Assessment and Monitoring of Local Climate Regulation in Cities by Green Infrastructure—A National Ecosystem Service Indicator for Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Input Data
2.1.1. Study Area
2.1.2. Input Data
2.2. Methodology
2.2.1. Assessing Cooling Capacity
2.2.2. Supply and Demand of the ES “Local Climate Regulation in Cities”
- The urban green infrastructure (UGI), which has a high potential for reducing heat stress by its natural cooling capacity;
- The proportion of inhabitants that can benefit from UGI cooling potential near their homes, workplaces or other areas where they frequently congregate.
2.3. Application of Original CCA Methodology
2.3.1. Basic Methodology
2.3.2. Identification of Cities ≥ 50,000 Inhabitants
2.3.3. Assigning Land Cover Classes to Soil Cover Types
2.3.4. Consideration of Urban Tree Cover
2.3.5. Size of the Soil Cover Types
2.4. Model Adaptations
2.4.1. Identifying the Neighbourhood around Cooling Green Areas
2.4.2. Integration of Population Data
3. Results
3.1. Cooling Capacity at Local Level
3.2. Cooling Capacity at National Level
3.3. Ecosystem Service Indicator “Local Climate Regulation in Cities”
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. IPCC Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Bednar-Friedl, B.; Biesbroek, R.; Schmidt, D.N.; Alexander, P.; Børsheim, K.Y.; Carnicer, J.; Georgopoulou, E.; Haasnoot, M.; Le Cozannet, G.; Lionello, P.; et al. Europe. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 1817–1927. [Google Scholar]
- Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R.F.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagaña, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-Related Mortality in Europe during the Summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Taha, H.; Akbari, H.; Rosenfeld, A. Heat Island and Oasis Effects of Vegetative Canopies: Micro-Meteorological Field-Measurements. Theor. Appl. Climatol. 1991, 44, 123–138. [Google Scholar] [CrossRef]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat Waves and Urban Heat Islands in Europe: A Review of Relevant Drivers. Sci. Total Environ. 2016, 569–570, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Oke, T.R. City Size and the Urban Heat Island. Atmos. Environ. (1967) 1973, 7, 769–779. [Google Scholar] [CrossRef]
- United Nations. The Paris Agreement. 2016. Available online: https://www.un.org/en/climatechange/paris-agreement# (accessed on 6 May 2024).
- European Commission. The European Green Deal; European Commission: Luxembourg, 2019; Volume COM/2019/640 Final, Available online: https://commission.europa.eu/document/download/954374b5-2f9a-48f3-882c-07d9afddbabd_en (accessed on 6 May 2024).
- European Commission. Forging a Climate-Resilient Europe—The New EU Strategy on Adaptation to Climate Change; European Commission: Luxembourg, 2021; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0082&from=EN (accessed on 6 May 2024).
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the Empirical Evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- European Commission. Our Life Insurance, Our Natural Capital: An EU Biodiversity Strategy to 2020; European Commission: Luxembourg, 2011; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52011DC0244 (accessed on 6 May 2024).
- Veerkamp, C.J.; Schipper, A.M.; Hedlund, K.; Lazarova, T.; Nordin, A.; Hanson, H.I. A Review of Studies Assessing Ecosystem Services Provided by Urban Green and Blue Infrastructure. Ecosyst. Serv. 2021, 52, 101367. [Google Scholar] [CrossRef]
- Taha, H. Urban Climates and Heat Islands: Albedo, Evapotranspiration, and Anthropogenic Heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef]
- Syrbe, R.-U.; Neumann, I.; Grunewald, K.; Brzoska, P.; Louda, J.; Kochan, B.; Macháč, J.; Dubová, L.; Meyer, P.; Brabec, J.; et al. The Value of Urban Nature in Terms of Providing Ecosystem Services Related to Health and Well-Being: An Empirical Comparative Pilot Study of Cities in Germany and the Czech Republic. Land 2021, 10, 341. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.M.; Knight, T.M.; Pullin, A.S. A Systematic Review of Evidence for the Added Benefits to Health of Exposure to Natural Environments. BMC Public Health 2010, 10, 456. [Google Scholar] [CrossRef]
- Westermann, J.; Bolsius, J.; Kunze, S.; Schünemann, C.; Sinning, H.; Ziemann, A.; Baldin, M.-L.; Brüggemann, K.; Brzoska, P.; Ehnert, F.; et al. Hitzeanpassung von Stadtquartieren: Akteursperspektiven und Umsetzungsansätze. GAIA—Ecol. Perspect. Sci. Soc. 2021, 30, 257–267. [Google Scholar] [CrossRef]
- Ronchi, S.; Salata, S.; Arcidiacono, A. Which Urban Design Parameters Provide Climate-Proof Cities? An Application of the Urban Cooling InVEST Model in the City of Milan Comparing Historical Planning Morphologies. Sustain. Cities Soc. 2020, 63, 102459. [Google Scholar] [CrossRef]
- Bruse, D.; Bruse, M.; ENVI-Met. A Holistic Microclimate Modelling System. Available online: https://envi-met.info/doku.php?id=root:start (accessed on 4 March 2024).
