Characteristics Analysis and Prediction of Land Use Evolution in the Source Region of the Yangtze River and Yellow River Based on Improved FLUS Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Prediction of Land Use Scale in Different Periods in the Future
2.3.2. Different Simulation Scenario Settings
2.3.3. FLUS Model Mechanism
2.3.4. Gravity Center Migration
2.3.5. Landscape Pattern
3. Results
3.1. Improved Model Accuracy Validation
3.2. Temporal and Spatial Evolution of Historical Land Use
3.2.1. Historical Land Use Composition and Scale
3.2.2. Historical Land Use Pattern
- Spatial pattern
- 2.
- Gravity center migration
- 3.
- Landscape pattern
3.3. Temporal and Spatial Evolution of the Future Land Use
3.3.1. Future Land Use Composition and Scale
3.3.2. Future Land Use Pattern
- Spatial pattern
- 2.
- Gravity center migration
- 3.
- Landscape pattern
4. Discussion
4.1. Rationality Analysis of the Improved Model
4.2. Analysis of Land Use Change Characteristics
4.3. Analysis of the Impact of Different Scenarios on Land Use
4.4. Limitations of the Study
5. Conclusions
- (1)
- Considering the characteristics of soil and precipitation forms in the alpine plateau area, the FLUS model is improved by incorporating frozen soil distribution data and snowfall data. Through verification and application, it is proved that the improved FLUS is suitable for the prediction of land use in the alpine plateau area.
- (2)
- The difference in land use scale change between 2000 and 2020 and 2020 and 2060 is mainly reflected in the decrease to increase in high-coverage grassland, and the opposite is true for moderate- and low-coverage grassland. This indicates that the conditions of warming and water increase in the future and the advancement of engineering construction will improve the quality of grassland. In addition, the snow line of the SRYAYE is on the rise; by 2060, the glacier will retreat but not disappear, and the composition of land use will remain unchanged.
- (3)
- The future spatial pattern as a whole remains largely consistent with the current situation. Localized changes are notable in the expansion of waters in the west, resulting in obvious braided river channels; the spread of high-coverage grassland in the southeastern Zoige region is distinctive, and the urban land expands within the SRYE. This shows that climate change and human activities are the influencing factors driving land use change.
- (4)
- The degree of fragmentation in the SRYAYE is continually weakening, the degree of influence of human activities on the landscape pattern will be reduced in the future, and the dominance and continuity of grassland, as the most important type of landscape, is constantly being strengthened. The ecological environment of the source area is gradually improving. The results of the study will aid in the future planning of land resources and provide scientific support for the construction of ecological civilization in SRYAYE.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lilburne, L.; Eger, A.; Mudge, P.; Ausseil, A.-G.; Stevenson, B.; Herzig, A.; Beare, M. The Land Resource Circle: Supporting Land-use Decision Making With an Ecosystem-service-based Framework of Soil Functions. Geoderma 2020, 363, 113134–113147. [Google Scholar] [CrossRef]
- Zhang, Q.; Yue, D.; Fang, M.; Yu, Q.; Huang, Y.; Su, K.; Ma, H.; Wang, Y. Study on Sustainability of Land Resources in Dengkou County Based on Emergy Analysis. J. Clean. Prod. 2018, 171, 580–591. [Google Scholar] [CrossRef]
