vegetation productivity dynamics in response to climate change and human activities under different topography and land cover in Northeast China. Remote Sens. 2021, 13, 975. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, W.; Lei, Y.; Huang, Q.; Zhao, Y.; Cheng, S.; Ren, Z.; Wang, J. Spatiotemporal variation in the impact of meteorological conditions on PM2.5 pollution in China from 2000 to 2017. Atmos. Environ. 2020, 223, 117215. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I. ERA5 monthly averaged data on single levels from 1979 to present. Copernic. Clim. Change Serv. (C3S) Clim. Data Store (CDS) 2019, 10, 252–266. [Google Scholar]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, S.; Hou, X.; Beazley, R.; Sun, Y. Identifying the contributions of multiple driving forces to PM10–2.5 pollution in urban areas in China. Sci. Total Environ. 2019, 663, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Tatem, A.J. WorldPop, open data for spatial demography. Sci. Data 2017, 4, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Segal, M.R. Machine Learning Benchmarks and Random Forest Regression; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Hastie, T.; Tibshirani, R. Generalized additive models: Some applications. J. Am. Stat. Assoc. 1987, 82, 371–386. [Google Scholar] [CrossRef]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE T. Pattern Anal. 2009, 32, 569–575. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Li, S.; Cao, W.; Ren, H.; Knibbs, L.D.; Abramson, M.J.; Guo, Y. Spatiotemporal patterns of PM10 concentrations over China during 2005–2016: A satellite-based estimation using the random forests approach. Environ. Pollut. 2018, 242, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Gong, W.; Zhu, Z.; Sun, K.; Huang, Y.; Ji, Y. Semi-physical estimates of national-scale PM10 concentrations in China using a satellite-based geographically weighted regression model. Atmosphere 2016, 7, 88. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Hart, J.E.; Laden, F.; Zhao, C.; Li, T.; Zheng, P.; Li, D.; Ye, Z.; Chen, K. National scale spatiotemporal land-use regression model for PM2.5, PM10 and NO2 concentration in China. Atmos. Environ. 2018, 192, 48–54. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Xue, W.; Sun, L.; Fan, T.; Liu, L.; Su, T.; Cribb, M. The ChinaHighPM10 dataset: Generation, validation, and spatiotemporal variations from 2015 to 2019 across China. Environ. Int. 2021, 146, 106290. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cui, W.; Zhang, M. Exploring the causal relationship between urbanization and air pollution: Evidence from China. Sustain. Cities Soc. 2022, 80, 103783. [Google Scholar] [CrossRef]
- Davidson, N. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshwater Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Wang, S.; Bai, X.; Zhang, X.; Reis, S.; Chen, D.; Xu, J.; Gu, B. Urbanization can benefit agricultural production with large-scale farming in China. Nat. Food 2021, 2, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Dong, T.; Xu, G.; Zhou, Z.; Liu, J.; Liu, Y. Geographic micro-process model: Understanding global urban expansion from a process-oriented view. Comput. Environ. Urban Syst. 2021, 87, 101603. [Google Scholar] [CrossRef]