- HeatResilientCity HRC-Tool. Available online: https://hrc-hitzetool.ioer.info/ (accessed on 4 March 2024).
- Oliveira, A.; Lopes, A.; Correia, E.; Niza, S.; Soares, A. An Urban Climate-Based Empirical Model to Predict Present and Future Patterns of the Urban Thermal Signal. Sci. Total Environ. 2021, 790, 147710. [Google Scholar] [CrossRef] [PubMed]
- Natural Capital Project InVEST® User Guide—InVEST® Documentation. Available online: http://releases.naturalcapitalproject.org/invest-userguide/latest/en/index.html (accessed on 20 February 2024).
- Zardo, L.; Geneletti, D.; Pérez-Soba, M.; Van Eupen, M. Estimating the Cooling Capacity of Green Infrastructures to Support Urban Planning. Ecosyst. Serv. 2017, 26, 225–235. [Google Scholar] [CrossRef]
- Grunewald, K.; Richter, B.; Herold, H.; Meinel, G.; Syrbe, R.-U. Proposal of indicators regarding the provision and accessibility of green spaces for assessing the ecosystem service “recreation in the city” in Germany. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 26–39. [Google Scholar] [CrossRef]
- Grunewald, K.; Syrbe, R.-U.; Walz, U.; Richter, B.; Meinel, G.; Herold, H.; Marzelli, S. Ökosystemleistungen Deutschlands. Stand der Indikatorenentwicklung für ein bundesweites Assessment und Monitoring [Eosystem Services of Germany: Level of Indicator Development for a National Assessment]. Nat. Landsch. 2017, 92, 485–492. [Google Scholar] [CrossRef]
- Grunewald, K.; Bastian, O.; Louda, J.; Arcidiacono, A.; Brzoska, P.; Bue, M.; Cetin, N.I.; Dworczyk, C.; Dubova, L.; Fitch, A.; et al. Lessons Learned from Implementing the Ecosystem Services Concept in Urban Planning. Ecosyst. Serv. 2021, 49, 101273. [Google Scholar] [CrossRef]
- Maes, J.; Teller, A.; Erhard, M.; Conde, S.; Vallecillo, R.S.; Barredo, C.J.I.; Paracchini, M.-L.; Abdul, M.D.; Trombetti, M.; Vigiak, O.; et al. Mapping and Assessment of Ecosystems and Their Services: An EU Ecosystem Assessment. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC120383 (accessed on 12 March 2024).
- OECD Redefining “Urban”: A New Way to Measure Metropolitan Areas; Organization for Economic Co-operation and Development: Paris, France, 2012.
- European Commission. Statistical Office of the European Union. Applying the Degree of Urbanisation: A Methodological Manual to Define Cities, Towns and Rural Areas for International Comparisons: 2021 Edition; Publications Office: Luxembourg, 2021. [Google Scholar]
- BKG—Bundesamt für Kartographie und Geodäsie: Digitales Landbedeckungsmodell für Deutschland, Stand 2018 [Digital Land Cover Model for Germany]. Available online: https://gdz.bkg.bund.de/index.php/default/digitales-landbedeckungsmodell-fur-deutschland-stand-2018-lbm-de2018.html (accessed on 20 February 2024).