- Chen, H.X.; Chen, C. Transfer Analysis of Land-use Type Gravity Center Based on Landsat data—A case Study of Zhoushan, China. In Proceedings of the 3rd International Forum on Geoscience and Geodesy (IFGG), Electr Network, Shenyang, China, 13–15 November 2020. [Google Scholar]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global Land Use Changes Are Four Times Greater than Previously Estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Cao, M.; Zhu, Y.H.; Quan, J.L.; Zhou, S.; Lue, G.; Chen, M.; Huang, M.X. Spatial Sequential Modeling and Predication of Global Land Use and Land Cover Changes by Integrating a Global Change Assessment Model and Cellular Automata. Earth Future 2019, 7, 1102–1116. [Google Scholar] [CrossRef]
- Hou, Y.; Zhao, W.; Liu, Y.; Yang, S.; Hu, X.; Cherubini, F. Relationships of Multiple Landscape Services and Their Influencing Factors on the Qinghai–Tibet Plateau. Landsc. Ecol. 2020, 36, 1987–2005. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Chen, W.; Li, J.; Zhu, H.; Hu, X.; Zhou, H.; Sun, H. Effects of degradation severity on the physical, chemical and mechanical properties of topsoil in alpine meadow on the Qinghai-Tibet Plateau, west China. Catena 2020, 187, 104370–104379. [Google Scholar] [CrossRef]
- Cao, H.; Gao, B.; Gong, T.; Wang, B. Analyzing Changes in Frozen Soil in the Source Region of the Yellow River Using the MODIS Land Surface Temperature Products. Remote Sens. 2021, 13, 180. [Google Scholar] [CrossRef]
- Liu, J.; Milne, R.; Cadotte, M.; Wu, Z.; Provan, J.; Zhu, G.; Gao, L.; Li, D. Protect Third Pole’s fragile ecosystem. Science 2018, 362, 1368. [Google Scholar] [CrossRef]
- Meng, X.; Chen, H.; Li, Z.; Zhao, l.; Zhou, B.; Lv, S.; Deng, M.; Liu, Y.; Li, G. Review of Climate Change and Its Environmental Influence on the Three-River Regions. Plateau Meteorol. 2020, 39, 1133–1143. [Google Scholar] [CrossRef]
- Liu, L.; Cao, W.; Shao, Q. Different Characteristics of Land Cover Changes in Source Regions of the Yangtze River and the Yellow River in the Past 30 Years. Sci. Geogr. Sin. 2017, 37, 311–320. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, S.; Zhao, L.; Li, Z.; Kang, S. Global warming weakening the inherent stability of glaciers and permafrost. Sci. Bull. 2019, 64, 245–253. [Google Scholar] [CrossRef]
- Jin, X.; Jin, H.; Luo, D.; Sheng, Y.; Wu, Q.; Wu, J.; Wang, W.; Huang, S.; Li, X.; Liang, S.; et al. Impacts of Permafrost Degradation on Hydrology and Vegetation in the Source Area of the Yellow River on Northeastern Qinghai-Tibet Plateau, Southwest China. Front. Earth Sci. 2022, 10, 845824. [Google Scholar] [CrossRef]
- Wei, Y.Q.; Lu, H.Y.; Wang, J.N.; Wang, X.F.; Sun, J. Dual Influence of Climate Change and Anthropogenic Activities on the Spatiotemporal Vegetation Dynamics Over the Qinghai-Tibetan Plateau From 1981 to 2015. Earth Future 2022, 10, 23. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Gao, Y.; Wu, L.; Ding, Y.; Bao, C. Responses of Vegetation Changes to Climatic Variations in Hulun Buir Sandy Grassland in the Past 15 Years. Acta Agrestia Sin. 2018, 26, 62–69. [Google Scholar] [CrossRef]
- Yang, A.; Zhang, H.; Yang, X.; Zhang, X. Quantitative analysis of the impact of climate change and human activities on vegetation NPP in the Qilian Mountain. Hum. Ecol. Risk Assess. Int. J. 2022, 29, 202–221. [Google Scholar] [CrossRef]
- Du, X.; Zhao, X.; Liang, S.; Zhao, J.; Xu, P.; Wu, D. Quantitatively Assessing and Attributing Land Use and Land Cover Changes on China’s Loess Plateau. Remote Sens. 2020, 12, 353. [Google Scholar] [CrossRef]
