Infrastructure Impact Assessment through Multi-Hazard Analysis at Different Scales: The 26 November 2022 Flood Event on the Island of Ischia and Debris Management
Abstract
:1. Introduction
- The access to a large information database for situational awareness;
- The forecast of the external event, with the support of multi-source datasets;
- The estimation of the location and the severity of damages induced on CI elements;
- The availability of critical services by accounting for cascading effects;
- The optimized reconfiguration strategies to CI operators.
- To validate the method implemented by Pollino et al. (2022) [45] for multi-hazard analysis;
- To update the ENEA’s CIPCast GeoDatabase;
- To implement a methodology related to the management of the debris generated by disasters triggered by natural hazards aiming to reduce the time and cost for an emergency response.
2. Study Area
3. Data and Materials
Materials
4. Methods
- Step 1. Data preparation and processing: to collect, organize, and process the basic data using the GIS software:
- ◦
- Implementation of single-hazard maps (flood, landslide, and earthquake);
- ◦
- Implementation of multi-hazard maps;
- ◦
- Implementation of landslide maps for the 26 November 2022 event (municipality of Casamicciola Terme), by intersecting and overlapping the considered CI;
- ◦
- Statistical analysis to calculate, for all the Areas of Interest (A.o.I.) (regional, provincial, island, and municipal scale), the length/number of the considered CI network (i.e., the road network) classified according to the different classes of hazard.
- Step 2. Data repository: to store data and metadata in a geospatial database (PostgreSQL/PostGIS) [114,115]:
- ◦
- All the GIS layers produced were uploaded and stored in the CIPCast GeoDatabase.
- Step 3. Analysis and elaboration: to manage stored data and metadata and publish them on the web (by means of the OGC standard) to enable geo-processing and risk analysis:
- ◦
- All the layers were organized in the GeoServer suite [116] for sharing and made available to the users via WMS.
- Step 4. Client front end (WebGIS application): multi-hazard analysis process.
- ◦
- Results of the analysis and mapping: all the elements and/or parts of CI classified at different hazard levels were published within the CIPCast WebGIS application.
4.1. Hazardousness Mapping
- For the three single-hazard classifications, we followed the coloring of the area subject to the specific hazard class proposed by:PAI 2020 for the flood hazard classes as defined by [106] and reported in the ISPRA Idrogeo Platform [56] (https://idrogeo.isprambiente.it/app/, accessed on 4 April 2024 [89]). In particular, the flood hazard classes (as previously described) were thematized using a descending scale of blue (and white color for the “Not at-risk zones” class);
- PAI 2020–2021 for the landslide hazard classes as defined by [106] and reported in the Idrogeo Platform [56] (https://idrogeo.isprambiente.it/app/, accessed on 4 April 2024 [89]). In particular, the National mosaic (v. 4.0—2020–2021) of the landslide hazard zones of the River Basin Plans (PAI) was mapped using the River Basin District Authorities. The landslide hazard was divided into six classes and thematized using a decreasing scale from red to yellow (and white color for the “Not at-risk zones” class);
- INGV seismic zonation [107] for the seismic hazard, with a four-color intensity scale, from red (max value, 0.35 g) to light green (min value, ≤0.05 g).
4.2. Multi-Hazard Index Values (MIV) and Multi-Hazard Index Classes (MIC)
4.3. Mapping of the Casamicciola 26 November 2022 Debris-Flow Event
4.4. CIPCast Implementation
- Motorway;
- Trunk;
- Primary Road;
- Secondary Road;
- Local Road;
- Other Roads.
4.5. Debris Management
- Bibliographic research at the international level;
- In situ surveys of the sites affected by the flood of 26 November 2022 (Ischia);
- Collection and analysis of administrative acts related to debris management activities (a summary of the relevant information contained in each authorization decree was considered in the present study even if it is not possible to submit a copy of the original documentation—in Italian);
- Implementation management scheme for debris management aimed at reducing costs and time by following the principles of the European directives on waste management and the circular economy.
5. Results
- The Campania region: ~61,435 km;
- The Metropolitan City of Naples: ~12,080 km;
- The island of Ischia: ~585 km;
- The Casamicciola Terme municipality: ~73 km.
- The data, listed above and suitably classified, are shown in Table 5.
5.1. Multi-Hazard Mapping
5.2. Casamicciola 26 November 2022 Debris-Flow Event
5.3. CIPCast Implementation
5.4. Debris Management
- An island;
- Difficult connections to the mainland;
- A steep territory near the coast;
- Many houses, buildings, and critical infrastructure (roads and ports) exposed to slope vulnerability.
6. Discussion
6.1. Critical Infrastructures
6.2. Debris Management
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Institute for the Protection and Security of the Citizen (Joint Research Centre); Theocharidou, M.; Giannopoulos, G. Risk Assessment Methodologies for Critical Infrastructure Protection. Part II, A New Approach; Publications Office of the European Union: Luxembourg, 2015; ISBN 978-92-79-49246-4. [Google Scholar]
- OECD Recommendation of the Council on the Governance of Infrastructure. Available online: https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0460 (accessed on 27 February 2024).
- Oh, W.; Cho, C.; Lee, M. Life Cycle Cost Method for Safe and Effective Infrastructure Asset Management. Buildings 2023, 13, 1983. [Google Scholar] [CrossRef]
- IPCC Home Page. Available online: https://www.ipcc.ch/ (accessed on 2 March 2024).
- IPCC. 2023: Sections. In Climate Change 2023: Synthesis Report; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- UNEP Department of Economic and Social Affairs—Sustainable Development Agenda 21. Available online: https://sdgs.un.org/publications/agenda21 (accessed on 2 March 2024).