- IOER Monitor der Siedlungs und Freiraumentwicklung. Available online: https://monitor.ioer.de/ (accessed on 20 February 2024).
- BKG—Bundesamt für Kartographie und Geodäsie: Verwaltungsgebiete 1:25 000, Stand 31.12. Available online: https://gdz.bkg.bund.de/index.php/default/verwaltungsgebiete-1-25-000-stand-31-12-vg25.html (accessed on 20 February 2024).
- Copernicus Urban Atlas Street Tree Layer 2018 (Vector), Europe, 6-Yearly, Feb. 2021. Available online: https://sdi.eea.europa.eu/catalogue/copernicus/api/records/205691b3-7ae9-41dd-abf1-1fbf60d72c8c (accessed on 20 February 2024).
- Krüger, T.; Eichler, L.; Meinel, G.; Tenikl, J.; Taubenböck, H.; Wurm, M. Urban Green Raster Germany 2018. 2022.(1 (2021)) [Data Set]. Zenodo. Available online: https://zenodo.org/records/5842521#.Yd_fjVkxkUE (accessed on 20 February 2024).
- Hecht, R.; Meinel, G.; Buchroithner, M. Estimation of Urban Green Volume Based on Single-Pulse LiDAR Data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3832–3840. [Google Scholar] [CrossRef]
- Frick, A.; Wagner, K.; Tervooren, S.; Kiefer, T. Wo fehlt Grün? Defizitanalyse von Grünvolumen in Städten. In Flächennutzungsmonitoring XII. IÖR Schriften. Band 78; Meinel, G., Schumacher, U., Behnisch, M., Krüger, T., Eds.; Rhombos-Verlag: Berlin, Germany, 2020. [Google Scholar]
- Destatis—Statistisches Bundesamt Zensusatlas|Kartenanwendung [Census: Map Application]. Available online: https://atlas.zensus2011.de/ (accessed on 20 February 2024).
- Potchter, O.; Cohen, P.; Bitan, A. Climatic Behavior of Various Urban Parks during Hot and Humid Summer in the Mediterranean City of Tel Aviv, Israel. Int. J. Climatol. 2006, 26, 1695–1711. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H.; Chang, S.-D. A Preliminary Study on the Local Cool-Island Intensity of Taipei City Parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Akbari, H.; Davis, S.; Huang, J.; Dorsano, S.; Winnett, S. Cooling Our Communities: A Guidebook on Tree Planting and Light-Colored Surfacing; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA; Environmental Protection Agency: Washington, DC, USA, 1992. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Jaganmohan, M.; Knapp, S.; Buchmann, C.M.; Schwarz, N. The Bigger, the Better? The Influence of Urban Green Space Design on Cooling Effects for Residential Areas. J. Environ. Qual. 2016, 45, 134–145. [Google Scholar] [CrossRef] [PubMed]
- TEEB The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations. Available online: https://www.routledge.com/The-Economics-of-Ecosystems-and-Biodiversity-Ecological-and-Economic-Foundations/Kumar/p/book/9780415501088 (accessed on 20 February 2024).
- Zawadzka, J.E.; Harris, J.A.; Corstanje, R. Assessment of Heat Mitigation Capacity of Urban Greenspaces with the Use of InVEST Urban Cooling Model, Verified with Day-Time Land Surface Temperature Data. Landsc. Urban Plan. 2021, 214, 104163. [Google Scholar] [CrossRef]
- Eichler, L.; Krüger, T.; Meinel, G.; Tenikl, J.; Wurm, M. Wie grün sind deutsche Städte?—Indikatorgestützte Erfassung des Stadtgrüns; Bundesinstitut für Bau-, Stadt- und Raumforschung: Bonn, Germany, 2020; Available online: https://www.bbsr.bund.de/BBSR/DE/veroeffentlichungen/sonderveroeffentlichungen/2022/wie-gruen-deutsche-staedte-dl.pdf?__blob=publicationFile&v=2 (accessed on 6 May 2024).