- Singh, V.G.; Singh, S.K.; Kumar, N.; Singh, R.P. Simulation of land use/land cover change at a basin scale using satellite data and markov chain model. Geocarto Int. 2022, 37, 11339–11364. [Google Scholar] [CrossRef]
- Abolhasani, S.; Taleai, M.; Karimi, M.; Rezaee Node, A. Simulating urban growth under planning policies through parcel-based cellular automata (ParCA) model. Int. J. Geogr. Inf. Sci. 2016, 30, 2276–2301. [Google Scholar] [CrossRef]
- Waiyasusri, K.; Yumuang, S.; Chotpantarat, S. Monitoring and predicting land use changes in the Huai Thap Salao Watershed area, Uthaithani Province, Thailand, using the CLUE-s model. Environ. Earth Sci. 2016, 75, 533. [Google Scholar] [CrossRef]
- Song, S.; Liang, X.; Chen, H.; Mao, Z. The Simulation of Cropland Abandonment Based on Multi-agent System and Land Transformation Model: A Case Study of Mizhi County, Shaanxi Province. J. Nat. Resour. 2018, 33, 515–525. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Degermenci, A.S. Spatio-temporal change analysis and prediction of land use and land cover changes using CA-ANN model. Environ. Monit. Assess. 2023, 195, 1229–1235. [Google Scholar] [CrossRef]
- Feng, H.; Lei, X.; Yu, G.; Changchun, Z. Spatio-temporal evolution and trend prediction of urban ecosystem service value based on CLUE-S and GM (1,1) compound model. Environ. Monit. Assess. 2023, 195, 1282–1305. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, M.; Zhu, D.; Altan, O. Integrating Remote Sensing and a Markov-FLUS Model to Simulate Future Land Use Changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [Google Scholar] [CrossRef]
- Jin, H.; Li, H.; Lee, J.; Sun, W. Simulation analysis of rural land use using rate of change driven by population and economic dynamics—A case study of Huangguashan village in Chongqing, China. Ecol. Model. 2023, 475, 110204–110214. [Google Scholar] [CrossRef]
- Hu, S.; Chen, L.; Li, L.; Zhang, T.; Yuan, L.; Cheng, L.; Wang, J.; Wen, M. Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China. Int. J. Environ. Res. Public Health 2020, 17, 4228. [Google Scholar] [CrossRef]
- Chen, X.; He, X.; Wang, S. Simulated Validation and Prediction of Land Use under Multiple Scenarios in Daxing District, Beijing, China, Based on GeoSOS-FLUS Model. Sustainability 2022, 14, 11428. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, S.; Li, X. Multi-Scenario Simulation Analysis of Land Use and Carbon Storage Changes in Changchun City Based on FLUS and InVEST Model. Land 2022, 11, 647. [Google Scholar] [CrossRef]
- Li, L.; Hu, R.; Li, S. Simulations of the low-carbon land use scenarios of Beijing based on the improved FLUS model. Remote Sens. Nat. Resour. 2023, 35, 81. [Google Scholar] [CrossRef]
- Zhang, J.; Mei, Z.; Lv, J.; Chen, J. Simulating multiple land use scenarios based on the FLUS model considering spatial autocorrelation. J. Geo-Inf. Sci. 2020, 32, 531–542. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Liu, L.S.; Wang, Z.F.; Bai, W.; Ding, M.; Wang, X.; Yan, J.; Xu, E.; Wu, X.; Zhang, B.; et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chin. Sci. Bull. 2019, 67, 2865–2875. [Google Scholar] [CrossRef]
- Li, W.W.; Weng, B.S.; Yan, D.H.; Lai, Y.Q.; Li, M.; Wang, H. Underestimated permafrost degradation: Improving the TTOP model based on soil thermal conductivity. Sci. Total Environ. 2023, 854, 158564–158581. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Deng, G.; Wang, X. 30 km Gridded dataset of Snowline altitude in High Mountain Asia (2001–2019). 2020. Available online: https://poles.tpdc.ac.cn/en/data/0cb6baaf-d43a-4d6b-84db-a7c5aa1c8e73/ (accessed on 14 June 2023).