- Hufschmidt, G.; Glade, T. Vulnerability Analysis in Geomorphic Risk Assessment. In Geomorphological Hazards and Disaster Prevention; Cambridge University Press: Cambridge, UK, 2010; pp. 233–243. [Google Scholar] [CrossRef]
- Papathoma-Köhle, M.; Kappes, M.; Keiler, M.; Glade, T. Physical Vulnerability Assessment for Alpine Hazards: State of the Art and Future Needs. Nat. Hazards 2011, 58, 645–680. [Google Scholar] [CrossRef]
- Kappes, M.S.; Keiler, M.; von Elverfeldt, K.; Glade, T. Challenges of Analyzing Multi-Hazard Risk: A Review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef]
- Kappes, M.; Keiler, M.; Glade, T. From Single- to Multi-Hazard Risk Analyses: A Concept Addressing Emerging Challenges. In Proceedings of the Mountains Risks: Bringing Science to Society, Florence, Italy, 1 January 2010; Malet, J.P., Glade, T., Casagli, N., Eds.; CERG Editions: Strasbourg, France, 2010; pp. 351–356. [Google Scholar]
- Tarvainen, T.; Jarva, J.; Greiving, S. Spatial Pattern of Hazards and Hazard Interactions in Europe. In Natural and Technological Hazards and Risks Affecting the Spatial Development of European Regions; Special paper 42; Schmidt-Thomé, P., Ed.; Geological Survey of Finland: Espoo, Finland, 2006; pp. 83–91. ISBN 978-951-690-944-1. [Google Scholar]
- Carpignano, A.; Golia, E.; Di Mauro, C.; Bouchon, S.; Nordvik, J. A Methodological Approach for the Definition of Multi-risk Maps at Regional Level: First Application. J. Risk Res. 2009, 12, 513–534. [Google Scholar] [CrossRef]
- Marzocchi, W.; Di Ruocco, A.; Mastellone, M.L. Principles of Multi-Risk Assessment: Interaction amongst Natural and Man-Induced Risks; Publications Office of the European Union—Directorate-General for Research and Innovation (European Commission): Luxembourg, 2009; ISBN 978-92-79-07963-4. [Google Scholar]
- Hunter, N.M.; Bates, P.D.; Horritt, M.S.; Wilson, M.D. Simple Spatially-Distributed Models for Predicting Flood Inundation: A Review. Geomorphology 2007, 90, 208–225. [Google Scholar] [CrossRef]
- Jafarzadegan, K.; Muñoz, D.F.; Moftakhari, H.; Gutenson, J.L.; Savant, G.; Moradkhani, H. Real-Time Coastal Flood Hazard Assessment Using DEM-Based Hydrogeomorphic Classifiers. Nat. Hazards Earth Syst. Sci. 2022, 22, 1419–1435. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide Risk Assessment and Management: An Overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Bell, R.; Glade, T. Multi-Hazard Analysis in Natural Risk Assessments. Risk Anal. 2004, 9, 1–10. [Google Scholar] [CrossRef]
- Crozier, M.J.; Glade, T. Landslide Hazard and Risk: Issues, Concepts and Approach. In Landslide Hazard Risk; CRC Press: Boca Raton, FL, USA, 2005; pp. 1–40. [Google Scholar]
- Fell, R.; Ho, K.K.; Lacasse, S.; Leroi, E. A Framework for Landslide Risk Assessment and Management. In Landslide Risk Management; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-0-429-15135-4. [Google Scholar]
- Ancey, C.; Gervasoni, C.; Meunier, M. Computing Extreme Avalanches. Cold Reg. Sci. Technol. 2004, 39, 161–180. [Google Scholar] [CrossRef]
- Bründl, M.; Bartelt, P.; Schweizer, J.; Keiler, M.; Glade, T. Review and Future Challenges in Snow Avalanche Risk Analysis. In Geomorphological Hazards and Disaster Prevention; Cambridge University Press: Cambridge, UK, 2010; pp. 49–61. ISBN 978-0-521-76925-9. [Google Scholar]
- Bründl, M.; Margreth, S. Integrative Risk Management: The Example of Snow Avalanches. In Snow and Ice-Related Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 263–301. ISBN 978-0-12-394849-6. [Google Scholar]
- Blong, R.J. Volcanic Hazards Risk Assessment. In Monitoring and Mitigation of Volcano Hazards; Scarpa, R., Tilling, R.I., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 675–698. ISBN 978-3-642-80087-0. [Google Scholar]
- Felpeto, A.; Martí, J.; Ortiz, R. Automatic GIS-Based System for Volcanic Hazard Assessment. J. Volcanol. Geotherm. Res. 2007, 166, 106–116. [Google Scholar] [CrossRef]
- INGV Home Page. Available online: https://www.ingv.it/ (accessed on 27 February 2024).
