Determining the Climatic Drivers for Wine Production in the Côa Region (Portugal) Using a Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Wine Production Data
2.2. Climate Data
2.3. Machine Learning Model Runs
2.4. Predictor Influence on Model Outcomes
3. Results
3.1. Wine Production in the Côa Region
3.2. Climatic Characteristics
3.3. Output Metrics
3.4. Significance of Climatic Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OIV. State of the World Vitivinicultural Sector in 2020; International Organisation of Vine and Wine: Dijon, France, 2021. [Google Scholar]
- Fraga, H.; Guimarães, N.; Santos, J. Vintage Port prediction and climate change scenarios. OENE One 2023, 57, 1–6. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Sgubin, G.; Bois, B.; Ollat, N.; Swingedouw, D.; Zito, S.; Gambetta, G.A. Climate change impacts and adaptations of wine production. Nat. Rev. Earth Environ. 2024, 5, 258–275. [Google Scholar] [CrossRef]
- Reis, S.; Fraga, H.; Carlos, C.; Silvestre, J.; Eiras-Dias, J.; Rodrigues, P.; Santos, J.A. Grapevine Phenology in Four Portuguese Wine Regions: Modeling and Predictions. Appl. Sci. 2020, 10, 3708. [Google Scholar] [CrossRef]
- Fraga, H.; Guimarães, N.; Freitas, T.R.; Malheiro, A.C.; Santos, J.A. Future Scenarios for Olive Tree and Grapevine Potential Yields in the World Heritage Côa Region, Portugal. Agronomy 2022, 12, 350. [Google Scholar] [CrossRef]
- García de Cortazar-Atauri, I.; Daux, V.; Garnier, E.; Yiou, P.; Viovy, N.; Seguin, B.; Boursiquot, J.M.; Parker, A.K.; van Leeuwen, C.; Chuine, I. Climate reconstructions from grape harvest dates: Methodology and uncertainties. Holocene 2010, 20, 599–608. [Google Scholar] [CrossRef]
- Nicholas, K.A.; Matthews, M.A.; Lobell, D.B.; Willits, N.H.; Field, C.B. Effect of vineyard-scale climate variability on Pinot noir phenolic composition. Agric. For. Meteorol. 2011, 151, 1556–1567. [Google Scholar] [CrossRef]
- Ingram, J.S.I.; Porter, J.R. Plant science and the food security agenda. Nat. Plants 2015, 1, 15173. [Google Scholar] [CrossRef] [PubMed]
- Makra, L.; Vitanyi, B.; Gal, A.; Mika, J.; Matyasovszky, I.; Hirsch, T. Wine Quantity and Quality Variations in Relation to Climatic Factors in the Tokaj (Hungary) Winegrowing Region. Am. J. Enol. Vitic. 2009, 60, 312–321. [Google Scholar] [CrossRef]
- de la Fuente, M.; Linares, R.; Baeza, P.; Miranda, C.; Lissarrague, J.R. Comparison of different methods of grapevine yield prediction in the time window between fruitset and veraison. OENE One 2015, 49, 27–35. [Google Scholar] [CrossRef]
- Molitor, D.; Keller, A. Yield of Muller-Thurgau and Riesling grapevines is altered by meteorological conditions in the current and previous growing seasons. OENE One 2016, 50, 245–258. [Google Scholar] [CrossRef]
- Stolarski, O.; Santos, J.A.; Fonseca, A.; Yang, C.; Trindade, H.; Fraga, H. Climate Change Impacts on Grassland Vigour in Northern Portugal. Land 2023, 12, 1914. [Google Scholar] [CrossRef]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.-M.; Gerber, J.S.; Reddy, V.R.; et al. Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef] [PubMed]
- Balduque-Gil, J.; Lacueva-Pérez, F.J.; Labata-Lezaun, G.; del-Hoyo-Alonso, R.; Ilarri, S.; Sánchez-Hernández, E.; Martín-Ramos, P.; Barriuso-Vargas, J.J. Big Data and Machine Learning to Improve European Grapevine Moth (Lobesia botrana) Predictions. Plants 2023, 12, 633. [Google Scholar] [CrossRef] [PubMed]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C.; Assoc Comp, M. “Why Should I Trust You?” Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- IPCC. Climate Change 2001: Synthesis Report; A Contribution of Working Groups I, II, III to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Watson, R.T., The Core Team, Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; 398p. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Smart, R.E.; Robinson, J.B.; Due, G.R.; Brien, C.J. Canopy Microclimate Modification for the Cultivar Shiraz: II. Effects on Must and Wine Composition. Vitis 1985, 24, 119–128. [Google Scholar]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Clemente, N.; Santos, J.A.; Fontes, N.; Graça, A.; Gonçalves, I.; Fraga, H. Grapevine Sugar Concentration Model (GSCM): A Decision Support Tool for the Douro Superior Winemaking Region. Agronomy 2022, 12, 1404. [Google Scholar] [CrossRef]
- COS. Carta de Uso e Ocupação do Solo. 2018. Available online: https://www.dgterritorio.gov.pt/Carta-de-Uso-e-Ocupacao-do-Solo-para-2018 (accessed on 1 February 2024).