- Tang, Z.G.; Wang, X.R.; Deng, G.; Wang, X.; Jiang, Z.L.; Sang, G.Q. Spatiotemporal variation of snowline altitude at the end of melting season across High Mountain Asia, using MODIS snow cover product. Adv. Space Res. 2020, 66, 2629–2645. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Z.; Wang, J.; Deng, G.; Wang, X.; Wei, J. Analysis of influencing factors of spatial difference of snowline altitude at the end of ablation season in the High Mountain Asia. J. Glaciol. Geocryol. 2019, 41. [Google Scholar] [CrossRef]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Pol. 2020, 91, 15. [Google Scholar] [CrossRef]
- Wu, X.D.; Naegeli, K.; Premier, V.; Marin, C.; Ma, D.J.; Wang, J.P.; Wunderle, S. Evaluation of snow extent time series derived from Advanced Very High Resolution Radiometer global area coverage data (1982–2018) in the Hindu Kush Himalayas. Cryosphere 2021, 15, 4261–4279. [Google Scholar] [CrossRef]
- Liu, M.; Wang, B.; Zhong, J. Population-Economic-Grain Regional Difference and Spatial Pattern of Qinghai Province in the Past 30 Years. Northwest Popul. J. 2021, 42, 113–124. [Google Scholar] [CrossRef]
- Li, Y.; Liu, D.; Li, T.; Fu, Q.; Liu, D.; Hou, R.; Meng, F.; Li, M.; Li, Q. Responses of spring soil moisture of different land use types to snow cover in Northeast China under climate change background. J. Hydrol. 2022, 608, 127610–127625. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Liu, X.; Wang, X.; Fu, R.; Liu, P. Physics of the control of the Tibetan Plateau on regional energetic processes and global climate. Trans. Atmos. Sci. 2020, 43, 181–192. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, D.; Zheng, R. Variation characteristics of snow cover and frozen soil and their relationships with vegetation inthe Tibetan Plateau from 1971 to 2016. Trans. Atmos. Sci. 2020, 43, 481–494. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Cao, G.; Ma, Z.; Li, Y.; Zhang, F.; Zhao, X.; Zhao, X.; Jiang, L.; Sanders, N.; et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 2020, 23, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tang, Z.; Xing, D.; Hou, J. A dataset of MODIS gap-filled fractional snow cover in the source area of Yellow River during 2000–2021. China Sci. Data 2022, 7. [Google Scholar] [CrossRef]
- Guan, X.; Liu, C.; Bao, Z.; Jin, J.; Wang, G. Spatial-temporal variability of the snow over the Yellow River source region and its influencing climate factors. China Environ. Sci. 2021, 41, 1045–1054. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, T.; Guo, H.; Liu, D.; Zhao, Y.T.; Zhang, T.T.; Liu, Q.; Piao, S.L. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob. Chang. Biol. 2018, 24, 1651–1662. [Google Scholar] [CrossRef]
- Sheng, Y.; Ma, S.; Cao, W.; Wu, J.C. Spatiotemporal changes of permafrost in the Headwater Area of the Yellow River under a changing climate. Land Degrad. Dev. 2020, 31, 133–152. [Google Scholar] [CrossRef]