- Stucchi, M.; Meletti, C.; Montaldo Falero, V.; Crowley, H.; Calvi, G.; Boschi, E. Seismic Hazard Assessment (2003–2009) for the Italian Building Code. Bull. Seismol. Soc. Am. 2011, 101, 1885–1911. [Google Scholar] [CrossRef]
- Carafa, M.M.C.; Valensise, G.; Bird, P. Assessing the Seismic Coupling of Shallow Continental Faults and Its Impact on Seismic Hazard Estimates: A Case-Study from Italy. Geophys. J. Int. 2017, 209, 32–47. [Google Scholar] [CrossRef]
- Valensise, G.; Tarabusi, G.; Guidoboni, E.; Ferrari, G. The Forgotten Vulnerability: A Geology- and History-Based Approach for Ranking the Seismic Risk of Earthquake-Prone Communities of the Italian Apennines. Int. J. Disaster Risk Reduct. 2017, 25, 289–300. [Google Scholar] [CrossRef]
- D’Amato, M.; Laguardia, R.; Di Trocchio, G.; Coltellacci, M.; Gigliotti, R. Seismic Risk Assessment for Masonry Buildings Typologies from L’Aquila 2009 Earthquake Damage Data. J. Earthq. Eng. 2022, 26, 4545–4579. [Google Scholar] [CrossRef]
- Sura, P. A General Perspective of Extreme Events in Weather and Climate. Atmos. Res. 2011, 101, 1–21. [Google Scholar] [CrossRef]
- Magnusson, L.; Prudhomme, C.; Di Giuseppe, F.; Di Napoli, C.; Pappenberger, F. Chapter 2—Operational Multiscale Predictions of Hazardous Events. In Extreme Weather Forecasting; Astitha, M., Nikolopoulos, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 87–129. ISBN 978-0-12-820124-4. [Google Scholar]
- Abbate, A.; Mancusi, L.; Apadula, F.; Frigerio, A.; Papini, M.; Longoni, L. CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment): A New Model for Geo-Hydrological Hazard Assessment at the Basin Scale. Nat. Hazards Earth Syst. Sci. 2024, 24, 501–537. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Comprehensive Risk Assessment for Natural Hazards. WMO/TD-No. 955; WMO: Geneva, Switzerland, 1999; pp. 1–92. [Google Scholar]
- Delmonaco, G.; Margottini, C.; Spizzichino, D. Report on New Methodology for Multi-Risk Assessment and the Harmonisation of Different Natural Risk Maps; Deliverable 3.1; ARMONIA: Tokyo, Japan, 2006. [Google Scholar]
- Marzocchi, W.; Garcia, A.; Gasparini, P.; Mastellone, M.; Ruocco, A. Basic Principles of Multi-Risk Assessment: A Case Study in Italy. Nat. Hazards 2012, 62, 551–573. [Google Scholar] [CrossRef]
- Altenbach, T.J. A Comparison of Risk Assessment Techniques from Qualitative to Quantitative; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 1995. [Google Scholar]
- Borter, P. Risikoanalyse Bei Gravitativen Naturgefahren; Umwelt-Materialien; Methode: Chicago, IL, USA, 1999. [Google Scholar]
- Bründl, M.; Romang, H.E.; Bischof, N.; Rheinberger, C.M. The Risk Concept and Its Application in Natural Hazard Risk Management in Switzerland. Nat. Hazards Earth Syst. Sci. 2009, 9, 801–813. [Google Scholar] [CrossRef]
- ISO IEC 31010:2019 Risk Management—Risk Assessment Techniques. Available online: https://www.iso.org/standard/72140.html (accessed on 27 February 2024).
- Hewitt, K.; Burton, I. The Hazardousness of a Place: A Regional Ecology of Damaging Events; University of Toronto, Department of Geography: Toronto, ON, Canada, 1971; ISBN 978-0-8020-3281-2. [Google Scholar]
- Carrasco, R.M.; Pedraza, J.; Martin-Duque, J.F.; Mattera, M.; Sanz, M.A.; Bodoque, J.M. Hazard Zoning for Landslides Connected to Torrential Floods in the Jerte Valley (Spain) by Using GIS Techniques. Nat. Hazards 2003, 30, 361–381. [Google Scholar] [CrossRef]
- Romeo, S.; D’Angiò, D.; Fraccica, A.; Licata, V.; Vitale, V.; Chiessi, V.; Amanti, M.; Bonasera, M. Investigation and Preliminary Assessment of the Casamicciola Landslide in the Island of Ischia (Italy) on November 26, 2022. Landslides 2023, 20, 1265–1276. [Google Scholar] [CrossRef]
- El Morjani, Z.E.A.; Ebener, S.; Boos, J.; Abdel Ghaffar, E.; Musani, A. Modelling the Spatial Distribution of Five Natural Hazards in the Context of the WHO/EMRO Atlas of Disaster Risk as a Step towards the Reduction of the Health Impact Related to Disasters. Int. J. Health Geogr. 2007, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- EM-DAT The International Disaster Database. Available online: https://www.emdat.be/ (accessed on 27 February 2024).
- Pollino, M.; Cappucci, S.; Pesaresi, C.; Farrace, M.G.; Della Morte, L.; Vegliante, G. Multi-Hazard Analysis and Mapping of Infrastructure Systems at National Level Using GIS Techniques: Preliminary Results. In Computational Science and Its Applications—ICCSA 2022 Workshops; Lecture Notes in Computer, Science; Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C., Eds.; Springer International Publishing: Cham, Switzerland, 2022; Volume 13377, pp. 153–168. ISBN 978-3-031-10535-7. [Google Scholar]
- Cerema Le Dossier Départemental sur les Risques Majeurs (DDRM). Available online: https://outil2amenagement.cerema.fr/outils/dossier-departemental-sur-les-risques-majeurs-ddrm (accessed on 27 February 2024).
- Géorisques Le Document d’Information Communal sur les Risques (DICRIM). Available online: https://www.georisques.gouv.fr/communiquer-aupres-de-mes-administres/dicrim (accessed on 27 February 2024).
- Wang, J.; He, Z.; Weng, W. A Review of the Research into the Relations between Hazards in Multi-Hazard Risk Analysis. Nat. Hazards 2020, 104, 2003–2026. [Google Scholar] [CrossRef]
- Kozik, R.; Choraś, M.; Flizikowski, A.; Theocharidou, M.; Rosato, V.; Rome, E. Advanced Services for Critical Infrastructures Protection. J. Ambient Intell. Human Comput. 2015, 6, 783–795. [Google Scholar] [CrossRef]
- Council Directive (EC) 2008/114/EC of 8 December 2008 on the Identification and Designation of European Critical Infrastructures and the Assessment of the Need to Improve Their Protection; Official Journal of the European Union, European Union: Brussels, Belgium, 2008; Volume L 345/75.
- ENEA CIPCast Platform-Critical Infrastructure Protection Risk Analysis and Forecast. Available online: http://www.eisac.it/cipcast.php (accessed on 28 February 2024).