- Syrbe, R.-U.; Schröder, M.; Grunewald, K.; Walz, U.; Burkhard, B. What To Map? Mapp. Ecosyst. Serv. 2017, 1, 151–158. [Google Scholar] [CrossRef]
- Wende, V.W.; Marschall, I.; Heiland, S.; Lipp, T.; Reinke, M.; Schaal, P.; Schmidt, C. Umsetzung von Maßnahmenvorschlägen örtlicher Landschaftspläne. Naturschutz Landschaftsplanung 2009, 41, 145–149. [Google Scholar]
- Shrestha, R.; Flacke, J.; Martinez, J.; van Maarseveen, M. Environmental Health Related Socio-Spatial Inequalities: Identifying “Hotspots” of Environmental Burdens and Social Vulnerability. Int. J. Environ. Res. Public Health 2016, 13, 691. [Google Scholar] [CrossRef] [PubMed]
- German Environment Agency—UNFCCC-Submission Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2020 National Inventory Report for the German Greenhouse Gas Inventory 1990–2018; Climate Change; Umweltbundesamt. 2022. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/29_2023_cc_submission_under_the_united_nations_framework_convention.pdf (accessed on 6 May 2024).
- Eurostat Guidance Note for Accounting for the Local Climate Regulation Ecosystem Service in the EU—Forth Draft 2023. Directorate E: Sectoral and Regional Statistics Unit E-2: Environmental Statistics and Accounts; Sustainable Development Doc. ENV/EA/TF/2023_2/5; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban Heat Island Mitigation by Green Infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D. Mapping and Assessing Ecosystem Services to Support Urban Planning: A Case Study on Brownfield Regeneration in Trento, Italy. One Ecosyst. 2018, 3, e25477. [Google Scholar] [CrossRef]
- Bartesaghi Koc, C.; Osmond, P.; Peters, A. Evaluating the Cooling Effects of Green Infrastructure: A Systematic Review of Methods, Indicators and Data Sources. Sol. Energy 2018, 166, 486–508. [Google Scholar] [CrossRef]
- DRL—Deutscher Rat für Landschaftspflege Durch doppelte Innentwicklung Freiraumqualitäten erhalten [Developing Free Space Qualities by Dual Internal Development]. Schriftenreihe Dtsch. Rates Landschaftspflege 2006, 78, 5–39.
- Böhm, J.; Böhme, C.; Bunzel, A.; Kühnau, C.; Landua, D.; Reinke, M. BfN Schriften 444—Urbanes Grün in der doppelten Innenentwicklung | BFN [Urban Green in the Dual Internal Development]. Available online: https://www.bfn.de/publikationen/bfn-schriften/bfn-schriften-444-urbanes-gruen-der-doppelten-innenentwicklung (accessed on 20 February 2024).
- Sachverständigenrat für Umweltfragen Wohnungsneubau Langfristig Denken—Für mehr Umweltschutz und Lebensqualität in den Städten [Long-Term Rethinking about New Housing—For More Environmental Protection and Live Quality in Cities]; Sachverständigenrat für Umweltfragen—Publikationen. 2018. Available online: https://www.umweltrat.de/SharedDocs/Downloads/DE/04_Stellungnahmen/2016_2020/2018_11_Stellungnahme_Wohnungsneubau.pdf?__blob=publicationFile&v=2 (accessed on 6 May 2024).