- Bhaskar, A.; Chandra, J.; Hashemi, H.; Butler, K.; Bennett, L.; Cellini, J.; Braun, D.; Dominici, F. A literature review of the effects of air pollution on COVID-19 health outcomes worldwide: Statistical challenges and data visualization. Annu. Rev. Public Health 2023, 44, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Nath, S.D. The impact of COVID-19 on air pollution: Evidence from global data. J. Clean. Prod. 2021, 298, 126755. [Google Scholar] [CrossRef]
- Liang, P.; Chen, B.; Yang, X.; Liu, Q.; Li, A.; Mackenzie, L.; Zhang, D. Revealing the dust transport processes of the 2021 mega dust storm event in northern China. Sci. Bull. 2021, 67, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Dilawar, A.; Chen, B.; Ul-Haq, Z.; Ali, S.; Sajjad, M.; Fang, J.; Gemechu, T.; Guo, M.; Dilawar, H.; Zhang, H.; et al. Evaluating the potential footprints of land use and land cover and climate dynamics on atmospheric pollution in Pakistan. Front. Environ. Sci. 2024, 11, 1272155. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Hu, Z.; Shi, P.; Lyu, Y.; Zhang, G.; Gu, Y.; Liu, Y.; Hong, C.; Guo, L. Dust storm susceptibility on different land surface types in arid and semiarid regions of northern China. Atmos. Res. 2020, 243, 105031. [Google Scholar] [CrossRef]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Wang, P. China’s air pollution policies: Progress and challenges. Curr. Opin. Environ. 2021, 19, 100227. [Google Scholar] [CrossRef]
- Elminir, H. Dependence of urban air pollutants on meteorology. Sci. Total Environ. 2005, 350, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Diener, A.; Mudu, P. How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective-with implications for urban planning. Sci. Total Environ. 2021, 796, 148605. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xin, Z.; Ding, G. Spatiotemporal variation in the occurrence of sand-dust events and its influencing factors in the Beijing-Tianjin Sand Source Region, China, 1982–2013. Reg. Environ. Change 2018, 18, 2433–2444. [Google Scholar] [CrossRef]
- Darvishi Boloorani, A.; Soleimani, M.; Papi, R.; Neysani Samany, N.; Teymouri, P.; Soleimani, Z. Sources, drivers, and impacts of sand and dust storms: A global view. In Dust and Health: Challenges and Solutions; Springer: Berlin/Heidelberg, Germany, 2023; pp. 31–49. [Google Scholar] [CrossRef]
- Feng, K.; Wang, T.; Liu, S.; Kang, W.; Chen, X.; Guo, Z.; Zhi, Y. Monitoring desertification using machine-learning techniques with multiple indicators derived from MODIS images in Mu Us Sandy Land, China. Remote Sens. 2022, 14, 2663. [Google Scholar] [CrossRef]
- Bauer, S.E.; Tsigaridis, K.; Miller, R. Significant atmospheric aerosol pollution caused by world food cultivation. Geophys. Res. Lett. 2016, 43, 5394–5400. [Google Scholar] [CrossRef]
- Punsompong, P.; Chantara, S. Identification of potential sources of PM10 pollution from biomass burning in northern Thailand using statistical analysis of trajectories. Atmos. Pollut. Res. 2018, 9, 1038–1051. [Google Scholar] [CrossRef]
- Maffia, J.; Dinuccio, E.; Amon, B.; Balsari, P. PM emissions from open field crop management: Emission factors, assessment methods and mitigation measures–A review. Atmos. Environ. 2020, 226, 117381. [Google Scholar] [CrossRef]