- Di Pietro, A.; Lavalle, L.; La Porta, L.; Pollino, M.; Tofani, A.; Rosato, V. Design of DSS for Supporting Preparedness to and Management of Anomalous Situations in Complex Scenarios. Stud. Syst. Decis. Control. 2016, 90, 195–232. [Google Scholar] [CrossRef]
- Giovinazzi, S.; Pietro, A.; Mei, M.; Pollino, M.; Rosato, V. Protection of Critical Infrastructure in the Event of Earthquakes: CIPCast-ES. In Proceedings of the XVII ANIDIS Conference, Pistoia, Italy, 17 September 2017. [Google Scholar]
- Giovinazzi, S.; Giordano, L.; Di Pietro, A.; Luisa Villani, M.; De Nicola, A.; Pollino, M. Il Sistema di Supporto alle Decisioni CIPCast DSS per le aree storiche. Energ. Ambiente Innov. 2022, 2022, 92–95. [Google Scholar] [CrossRef]
- Ortolani, F. The mudflows of 10 November 2009 at Casamicciola Terme (Ischia). The m. Epomeo resistance and the slope of piedmont failure. Geol. Ambiente 2009, 2023, 26–31. [Google Scholar]
- Iadanza, C.; Trigila, A.; Starace, P.; Dragoni, A.; Biondo, T.; Roccisano, M. IdroGEO: A Collaborative Web Mapping Application Based on REST API Services and Open Data on Landslides and Floods in Italy. ISPRS Int. J. Geo-Inf. 2021, 10, 89. [Google Scholar] [CrossRef]
- Giovinazzi, S.; Marchili, C.; Di Pietro, A.; Giordano, L.; Costanzo, A.; La Porta, L.; Pollino, M.; Rosato, V.; Lückerath, D.; Milde, K.; et al. Assessing Earthquake Impacts and Monitoring Resilience of Historic Areas: Methods for GIS Tools. ISPRS Int. J. Geo-Inf. 2021, 10, 461. [Google Scholar] [CrossRef]
- Vegliante, G.; Baiocchi, V.; Falconi, L.M.; Moretti, L.; Pollino, M.; Puglisi, C.; Righini, G. A GIS-Based Approach for Shallow Landslides Risk Assessment in the Giampilieri and Briga Catchments Areas (Sicily, Italy). GeoHazards 2024, 5, 209–232. [Google Scholar] [CrossRef]
- Matassoni, L.; Giovinazzi, S.; Pollino, M.; Fiaschi, A.; La Porta, L.; Rosato, V. A Geospatial Decision Support Tool for Seismic Risk Management: Florence (Italy) Case Study. In Proceedings of the Computational Science and Its Applications—ICCSA 2017; Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Stankova, E., Cuzzocrea, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 278–293. [Google Scholar]
- Taraglio, S.; Chiesa, S.; Porta, L.L.; Pollino, M.; Verdecchia, M.; Tomassetti, B.; Colaiuda, V.; Lombardi, A. Decision Support System for Smart Urban Management: Resilience against Natural Phenomena and Aerial Environmental Assessment. Int. J. Sustain. Energy Plan. Manag. 2019, 24, 135–146. [Google Scholar] [CrossRef]
- Clarke, J.; Obrien, E. A Multi-Hazard Risk Assessment Methodology, Stress Test Framework and Decision Support Tool for Transport Infrastructure Networks. Transp. Res. Procedia 2016, 14, 1355–1363. [Google Scholar] [CrossRef]
- Bloomfield, R.E.; Popov, P.; Salako, K.; Stankovic, V.; Wright, D. Preliminary Interdependency Analysis: An Approach to Support Critical-Infrastructure Risk-Assessment. Reliab. Eng. Syst. Saf. 2017, 167, 198–217. [Google Scholar] [CrossRef]
- Argyroudis, S.A.; Mitoulis, S.A.; Hofer, L.; Zanini, M.A.; Tubaldi, E.; Frangopol, D.M. Resilience Assessment Framework for Critical Infrastructure in a Multi-Hazard Environment: Case Study on Transport Assets. Sci. Total Environ. 2020, 714, 136854. [Google Scholar] [CrossRef] [PubMed]
- Šarūnienė, I.; Martišauskas, L.; Krikštolaitis, R.; Augutis, J.; Setola, R. Risk Assessment of Critical Infrastructures: A Methodology Based on Criticality of Infrastructure Elements. Reliab. Eng. Syst. Saf. 2024, 243, 109797. [Google Scholar] [CrossRef]
- Cybersecurity and Infrastructure Security Agency (CISA) Critical Infrastructure Assessments. Available online: https://www.cisa.gov/critical-infrastructure-assessments (accessed on 28 February 2024).
- Cappucci, S.; Cecco, L.; Gemerei, F.; Giordano, L.; Moretti, L.; Peloso, A.; Pollino, M.; Scipinotti, R. Earthquake’s Rubble Heaps Volume Evaluation: Expeditious Approach Through Earth Observation and Geomatics Techniques. In Proceedings of the Computational Science and Its Applications–ICCSA 2017: 17th International Conference, Trieste, Italy, 7 July 2017; pp. 261–277. [Google Scholar]
- Cappucci, S.; Buffarini, G.; Giordano, L.; Hailemikael, S.; Martini, G.; Pollino, M. Local Geology and Seismic-Induced Damages: The Case of Amatrice (Central Italy). Lect. Notes Comput. Sci. 2020, 12250 LNCS, 950–962. [Google Scholar] [CrossRef]
- Pollino, M.; Cappucci, S.; Giordano, L.; Iantosca, D.; De Cecco, L.; Bersan, D.; Rosato, V.; Borfecchia, F. Assessing Earthquake-Induced Urban Rubble by Means of Multiplatform Remotely Sensed Data. ISPRS Int. J. Geo-Inf. 2020, 9, 262. [Google Scholar] [CrossRef]
- FEMA. National Mitigation Strategy: Partnerships for Building Safer Communities; FEMA: Washington, DC, USA, 1995. [Google Scholar]
- Bjerregaard, M. MSB/UNDP Debris Management Guidelines; MSB, UNDP: New York, NY, USA, 2010; pp. 1–47. [Google Scholar]
- ProAct Network. Shelter Centre A Brief Guide to Asbestos in Emergencies: Safer Handling and Breaking the Cycle; ProAct: Nyon, Switzerland, 2016; pp. 1–36. [Google Scholar]
- Climate-ADAPT Risk Assessment and Mapping Guidelines for Disaster Management. Available online: https://climate-adapt.eea.europa.eu/en/metadata/guidances/eu-commission-staff-working-paper-risk-assessment-and-mapping-guidelines-for-disaster-management (accessed on 24 January 2024).