- Wei, C.; Yu, S.; Jichun, W.; Yaling, C.; Erxing, P.; Leonid, G. Soil hydrological process and migration mode influenced by the freeze-thaw process in the activity layer of permafrost regions in Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2021, 184, 103236–103250. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, J.; Fang, Y.; Wang, S. Adaptation research of cryosphere change. J. Glaciol. Geocryol. 2020, 42, 11–22. [Google Scholar] [CrossRef]
- Hou, J.; Chen, J.; Zhang, K.; Zhou, G.; Long, H.; Han, X. Temporal and Spatial Variation Characteristics of Carbon Storage in the Source Region of the Yellow River Based on InVEST and GeoSoS-FLUS Models and Its Response to Different Future Scenarios. Environ. Sci. 2022, 43, 5253–5262. [Google Scholar] [CrossRef]
- Shao, Z.; Chen, C.; Liu, Y.; Cao, J.; Liao, G.; Lin, Z. Impact of Land Use Change on Carbon Storage Based on FLUS-InVEST Model: A Case Study of Chengdu–Chongqing Urban Agglomeration, China. Land 2023, 12, 1531. [Google Scholar] [CrossRef]
- Jin, Y.; Ding, J.; Chen, Y.; Zhang, C.; Hou, X.; Zhang, Q.; Liu, Q. Urban Land Expansion Simulation Considering the Increasing versus Decreasing Balance Policy: A Case Study in Fenghua, China. Land 2023, 12, 2099. [Google Scholar] [CrossRef]
- Lu, Z.; Song, Q.; Zhao, J. Evolution of Landscape Ecological Risk and Identification of Critical Areas in the Yellow River Source Area Based on LUCC. Sustainability 2023, 15, 9749. [Google Scholar] [CrossRef]
- Chao, N.; Wang, Z.; Hwang, C.; Jin, T.; Cheng, Y.-S. Decline of Geladandong Glacier Elevation in Yangtze River’s Source Region: Detection by ICESat and Assessment by Hydroclimatic Data. Remote Sens. 2017, 9, 75. [Google Scholar] [CrossRef]
- Huang, X.; Meng, Q.; Liu, H. Remote sensing monitoring of Anyemaqen glacier area based on GEE and preliminary analysis of potential hazards. J. Qinghai Univ. 2023, 41, 1–7. [Google Scholar] [CrossRef]
- Li, C.; Jing, Z.; He, X. Remote sensing monitoring of glacier variation in Geladandong source regions of the Yangtze River from1986 to 2015. J. Glaciol. Geocryol. 2021, 43, 405–416. [Google Scholar] [CrossRef]
- Ke, L.; Ding, X.; Li, W.; Qiu, B. Remote Sensing of Glacier Change in the Central Qinghai-Tibet Plateau and the Relationship with Changing Climate. Remote Sens. 2017, 9, 114. [Google Scholar] [CrossRef]
- Li, K.; Cao, B.; Guan, W.; Pan, B.; Shangguan, D. Reconstructed annual glacier surface mass balance in the anyemaqen Mountains, Yellow River source, based on snow line altitude. J. Mt. Sci. 2022, 19, 1070–1081. [Google Scholar] [CrossRef]
- He, Q.; Kuang, X.; Liang, S.; Jiao, J.; Feng, Y. Glacial meltwater variation in Dongkemadi River Basin of Yangtze River source from1966 to 2015 and its influence on runoff. Yangtze River 2020, 51, 77–85+130. [Google Scholar] [CrossRef]
- Gabbi, J.; Carenzo, M.; Pellicciotti, F.; Bauder, A.; Funk, M. A comparison of empirical and physically based glacier surface melt models for long-term simulations of glacier response. J. Glaciol. 2017, 60, 1140–1154. [Google Scholar] [CrossRef]
- Six, D.; Vincent, C. Sensitivity of mass balance and equilibrium-line altitude to climate change in the French Alps. J. Glaciol. 2017, 60, 867–878. [Google Scholar] [CrossRef]