- Csavina, J.; Field, J.; Félix, O.; Corral-Avitia, Y.; Sáez, E.; Betterton, A. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Sci. Total Environ. 2014, 487, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Wang, J.; Zhang, X.; Wang, D.; Sheng, L. Influence of relative humidity on aerosol composition: Impacts on light extinction and visibility impairment at two sites in coastal area of China. Atmos. Res. 2015, 153, 500–511. [Google Scholar] [CrossRef]
- Li, J.; Song, Y.; Mao, Y.; Mao, Z.; Wu, Y.; Li, M.; Huang, X.; He, Q.; Hu, M. Chemical characteristics and source apportionment of PM2.5 during the harvest season in eastern China’s agricultural regions. Atmos. Environ. 2014, 92, 442–448. [Google Scholar] [CrossRef]
- Wang, S.; Gao, S.; Li, S.; Feng, K. Strategizing the relation between urbanization and air pollution: Empirical evidence from global countries. J. Clean. Prod. 2020, 243, 118615. [Google Scholar] [CrossRef]
- Apergis, N.; Ozturk, I. Testing environmental Kuznets curve hypothesis in Asian countries. Ecol. Indic. 2015, 52, 16–22. [Google Scholar] [CrossRef]
- Zou, B.; Xu, S.; Sternberg, T.; Fang, X. Effect of land use and cover change on air quality in urban sprawl. Sustainability 2016, 8, 677. [Google Scholar] [CrossRef]
Date | Hour | Type | 1001A | 1002A | 1003A | 1004A | … | 2846A |
---|---|---|---|---|---|---|---|---|
1 January 2016 | 0 | AQI | 245 | 119 | 250 | 243 | … | 153 |
1 January 2016 | 0 | PM2.5 | 195 | 90 | 200 | 193 | … | 117 |
1 January 2016 | 0 | PM2.5_24h | 67 | 50 | 69 | 65 | … | 52 |
1 January 2016 | 0 | PM10 | 200 | - | 209 | 209 | … | - |
1 January 2016 | 0 | PM10_24h | 148 | - | 110 | 139 | … | 68 |
1 January 2016 | 0 | SO2 | 26 | 22 | 31 | 7 | … | 16 |
1 January 2016 | 0 | SO2_24h | 17 | 17 | 15 | 9 | … | 9 |
1 January 2016 | 0 | NO2 | 95 | 76 | 98 | 101 | … | 102 |
1 January 2016 | 0 | NO2_24h | 71 | 49 | 69 | 76 | … | 63 |
1 January 2016 | 0 | O3 | 10 | 2 | 2 | 3 | … | 6 |
1 January 2016 | 0 | O3_24h | 29 | 72 | 20 | 22 | … | 87 |
1 January 2016 | 0 | O3_8h | 11 | 6 | 3 | 3 | … | 25 |
1 January 2016 | 0 | CO | 3.4 | 3.6 | 3.4 | 3.8 | … | 67 |
1 January 2016 | 0 | CO_24h | 1.771 | 1.5 | 1.542 | 1.758 | ... | 1.093 |
... | ... | ... | ... | ... | ... | ... | ... | … |
1 January 2016 | 23 | CO | 4.5 | 4.2 | 4.5 | 5.6 | … | 1.212 |
1 January 2016 | 23 | CO_24h | 3.133 | 3.783 | 3.2 | 3.487 | … | 0.943 |
Variable | Unit | Spatial Resolution | Temporal Resolution | Data Source |
---|---|---|---|---|
PM10 | μg/m3 | In situ | Hourly | WAQIPT |
AOD | - | 1 km × 1 km | Daily | MCD19A2 |
BLH | m | 0.25° × 0.25° | Monthly | ERA5 |
RH | % | 0.25° × 0.25° | Monthly | |
SP | hPa | 0.1° × 0.1° | Monthly | |
TP | mm | 0.1° × 0.1° | Monthly | |
WU | m/s | 0.1° × 0.1° | Monthly | |
WV | m/s | 0.1° × 0.1° | Monthly | |
T2M | K | 0.1° × 0.1° | Monthly | |
DE | kg/m2/s | 0.5° × 0.625° | Monthly | MERRA-2 |
LC | - | 500 m × 500 m | Yearly | MCD12Q1 |
NDVI | - | 1 km × 1 km | 16-Day | MOD13A2 |
POP | - | 1 km × 1 km | Yearly | WorldPop |
2015 | 2021 | ||||||
---|---|---|---|---|---|---|---|
Forest | Grassland | Wetland and Water | Cropland | Urban | Barren Land | Total | |
Forest | 994,618.79 | 73,068.24 | 252.96 | 786.78 | 4.65 | 0.93 | 1,068,732.35 |
Grassland | 170,610.36 | 4,075,128.25 | 6224.49 | 107,611.23 | 4886.22 | 28,286.88 | 4,392,747.43 |
Wetland and Water | 416.64 | 3816.72 | 152,886.82 | 415.71 | 69.75 | 789.57 | 158,395.21 |