- United Nations Development Programme (UNDP). Signature Product: Guidance Note on Debris Management—Crisis Prevention and Recovery; UNDP: New York, NY, USA, 2015; pp. 1–35. [Google Scholar]
- SWA of Palm Beach County. Debris Management Plan 2022; SWA: Dallas, TX, USA, 2022. [Google Scholar]
- UN Office for the Coordination of Humanitarian Affairs Disaster Response in Asia and the Pacific. Available online: https://asiadisasterguide.unocha.org/II-guidance-frameworks.html (accessed on 27 February 2024).
- UNEP Sustainable Debris Management. Available online: http://www.unep.org/topics/chemicals-and-pollution-action/waste/sustainable-debris-management (accessed on 27 February 2024).
- Vaníček, M. Landslide reclamation in šárka valley. Acta Polytech. CTU Proc. 2017, 10, 65. [Google Scholar] [CrossRef]
- Erten, E.; Rossi, C. The Worsening Impacts of Land Reclamation Assessed with Sentinel-1: The Rize (Turkey) Test Case. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 57–64. [Google Scholar] [CrossRef]
- Niu, X.; Hou, K.; Sun, H. Study on the Prevention and Control of Downhole Debris Flows Based on Disaster Chain Theory. Water 2023, 15, 2367. [Google Scholar] [CrossRef]
- EU Commission—DG Environment. EU Construction & Demolition Waste Management Protocol. 2016. Available online: https://ec.europa.eu/docsroom/documents/20509/attachments/1/translations/en/renditions/native (accessed on 4 April 2024).
- DPC Decreto del Capo Dipartimento n. 4353 del 13 dicembre 2023—Indicazioni Operative per la “Gestione delle macerie a seguito di evento sismico”. Available online: https://www.protezionecivile.gov.it/it/normativa/decreto-del-capo-dipartimento-n-4353-del-13-dicembre-2023-indicazioni-operative-la-gestione-delle-macerie-seguito-di-evento-sismico/ (accessed on 26 February 2024).
- MASE Programma Nazionale per La Gestione Dei Rifiuti (PNGR)—Documentazione: Valutazioni e Autorizzazioni Ambientali (VAS—VIA—AIA). Available online: https://va.mite.gov.it/it-IT/Oggetti/Documentazione/8199/12062 (accessed on 26 February 2024).
- ISTAT Bilancio Demografico Mensile. Available online: https://demo.istat.it/app/?i=D7B (accessed on 25 February 2024).
- Vallario, A. Il Dissesto Idrogeologico in Campania; Pubblicazioni/Centro Nazionale delle Ricerche. Gruppo Nazionale per la difesa dalle catastrofi idrogeologiche; CUEN: Naples, Italy, 2001; Volume 2455, ISBN 88-7146-566-0. [Google Scholar]
- Iadanza, C.; Trigila, A.; Napolitano, F. Identification and Characterization of Rainfall Events Responsible for Triggering of Debris Flows and Shallow Landslides. J. Hydrol. 2016, 541, 230–245. [Google Scholar] [CrossRef]
- Bucchignani, E.; Zollo, A.L.; Montesarchio, M. Analysis of Expected Climate Extreme Variability with Regional Climate Simulations over Napoli Capodichino Airport: A Contribution to a Climate Risk Assessment Framework. Earth 2021, 2, 980–996. [Google Scholar] [CrossRef]
- Capozzi, V.; Rocco, A.; Annella, C.; Cretella, V.; Fusco, G.; Budillon, G. Signals of Change in the Campania Region Rainfall Regime: An Analysis of Extreme Precipitation Indices (2002–2021). Meteorol. Appl. 2023, 30, e2168. [Google Scholar] [CrossRef]
- Capozzi, V.; Annella, C.; Budillon, G. Classification of Daily Heavy Precipitation Patterns and Associated Synoptic Types in the Campania Region (Southern Italy). Atmos. Res. 2023, 289, 106781. [Google Scholar] [CrossRef]
- ISPRA IdroGEO: La Piattaforma Web Italiana Su Frane e Alluvioni. Available online: https://idrogeo.isprambiente.it/app/ (accessed on 2 March 2024).