Data Name and Source | Time Period | Available Information | Spatial Scale |
---|---|---|---|
Land cover model Germany LBM-DE [29] | 2018 | Polygons: area size Land/soil cover | Minimum mapping unit 0.2–1 ha |
Cities > 50,000 inhabitants [30] | 2011 | City and IDs | 1: 25,000 |
Administrative areas VG25 [31] | 2016 | Polygons: city boundaries | 1: 25,000 |
Functional Urban Areas (FUA) of Urban Atlas [32] | 2018 | Polygons of the FUA areas | |
Street Tree Layer of Urban Atlas (STL) [32] | 2018 | Polygon data of tree coverage (trees outside the forest) | 10 m × 10 m |
Urban Green Raster Germany (UGR) [33] | 2018 | Raster data of tree coverage classes | 10 m × 10 m |
Green volume data for 4 cities [34,35] | 2017/18 | Raster data of green leave area for calibration | 0.5 m × 0.5 m |
Census: number of inhabitants [36] | 2011 | Raster distribution data Resident population | 100 m × 100 m |
Tree Cover 1 | Soil Cover Type 2 | Cooling Value Points (Atlantic Climate) | |
---|---|---|---|
Soil Cover Type Area < 2 ha | Soil Cover Type Area ≥ 2 ha | ||
≤20% | Sealed (impervious surfaces) | 11 | 20 |
Bare soil | 18 | 65 | |
Heterogeneous cover | 19 | 68 | |
Grass (low vegetation) | 19 | 68 | |
Water surface | 20 | 75 | |
≤40% | Sealed (impervious surfaces) | 22 | 40 |
Bare soil | 27 | 74 | |
Heterogeneous cover | 28 | 76 | |
Grass (low vegetation) | 28 | 78 | |
Water surface | 28 | 81 | |
≤60% | Sealed (impervious surfaces) | 29 | 60 |
Bare soil | 33 | 83 | |
Heterogeneous cover | 36 | 84 | |
Grass (low vegetation) | 37 | 85 | |
Water surface | 37 | 87 | |
≤80% | Sealed (impervious surfaces) | 37 | 80 |
Bare soil | 44 | 91 | |
Heterogeneous cover | 46 | 92 | |
Grass (low vegetation) | 46 | 93 | |
Water surface | 46 | 94 | |
≤100% | Sealed (impervious surfaces) | 55 | 100 |
Bare soil | 55 | 100 | |
Heterogeneous cover | 55 | 100 | |
Grass (low vegetation) | 55 | 100 | |
Water surface | 55 | 100 | |
Forest | 55 | 100 |
CCA Soil Cover Types | LBM-DE (CLC) Land Cover Classes | Description |
---|---|---|
Sealed (impervious surfaces) | 111, 121, 122, 123, 124 | Urban settlement, industry, and transportation areas |
Bare soil | 131, 211, 331, 332, 333, 334 | Mining, arable land, rocky areas, beaches |
Heterogeneous cover (mixed cover of bare soil and shrubs, typical of gardens, inner courts or vacant lots) | 112, 132, 133, 142 | Non-continuous residential areas, deposits, construction, sports and leisure facilities |
Grass (low vegetation) | 141, 221, 222, 231, 321, 322, 333, 324 | Green urban areas, vineyards, orchards, grasslands, moors and heathland, sparse vegetation, transitional woodland-shrub |
Water | 411, 412, 421, 423, 511, 512, 521, 522, 523 | Marshes, peat bogs, intertidal flats, water courses, water bodies, lagoons, sea |
Forest | 311, 312, 313 | Broad-leaved, coniferous and mixed forests |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrbe, R.-U.; Meier, S.; Moyzes, M.; Dworczyk, C.; Grunewald, K. Assessment and Monitoring of Local Climate Regulation in Cities by Green Infrastructure—A National Ecosystem Service Indicator for Germany. Land 2024, 13, 689. https://doi.org/10.3390/land13050689
Syrbe R-U, Meier S, Moyzes M, Dworczyk C, Grunewald K. Assessment and Monitoring of Local Climate Regulation in Cities by Green Infrastructure—A National Ecosystem Service Indicator for Germany. Land. 2024; 13(5):689. https://doi.org/10.3390/land13050689
Chicago/Turabian StyleSyrbe, Ralf-Uwe, Sophie Meier, Michelle Moyzes, Claudia Dworczyk, and Karsten Grunewald. 2024. "Assessment and Monitoring of Local Climate Regulation in Cities by Green Infrastructure—A National Ecosystem Service Indicator for Germany" Land 13, no. 5: 689. https://doi.org/10.3390/land13050689
APA StyleSyrbe, R. -U., Meier, S., Moyzes, M., Dworczyk, C., & Grunewald, K. (2024). Assessment and Monitoring of Local Climate Regulation in Cities by Green Infrastructure—A National Ecosystem Service Indicator for Germany. Land, 13(5), 689. https://doi.org/10.3390/land13050689