- Han, S.; Liu, H.; Huang, X. Glacier variations in Geladandong and its impact on the runoff in recent 30 years. J. Qinghai Univ. 2020, 39, 9–17. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.; Wang, H.; Ding, X.; Xu, H. Estimation of glacier mass loss and its contribution to river runoff in the source region of the Yangtze River during 2000–2018. J. Hydrol. 2020, 589. [Google Scholar] [CrossRef]
- Gao, M. Characteristics of Lake Changes in the Source Region of the Yangtze River Based on MODIS Data. Master’s Thesis, China University of Geosciences, Beijing, China, 2021. [Google Scholar]
- Liu, W.; Liu, H.; Li, Q.; Xie, C.; Zhang, Z.; Zhou, G.; Zhang, Q.; Zhao, Q. Extensive responses of lake dynamics to climate change on northeastern Tibetan Plateau. Front. Earth Sci. 2023, 10, 1007384–1007399. [Google Scholar] [CrossRef]
- Qi, C.; Ren, Y.; Peng, H.; Wei, J.; Wang, Y.; Li, Q. Extracting the Dynamic Change of Lake Area in the Three-River Headwaters Region Based on Google Earth Engine. J. Chang. River Sci. Res. Inst. 2023, 40, 179–185+190. [Google Scholar] [CrossRef]
- Li, Z.; Lu, H.; Gao, P.; You, Y.; Hu, X. Characterizing braided rivers in two nested watersheds in the Source Region of the Yangtze River on the Qinghai-Tibet Plateau. Geomorphology 2020, 351, 106945–106956. [Google Scholar] [CrossRef]
- Chen, X.; Sun, M.; Lv, Y.; Hu, J.; Yang, L.; Zhou, Q. Spatial-temporal Variability Characteristics and Its Driving Factors of Land Use in Zoige Plateau on the Eastern Edge of Qinghai-Tibetan Plateau, China. J. Ecol. Rural. Environ. 2023, 39, 306–315. [Google Scholar] [CrossRef]
- Fu, J. Land use function change and its driving force of the “production-living-ecological” space in Fenhe River Basin from1980 to 2020. Chin. J. Appl. Ecol. 2023, 34, 1901–1911. [Google Scholar] [CrossRef]
- Xue, L.; Sun, X.; Zhao, W. The impact of Climate Change and Economic Agglomeration on Agricultural Sustainability: A Case Study of Yunnan Province. Urban Environ. Stud. 2023, 3, 98–118. [Google Scholar]
- Hou, Q.; Yang, H.; Wu, J.; Yu, X. Carbon budget response to climate change varies with grassland type in Qilian Mountains, China. Glob. Ecol. Conserv. 2023, 47, e02670–e02686. [Google Scholar] [CrossRef]
- Lei, S.; Liao, L.; Wang, J.; Zhang, L.; Ye, Z.; Liu, G.; Zhang, C. The diversity-Godron stability relationship of alpine grassland and its environmental drivers. Acta Prataculturae Sin. 2023, 32, 1–12. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Zhang, J.; Wang, K.; Wu, X.; Xu, L. Simulated glacier responses to temperature and precipitation trends in a snowmelt-dominated river basin. Ecol. Indic. 2019, 106, 105492–105504. [Google Scholar] [CrossRef]
- Li, J.; Xu, X. Glacier Change and Its Response to Climate Change in Western China. Land 2023, 12, 623. [Google Scholar] [CrossRef]
- Zhou, Z.; Han, N.; Liu, J.; Yan, Z.; Xu, C.; Cai, J.; Shang, Y.; Zhu, J. Glacier variations and their response to climate change in an arid inland river basin of Northwest China. J. Arid. Land 2020, 12, 357–373. [Google Scholar] [CrossRef]
- Hausfather, Z.; Marvel, K.; Schmidt, G.A.; Nielsen-Gammon, J.W.; Zelinka, M. Climate simulations: Recognize the ‘hot model’ problem. Nature 2022, 605, 26–29. [Google Scholar] [CrossRef]