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Deque, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Huth, R.; Kyselý, J. Constructing Site-Specific Climate Change Scenarios on a Monthly Scale Using Statistical Downscaling. Theor. Appl. Climatol. 2000, 66, 13–27. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Karger, D.N.; Wilson, A.M.; Mahony, C.; Zimmermann, N.E.; Jetz, W. Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Sci. Data 2021, 8, 307. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Climate factors driving wine production in the Portuguese Minho region. Agric. For. Meteorol. 2014, 185, 26–36. [Google Scholar] [CrossRef]
- Scholasch, T.; Rienth, M. Review of water deficit mediated changes in vine and berry physiology; Consequences for the optimization of irrigation strategies. OENE One 2019, 53, 423–444. [Google Scholar] [CrossRef]
- Laurent, C.; Le Moguédec, G.; Taylor, J.; Scholasch, T.; Tisseyre, B.; Metay, A. Local influence of climate on grapevine: An analytical process involving a functional and Bayesian exploration of farm data time series synchronised with an eGDD thermal index. OENE One 2022, 56, 301–317. [Google Scholar] [CrossRef]
- Yu, R.; Fidelibus, M.W.; Kennedy, J.A.; Kurtural, S.K. Precipitation before Flowering Determined Effectiveness of Leaf Removal Timing and Irrigation on Wine Composition of Merlot Grapevine. Plants 2021, 10, 1865. [Google Scholar] [CrossRef]
- Hardie, W.J.; Martin, S.R. Shoot growth on de-fruited grapevines: A physiological indicator for irrigation scheduling. Aust. J. Grape Wine Res. 2000, 6, 52–58. [Google Scholar] [CrossRef]
- Hardie, W.J.; Considine, J.A. Response of Grapes to Water-Deficit Stress in Particular Stages of Development. Am. J. Enol. Vitic. 1976, 27, 55–61. [Google Scholar] [CrossRef]
- Molitor, D.; Baus, O.; Hoffmann, L.; Beyer, M. Meteorological conditions determine the thermal-temporal position of the annual Botrytis bunch rot epidemic on Vitis vinifera L. cv. Riesling grapes. OENO One 2016, 50, 231–244. [Google Scholar]
- Moriondo, M.; Bindi, M.; Fagarazzi, C.; Ferrise, R.; Trombi, G. Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Reg. Environ. Chang. 2011, 11, 553–567. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar] [CrossRef]
- Porter, J.R.; Semenov, M.A. Crop responses to climatic variation. Philos. Trans. R. Soc. B-Biol. Sci. 2005, 360, 2021–2035. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, E.; Piña-Rey, A.; Fernández-González, M.; Aira, M.J.; Rodríguez-Rajo, F.J. Prediction of Grapevine Yield Based on Reproductive Variables and the Influence of Meteorological Conditions. Agronomy 2020, 10, 714. [Google Scholar] [CrossRef]
- Gouveia, C.; Liberato, M.L.R.; DaCamara, C.C.; Trigo, R.M.; Ramos, A.M. Modelling past and future wine production in the Portuguese Douro Valley. Clim. Res. 2011, 48, 349–362. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A. Daily prediction of seasonal grapevine production in the Douro wine region based on favourable meteorological conditions. Aust. J. Grape Wine Res. 2017, 23, 296–304. [Google Scholar] [CrossRef]
- Lorenzo, M.N.; Taboada, J.J.; Lorenzo, J.F.; Ramos, A.M. Influence of climate on grape production and wine quality in the Rías Baixas, north-western Spain. Reg. Environ. Chang. 2012, 13, 887–896. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Romero, P.; Navarro, J.M.; Ordaz, P.B. Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update. Agric. Water Manag. 2022, 259, 107216. [Google Scholar] [CrossRef]