- Lombardi, G. Irpinia Earthquake and History: A Nexus as a Problem. Geosciences 2021, 11, 50. [Google Scholar] [CrossRef]
- Lima, A.; Bodnar, R.J.; De Vivo, B.; Spera, F.J.; Belkin, H.E. Interpretation of Recent Unrest Events (Bradyseism) at Campi Flegrei, Napoli (Italy): Comparison of Models Based on Cyclical Hydrothermal Events versus Shallow Magmatic Intrusive Events. Geofluids 2021, 2021, e2000255. [Google Scholar] [CrossRef]
- Baiocchi, V.; Pietrantonio, G.; Schnider, R.; Cardone, L.; Vatore, F. GNSS Data for Monitoring Some Movements on the Island of Ischia. In Proceedings of the 2022 IEEE International Workshop on Metrology for the Sea, Learning to Measure Sea Health Parameters (MetroSea), Milazzo, Italy, 3–5 October 2022; pp. 451–455. [Google Scholar]
- Varnes, D.J. Landslide Types and Processes. Highw. Res. Board Spec. Rep. 1958, 24, 20–47. [Google Scholar]
- Varnes, D.J. Slope Movement Types and Processes. Spec. Rep. 1978, 176, 11–33. [Google Scholar]
- Del Prete, S.; Mele, R. Fenomeni Di Instabilità Dei Versanti Di Tufo Verde Del Monte Epomeo (Isola d’Ischia, Campania). Boll. Della Soc. Geol. Ital. 1998, 117, 93–112. [Google Scholar]
- Del Prete, S.; Mele, R. L’influenza Dei Fenomeni d’instabilità Di Versante Nel Quadro Morfoevolutivo Della Costa Dell’isola d’Ischia. Boll. Della Soc. Geol. Ital. 1999, 118, 339–360. [Google Scholar]
- Del Prete, S.; Mele, R. The Contribution of Historical and Archival Research in the Assessment of Landslide Susceptibility of Ischia Island—In Italian. Rend. Della Soc. Geol. Ital. 2006, 2, 29–47. [Google Scholar]
- Vennari, C.; Parise, M.; Santangelo, N.; Santo, A. A Database on Flash Flood Events in Campania, Southern Italy, with an Evaluation of Their Spatial and Temporal Distribution. Nat. Hazards Earth Syst. Sci. 2016, 16, 2485–2500. [Google Scholar] [CrossRef]
- Santangelo, N.; Forte, G.; De Falco, M.; Chirico, G.B.; Santo, A. New Insights on Rainfall Triggering Flow-like Landslides and Flash Floods in Campania (Southern Italy). Landslides 2021, 18, 2923–2933. [Google Scholar] [CrossRef]
- Federalberghi Home Page. Available online: https://www.federalberghi.it/index.aspx (accessed on 3 March 2024).
- IRPI-CNR Evento Franoso Del 26 Novembre 2022 a Casamicciola Terme. 2022. Available online: https://polaris.irpi.cnr.it/event/colate-di-fango-e-detrito-a-casamicciola-terme-isola-di-ischia/ (accessed on 4 April 2024).
- Sutera, A. Il Dragaggio Del Porto Di Casamicciola a Seguito Degli Eventi Alluvionali Del 26 Novembre 2022. In Proceedings of the REMTECH Expo Conference, Ferrara, Italy, 20–22 September 2023. [Google Scholar]
- Pollino, M.; Di Pietro, A.; La Porta, L.; Fattoruso, G.; Giovinazzi, S.; Longobardi, A. Seismic Risk Simulations of a Water Distribution Network in Southern Italy. Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 2021, 12951 LNCS, 655–664. [Google Scholar] [CrossRef]
- Trigila, A.; Ladanza, C.; Bussettini, M.; Lastoria, B. Dissesto Idrogeologico in Italia: Pericolosità e Indicatori Di Rischio; Edizioni 2021 ISPRA; ISPRA: Rome, Italy, 2021; pp. 1–232. [Google Scholar]
- INGV Zone Sismiche (2004). Available online: http://zonesismiche.mi.ingv.it/ (accessed on 27 February 2024).
- DPC Classificazione Sismica. Available online: https://rischi.protezionecivile.gov.it/it/sismico/attivita/classificazione-sismica/ (accessed on 4 May 2023).
- Copernicus EMS—Mapping Copernicus Emergency Management Service| Copernicus EMS—Mapping. Available online: https://emergency.copernicus.eu/mapping/list-of-components/EMSR643 (accessed on 17 April 2023).
- ISTAT Confini Delle Unità Amministrative a Fini Statistici al 1° Gennaio 2023. Available online: https://www.istat.it/it/archivio/222527 (accessed on 24 April 2023).
- Geoportale Regione Campania Dati Di Base. Available online: https://sit2.regione.campania.it/content/dati-di-base (accessed on 16 January 2024).
- Sisma ed Emergenza Ischia Sisma ed Emergenza Ischia—Ordinanze. Available online: https://sismaischia.it/emergenza-frana/atti-del-commissario/ordinanze/ (accessed on 27 February 2024).
- OpenStreetMap OSM Geofabrik Download Server. Available online: https://download.geofabrik.de/europe/italy.html (accessed on 16 January 2024).
- PostgreSQL Global Development Home Page. Available online: https://www.postgresql.org/ (accessed on 16 January 2024).
- PostGIS Home Page. Available online: https://postgis.net/ (accessed on 15 February 2023).
- Geoserver Home Page. Available online: https://geoserver.org/ (accessed on 3 March 2024).
- GU Serie Generale n.48 del 27-02-2012—Suppl. Ordinario n. 37 Decreto 10 novembre 2011—Regole Tecniche per la Definizione del Contenuto del Repertorio Nazionale dei Dati Territoriali, Nonche’ Delle Modalita’ di Prima Costituzione e di Aggiornamento Dello Stesso. Available online: https://www.gazzettaufficiale.it/eli/id/2012/02/27/12A01801/sg (accessed on 28 February 2024).
- IGM—Direzione Geodetica Nota per Il Corretto Utilizzo Dei Sistemi Geodetici Di Riferimento All’interno Dei Software GIS Aggiornata a Gennaio 2022. Available online: https://www.igmi.org/it/descrizione-prodotti/elementi-geodetici-1/EPSG_Italia (accessed on 30 January 2024).
- EU Commission INSPIRE Technical Guidelines—D2.8.I.1 Data Specification on Coordinate Reference Systems. Available online: https://knowledge-base.inspire.ec.europa.eu/legislation/technical-guidelines_en (accessed on 28 February 2024).