- Chen, Z.M.; Zhou, T.J.; Chen, X.L.; Zhang, W.X.; Zhang, L.X.; Wu, M.N.; Zou, L.W. Observationally constrained projection of Afro-Asian monsoon precipitation. Nat. Commun. 2022, 13, 12. [Google Scholar] [CrossRef]
Type | Data | Description | Source |
---|---|---|---|
Land Use Data | Land use and land cover change | Eight data sets of 2000, 2005, 2010, 2015 and 2020, with a spatial resolution of 30 m | CAS (https://www.resdc.cn/, accessed on 14 June 2023) |
Topographic Data | DEM | Digital elevation model with 30 m spatial resolution | NASADEM (https://www.earthdata.nasa.gov/esds/competitive-programs/measures/nasadem, accessed on 14 June 2023) |
Meteorological Data | Historical Rainfall Data | The spatial interpolation of 800 meteorological stations in China was carried out to obtain a rainfall dataset from 2000 to 2020 with a spatial resolution of 500 m. | CMA (http://data.cma.cn/, accessed on 14 June 2023) |
Future Precipitation Data | Monthly precipitation data for 2020–2060 under four CMIP6 climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) with a spatial resolution of 0.5° × 0.5°. | WCRP CMIP6 (cmip6–Home|ESGF-CoG (llnl.gov, accessed on 14 June 2023)) | |
Historical Temperature Data | The spatial interpolation of 800 meteorological stations in China was carried out to obtain a temperature dataset from 2000 to 2020 with a spatial resolution of 500 m. | CMA (http://data.cma.cn/, accessed on 14 June 2023) | |
Future Temperature Data | Monthly temperature data for 2020–2060 under four CMIP6 climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) with a spatial resolution of 0.5° × 0.5°. | WCRP CMIP6 cmip6–Home|ESGF-CoG (llnl.gov, accessed on 14 June 2023) | |
Historical Snowfall Data | Extracted from the FLDAS datasets of 2000, 2005, 2010, 2015, and 2020, with a spatial resolution of 0.1° × 0.1°. | FLDAS https://disc.gsfc.nasa.gov/, accessed on 14 June 2023 | |
Permafrost Distribution Data | Seasonal Frozen Soil Distribution Data | Six periods of shapefile data for seasonal frozen soil distribution in 2010, 2012, 2014, 2016, 2018 and 2020. | Literature [33] https://doi.org/10.1016/j.scitotenv.2022.158564, accessed on 14 June 2023 |
Permafrost Distribution Data | Six periods of shapefile data for permafrost distribution in 2010, 2012, 2014, 2016, 2018 and 2020. | ||
Socio-Economic Data | GDP | Five periods of raster data for GDP in 2000, 2005, 2010, 2015 and 2020, with a spatial resolution of 1 km. | CAS (https://www.resdc.cn/, accessed on 14 June 2023) |
POP | Five periods of raster data for POP in 2000, 2005, 2010, 2015 and 2020, with a spatial resolution of 1 km. | ||
Snowline Height Data | 30 km Gridded Dataset of Snowline Altitude in High Mountain Asia (2001–2019) | Snowline height dataset of 30 km grid in high mountainous areas of Asia, 2001–2019, data format shapefile, data attribute table containing snowline heights for each year from 2001 to 2019, with a value of 0 indicating no snowline heights [34,35,36] | A Big Earth Data Platform for Three Poles https://poles.tpdc.ac.cn/zh-hans/data/0cb6baaf-d43a-4d6b-84db-a7c5aa1c8e73/, accessed on 14 June 2023 |