- Ferrara, G.; Boselli, M.; Palasciano, M.; Mazzeo, A. Effect of shading determined by photovoltaic panels installed above the vines on the performance of cv. Corvina (Vitis vinifera L.). Sci. Hortic. 2023, 308, 111595. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A. Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal. Agric. Syst. 2018, 164, 107–115. [Google Scholar] [CrossRef]
- Keller, M. Managing grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Aust. J. Grape Wine Res. 2010, 16, 56–69. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Jackson, D.I.; Lombard, P.B. Environmental and Management-Practices Affecting Grape Composition and Wine Quality—A Review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar] [CrossRef]
Month | Minimum Air Temperature (°C) | Mean Air Temperature (°C) | Maximum Air Temperature (°C) | Total Precipitation (mm) | Relative Humidity (%) | Solar Radiation (W/m2) |
---|---|---|---|---|---|---|
January | TN_01 | TG_01 | TX_01 | RR_01 | HU_01 | QQ_01 |
February | TN_02 | TG_02 | TX_02 | RR_02 | HU_02 | QQ_02 |
March | TN_03 | TG_03 | TX_03 | RR_03 | HU_03 | QQ_03 |
April | TN_04 | TG_04 | TX_04 | RR_04 | HU_04 | QQ_04 |
May | TN_05 | TG_05 | TX_05 | RR_05 | HU_05 | QQ_05 |
June | TN_06 | TG_06 | TX_06 | RR_06 | HU_06 | QQ_06 |
July | TN_07 | TG_07 | TX_07 | RR_07 | HU_07 | QQ_07 |
August | TN_08 | TG_08 | TX_08 | RR_08 | HU_08 | QQ_08 |
September | TN_09 | TG_09 | TX_09 | RR_09 | HU_09 | QQ_09 |
Municipality | Average Production (2004–2020; ×103 hl) | Production Trend (2004–2020; ×103 hl) | Area (2018; ha) | Average × 103 hl/ha |
---|---|---|---|---|
Freixo Espada à Cinta | 2471 | 86 | 1477 | 1.7 |
Torre de Moncorvo | 2417 | −177 | 2235 | 1.1 |
Vila Nova de Foz Côa | 9157 | −1016 | 7700 | 1.2 |
Mêda | 8076 | −580 | 3916 | 2.1 |
Fig. de Castelo Rodrigo | 27,558 | −3697 | 2530 | 10.9 |
Trancoso | 18,768 | −2601 | 830 | 22.6 |
Pinhel | 89,754 | −599 | 4791 | 18.7 |
Almeida | <1000 | 607 | ||
Celorico da Beira | <1000 | 98 | ||
Guarda | <1000 | 372 | ||
Sabugal | <1000 | 192 | ||
Penamacor | <1000 | 89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraga, H.; Freitas, T.R.; Moriondo, M.; Molitor, D.; Santos, J.A. Determining the Climatic Drivers for Wine Production in the Côa Region (Portugal) Using a Machine Learning Approach. Land 2024, 13, 749. https://doi.org/10.3390/land13060749
Fraga H, Freitas TR, Moriondo M, Molitor D, Santos JA. Determining the Climatic Drivers for Wine Production in the Côa Region (Portugal) Using a Machine Learning Approach. Land. 2024; 13(6):749. https://doi.org/10.3390/land13060749
Chicago/Turabian StyleFraga, Helder, Teresa R. Freitas, Marco Moriondo, Daniel Molitor, and João A. Santos. 2024. "Determining the Climatic Drivers for Wine Production in the Côa Region (Portugal) Using a Machine Learning Approach" Land 13, no. 6: 749. https://doi.org/10.3390/land13060749
APA StyleFraga, H., Freitas, T. R., Moriondo, M., Molitor, D., & Santos, J. A. (2024). Determining the Climatic Drivers for Wine Production in the Côa Region (Portugal) Using a Machine Learning Approach. Land, 13(6), 749. https://doi.org/10.3390/land13060749