- Government of Canada Role of Critical Infrastructure in National Prosperity. Available online: https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/2016-rl-crtclnfrstrctr-ntnlprsprty/index-en.aspx (accessed on 27 February 2024).
- Arcamone, S.; Iacono, F.; Guida, D.; Gamba, C.; Esposito, P.; Di Vincenzo, G.; Calise, M.; Tiberti, L.; Iacono, G.; Mirelli, R. Strategie Di Sviluppo Locale Di Tipo Partecipativo Del Flag Isole Di Ischia e Procida; PO FEAMP ITALIA 2014|2020 MIPAAF; Sviluppo Mare Isole di Ischia e Procida S.C.A.R.L: Ischia, Italy, 2018. [Google Scholar]
- GU Serie Generale n.77 del 02-04-2010 D.Lgs. 23 Febbraio 2010, n. 49 Attuazione Della Direttiva 2007/60/CE Relativa Alla Valutazione e Alla Gestione dei Rischi di Alluvioni. Available online: https://www.gazzettaufficiale.it/eli/id/2010/04/02/010G0071/sg (accessed on 1 April 2024).
- Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the Assessment and Management of Flood Risks. Available online: http://data.europa.eu/eli/dir/2007/60/oj/eng (accessed on 1 April 2024).
- Cappucci, S.; Vaccari, M.; Falconi, M.; Tudor, T. Sustainable Management of Sedimentary Resources: A Case Study of the Egadi Project. Environ. Eng. Manag. J. 2019, 18, 317–328. [Google Scholar]
- ANSA Frana a Ischia, Si Scava Nel Fango. Morta Una 31enne, 11 i Dispersi. Mattarella e Meloni: Vicini Alla Popolazione Colpita. Available online: https://www.ansa.it/sito/notizie/cronaca/2022/11/27/frana-a-ischia-si-scava-nel-fango.-morta-una-31enne-11-i-dispersi.-mattarella-e-meloni-vicini-alla-popolazione-colpita_627518f4-265b-4ed3-8086-46201fe70b90.html (accessed on 28 April 2023).
- GU n.88 del 14 aprile 2006 D.Lgs. 3 Aprile 2006, n. 152—Norme in Materia Ambientale. Available online: https://www.gazzettaufficiale.it/eli/id/2006/04/14/006G0171/sg (accessed on 16 February 2023).
- Regione Emilia-Romagna Ordinanza del Presidente della Giunta Regionale 18 Maggio 2023, n. 66. 2023.
- EU Commission Waste from Electrical and Electronic Equipment (WEEE). Available online: https://environment.ec.europa.eu/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en (accessed on 27 February 2024).
- Comm. Del. OCDPC No. 948 of 30 November 2022—Primi Interventi Urgenti Di Protezione Civile in Conseguenza Degli Eccezionali Eventi Meteorologici Verificatisi Nel Territorio Dell’isola Di Ischia (NA), a Partire Dal Giorno 26 Novembre 2022. 2022.
- Comm. Del. OCDPC No. 6 of 15 February 2023—Misure Riguardanti Il Riuso Dei Materiali Litoidi e Lignei Derivanti Dagli Eventi Catastrofici Del 26 Novembre 2022 e Misure Relative Ad Ulteriori Interventi Emergenziali; 2023; pp. 1–15.
- Comm. Del. OCDPC No. 8 of 25 February 2023—Misure Di Semplificazione, Accelerazione Ed Attuazione Delle Attività Di Caratterizzazione, Progettazione, Dragaggio e Riutilizzo Dei Sedimenti Del Porto Di Casamicciola Terme; Presidenza del Consiglio dei Ministri, 2023; pp. 1–11.
- Comm. Del. OCDPC No. 12 of 26 May 2023—Disposizioni Riguardanti La Revisione Della Zonizzazione, La Gestione Del Ciclo Dei Materiali Di Frana e Il Riuso, La Nomina Del Soggetto Attuatore per Ulteriori e Nuovi Interventi Di Messa in Sicurezza. 2023.
- Comm. Del. OCDPC No. 14 of 30 September 2023—Disposizioni Riguardanti l’abbruciamento Di Residui Vegetali, La Semplificazione Delle Attività Di Cessione Materiali Litoidi e Lignei, i Contributi per Danni a Veicoli, Le Rendicontazioni e Disposizioni Finanziarie. 2022.
- UNEP Mediterranean Action Plan Barcelona Convention and Amendments. Available online: https://www.unep.org/unepmap/who-we-are/contracting-parties/barcelona-convention-and-amendments (accessed on 27 January 2024).
- GU Serie Generale n.270 del 18-11-2010 D.Lgs. 13 Ottobre 2010, n. 190—Attuazione Della Direttiva 2008/56/CE Che Istituisce Un Quadro per l’azione Comunitaria Nel Campo Della Politica per l’ambiente Marino. Available online: https://www.gazzettaufficiale.it/eli/id/2010/11/18/010G0212/sg (accessed on 8 May 2023).
- Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive). Available online: http://data.europa.eu/eli/dir/2008/56/oj/eng (accessed on 27 January 2024).
- Directive 2008/98/EC of the European Parliament and of the Council Of 19 November 2008 on Waste and Repealing Certain Directives (Waste Framework Directive). Available online: https://environment.ec.europa.eu/topics/waste-and-recycling/waste-framework-directive_en (accessed on 3 March 2024).