Cropland | 3579.57 | 93,090.21 | 833.28 | 1,432,184.53 | 3450.3 | 33.48 | 1,533,171.37 |
Urban | 26.97 | 729.12 | 21.39 | 440.82 | 145,883.93 | 1.86 | 147,104.09 |
Barren land | 196.23 | 57,954.81 | 2463.57 | 232.51 | 46.52 | 2,233,789.52 | 2,294,683.16 |
Total | 1,169,448.56 | 4,303,787.35 | 162,682.51 | 1,541,671.58 | 154,341.37 | 2,262,902.24 | 9,594,833.61 |
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|---|---|---|
Forest | 37.3 | 37.25 | 36.24 | 38.19 | 38.34 | 36.86 | 35.96 |
Grassland | 55.81 | 56.02 | 54.17 | 54.66 | 54.47 | 52.91 | 53.58 |
Wetland and Water | 59.2 | 60.65 | 57.86 | 59.45 | 60.7 | 59.62 | 59.41 |
Cropland | 61.07 | 63.71 | 60.32 | 62.28 | 62.53 | 61.52 | 60.79 |
Urban | 61.76 | 61.93 | 61.62 | 61.54 | 61.21 | 60.25 | 61.19 |
Barren land | 100.33 | 98.97 | 100.01 | 101.18 | 98.42 | 97.04 | 98.34 |
2015 | 2021 | ΔPM10 | 2015 | 2021 | ΔPM10 |
---|---|---|---|---|---|
Forest | Forest | −7.21 | Cropland | Forest | −9.40 |
Glassland | −5.33 | Glassland | −7.96 | ||
Wetland and Water | −2.51 | Wetland and Water | −10.65 | ||
Cropland | −0.69 | Cropland | −2.42 | ||
Urban | −5.11 | Urban | −9.67 | ||
Barren land | 0.95 | Barren land | −1.05 | ||
Grassland | Forest | −6.82 | Urban | Forest | −5.94 |
Grassland | −1.04 | Grassland | −9.67 | ||
Wetland and Water | −7.79 | Wetland and Water | −14.23 | ||
Cropland | −1.12 | Cropland | −3.49 | ||
Urban | −11.48 | Urban | −5.76 | ||
Barren land | −0.42 | Barren land | −8.09 | ||
Wetland and Water | Forest | −5.86 | Barren land | Forest | −17.34 |
Grassland | −9.22 | Grassland | 1.12 | ||
Wetland and Water | −8.04 | Wetland and Water | −5.11 | ||
Cropland | −2.85 | Cropland | −2.34 | ||
Urban | −9.82 | Urban | −6.72 | ||
Barren land | 0.79 | Barren land | 3.39 |
2015 | edf | Ref.df | F | p-Value | |
Forest | 5.551 | 6.41 | 57.11 | <2 × 10−16 ** | |
Grassland | 7.915 | 8.257 | 3.7 | 0.000486 ** | |
Wetland and Water | 3.969 | 4.451 | 1.53 | 0.172 | |
Cropland | 2.263 | 3.493 | 31.08 | <2 × 10−16 ** | |
Urban | 5.244 | 7.088 | 13.73 | <2 × 10−16 ** | |
Barren land | 1.518 | 1.752 | 41.72 | <2 × 10−16 ** | |
2020 | edf | Ref.df | F | p-value | |
Forest | 5.797 | 7.114 | 55.13 | <2 × 10−16 ** | |
Grassland | 6.222 | 7.003 | 3.899 | 0.000408 ** | |
Wetland and Water | 3.804 | 4.746 | 2.057 | 0.0641 | |
Cropland | 3.424 | 4.692 | 22.22 | <2 × 10−16 ** | |
Urban | 4.574 | 6.568 | 7.844 | <2 × 10−16 ** | |
Barren land | 1.546 | 1.842 | 115.6 | <2 × 10−16 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Hao, J.; Liang, Y.; Shen, J. Assessing the Nonlinear Relationship between Land Cover Change and PM10 Concentration Change in China. Land 2024, 13, 766. https://doi.org/10.3390/land13060766
Xu X, Hao J, Liang Y, Shen J. Assessing the Nonlinear Relationship between Land Cover Change and PM10 Concentration Change in China. Land. 2024; 13(6):766. https://doi.org/10.3390/land13060766
Chicago/Turabian StyleXu, Xiankang, Jian Hao, Yuxin Liang, and Jingwei Shen. 2024. "Assessing the Nonlinear Relationship between Land Cover Change and PM10 Concentration Change in China" Land 13, no. 6: 766. https://doi.org/10.3390/land13060766
APA StyleXu, X., Hao, J., Liang, Y., & Shen, J. (2024). Assessing the Nonlinear Relationship between Land Cover Change and PM10 Concentration Change in China. Land, 13(6), 766. https://doi.org/10.3390/land13060766