# | Description | Source |
---|---|---|
A-1 | National mosaic of flood hazard—PAI 2020 v.5.0 | ISPRA Idrogeo [106] |
A-2 | National mosaic of landslide hazard—PAI 2020–2021 v.4.0 | ISPRA Idrogeo [106] |
A-3 | Italian Seismic Hazard Maps—2004 | INGV [107] |
A-4 | National Seismic Classification of Municipalities 2021 | Dep. Civil Protection [108] |
A-5 | EMSR643: Mudflow in Ischia, Italy—2022 | Copernicus Emergency Management Service [109] |
A-6 | Boundaries of administrative units—2023 (Campania Region; Metropolitan City of Naples; Ischia Island; Municipality of Casamicciola Terme) | ISTAT [110] |
A-7 | Campania Region Territorial Information System | Campania Region Geo-Portal [111] |
A-8 | Administrative acts related to debris management | Dep. Civil Protection [112] |
# | Description | Source |
---|---|---|
B-1 | Italy Road network | OSM—Open Street Map [113] |
Flood Hazard Classes | Landslide Hazard Classes | Seismic Hazard Zones | Multi-Hazard Index Values (MIV) |
---|---|---|---|
0 | 0 | Zone 4 | 1 |
LPH (300–500 y) | AA + H1 | Zone 3 | 2 |
MPH (100–200 y) | H2 | Zone 2 | 3 |
HPH (20–50 y) | H3 + H4 | Zone 1 | 4 |
Map Color | Multi-Hazard Index Values (MIV) Sum | Multi-Hazard Index Classes (MIC) |
---|---|---|
MIV = 3 | Low | |
4 ≤ MIV ≤ 6 | Moderate | |
7 ≤ MIV ≤ 9 | High | |
10 ≤ MIV ≤ 12 | Very High |
CI Road Network | Campania Region | Metropolitan City of Naples | Ischia Island | Municipality of Casamicciola Terme | |||||
---|---|---|---|---|---|---|---|---|---|
Km | % | Km | % | Km | % | Km | % | ||
Flood hazard | HPH | 1432 | 2% | 404 | 3% | 39 | 7% | 8.3 | 11% |
MHP | 1863 | 3% | 193 | 2% | 0 | 0% | 0 | 0% | |
LHP | 372 | 1% | 110 | 1% | 0 | 0% | 0 | 0% | |
NaR | 57,768 | 94% | 11,372 | 94% | 546 | 93% | 64.9 | 89% | |
Landslide hazard | P4 | 4198 | 7% | 560.5 | 4.6% | 81 | 14% | 13 | 19% |
P3 | 4427 | 7% | 656.5 | 5.4% | 81 | 14% | 10 | 13% | |
P2 | 4613 | 8% | 429 | 3.5% | 9 | 1% | 3 | 4% | |
P1 | 6281 | 10% | 786 | 6.5% | 39 | 7% | 5 | 6% | |
AA | 9174 | 15% | 0 | 0% | 0 | 0% | 0 | 0% | |
NaR | 32,741 | 53% | 9648 | 80% | 375 | 64% | 42 | 58% | |
Seismic hazard | Z1 | 8385 | 14% | 0 | 0% | 0 | 0% | 0 | 0% |
Z2 | 27,247 | 44% | 8729 | 72% | 290 | 49.5% | 59.5 | 81% | |
Z3 | 25,803 | 42% | 3350 | 28% | 295 | 50.5% | 13.5 | 19% | |
Z4 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | |
MIV | 12 | 20.5 | 0.03% | 0 | 0% | 0 | 0% | 0 | 0% |
11 | 175.5 | 0.27% | 41 | 0.3% | 4 | 1% | 1.1 | 1.5% | |
10 | 204 | 0.3% | 36 | 0.3% | 10 | 2% | 1 | 1.5% | |
9 | 955 | 2% | 50 | 0.4% | 1 | 0.1% | 0.002 | 0% | |
8 | 4963 | 8% | 789 | 6.5% | 71 | 12% | 19.5 | 27% | |
7 | 8872 | 14.4% | 856 | 7% | 106 | 18% | 10.5 | 14% | |
6 | 14,037 | 23% | 729 | 6% | 20 | 3.4% | 4.5 | 6% | |
5 | 21,036 | 34% | 7797 | 64.5% | 213 | 36.5% | 33 | 45% | |
4 | 11,172 | 18% | 1782 | 15% | 160 | 27% | 3.7 | 5% | |
3 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | |
MIC (MIV range) | Very High (10 ÷ 12) | 400 | 0.6% | 77 | 1% | 14 | 2% | 2 | 3% |
High (7 ÷ 9) | 14,790 | 24.4% | 1695 | 14% | 178 | 31% | 30 | 41% | |
Moderate (4 ÷ 6) | 46,245 | 75% | 10,308 | 85% | 393 | 67% | 41 | 56% | |
Low (3) | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappucci, S.; Pollino, M.; Farrace, M.G.; Della Morte, L.; Baiocchi, V. Infrastructure Impact Assessment through Multi-Hazard Analysis at Different Scales: The 26 November 2022 Flood Event on the Island of Ischia and Debris Management. Land 2024, 13, 500. https://doi.org/10.3390/land13040500
Cappucci S, Pollino M, Farrace MG, Della Morte L, Baiocchi V. Infrastructure Impact Assessment through Multi-Hazard Analysis at Different Scales: The 26 November 2022 Flood Event on the Island of Ischia and Debris Management. Land. 2024; 13(4):500. https://doi.org/10.3390/land13040500
Chicago/Turabian StyleCappucci, Sergio, Maurizio Pollino, Maria Giuseppina Farrace, Lorenzo Della Morte, and Valerio Baiocchi. 2024. "Infrastructure Impact Assessment through Multi-Hazard Analysis at Different Scales: The 26 November 2022 Flood Event on the Island of Ischia and Debris Management" Land 13, no. 4: 500. https://doi.org/10.3390/land13040500
APA StyleCappucci, S., Pollino, M., Farrace, M. G., Della Morte, L., & Baiocchi, V. (2024). Infrastructure Impact Assessment through Multi-Hazard Analysis at Different Scales: The 26 November 2022 Flood Event on the Island of Ischia and Debris Management. Land, 13(4), 500. https://doi.org/10.3390/land13040500