Year | Landscape Pattern Index | |||||||
---|---|---|---|---|---|---|---|---|
NP | LPI | ED | AREA_MN | FRAC_AM | CONTAG | SHDI | SHEI | |
2000 | 41,332 | 18.78 | 13.60 | 639.69 | 1.25 | 40.37 | 1.55 | 0.71 |
2005 | 41,278 | 18.76 | 13.57 | 640.52 | 1.25 | 40.35 | 1.55 | 0.71 |
2010 | 39,630 | 21.70 | 13.28 | 667.16 | 1.26 | 41.76 | 1.52 | 0.69 |
2015 | 39,568 | 22.42 | 13.27 | 668.21 | 1.26 | 41.76 | 1.52 | 0.69 |
2020 | 39,861 | 27.74 | 13.29 | 663.23 | 1.26 | 41.62 | 1.53 | 0.69 |
Year | Landscape Pattern Index | |||||||
---|---|---|---|---|---|---|---|---|
NP | LPI | ED | AREA_MN | FRAC_AM | CONTAG | SHDI | SHEI | |
SSP1-2.6 | ||||||||
2020 | 39,861 | 27.74 | 13.29 | 663.23 | 1.26 | 41.62 | 1.53 | 0.69 |
2030 | 39,632 | 27.49 | 13.18 | 667.07 | 1.26 | 41.59 | 1.53 | 0.70 |
2035 | 39,086 | 29.10 | 13.01 | 676.39 | 1.26 | 41.73 | 1.54 | 0.70 |
2060 | 39,402 | 28.20 | 13.12 | 670.96 | 1.26 | 41.26 | 1.55 | 0.70 |
SSP2-4.5 | ||||||||
2020 | 39,861 | 27.74 | 13.29 | 663.23 | 1.26 | 41.62 | 1.53 | 0.69 |
2030 | 39,769 | 27.66 | 13.18 | 664.77 | 1.26 | 41.60 | 1.53 | 0.70 |
2035 | 39,549 | 27.34 | 13.12 | 668.47 | 1.26 | 41.63 | 1.53 | 0.70 |
2060 | 39,086 | 21.44 | 13.15 | 676.39 | 1.25 | 41.21 | 1.55 | 0.70 |
SSP3-7.0 | ||||||||
2020 | 39,861 | 27.74 | 13.29 | 663.23 | 1.26 | 41.62 | 1.53 | 0.69 |
2030 | 39,768 | 27.52 | 13.14 | 664.79 | 1.26 | 41.71 | 1.53 | 0.70 |
2035 | 39,574 | 21.57 | 13.15 | 668.04 | 1.25 | 41.64 | 1.53 | 0.70 |
2060 | 39,137 | 20.24 | 13.14 | 675.50 | 1.25 | 41.22 | 1.55 | 0.70 |
SSP5-8.5 | ||||||||
2020 | 39,861 | 27.74 | 13.29 | 663.23 | 1.26 | 41.62 | 1.53 | 0.69 |
2030 | 39,503 | 27.86 | 13.13 | 669.25 | 1.26 | 41.59 | 1.53 | 0.70 |
2035 | 39,738 | 27.68 | 13.15 | 665.29 | 1.26 | 41.58 | 1.53 | 0.70 |
2060 | 39,205 | 21.03 | 13.16 | 674.33 | 1.25 | 41.23 | 1.55 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Qin, T.; Luan, Q.; Feng, J.; Zhang, X.; Yang, Y.; Xu, S.; Lu, J. Characteristics Analysis and Prediction of Land Use Evolution in the Source Region of the Yangtze River and Yellow River Based on Improved FLUS Model. Land 2024, 13, 393. https://doi.org/10.3390/land13030393
Gao H, Qin T, Luan Q, Feng J, Zhang X, Yang Y, Xu S, Lu J. Characteristics Analysis and Prediction of Land Use Evolution in the Source Region of the Yangtze River and Yellow River Based on Improved FLUS Model. Land. 2024; 13(3):393. https://doi.org/10.3390/land13030393
Chicago/Turabian StyleGao, Haoyue, Tianling Qin, Qinghua Luan, Jianming Feng, Xiuyan Zhang, Yuhui Yang, Shu Xu, and Jie Lu. 2024. "Characteristics Analysis and Prediction of Land Use Evolution in the Source Region of the Yangtze River and Yellow River Based on Improved FLUS Model" Land 13, no. 3: 393. https://doi.org/10.3390/land13030393
APA StyleGao, H., Qin, T., Luan, Q., Feng, J., Zhang, X., Yang, Y., Xu, S., & Lu, J. (2024). Characteristics Analysis and Prediction of Land Use Evolution in the Source Region of the Yangtze River and Yellow River Based on Improved FLUS Model. Land, 13(3), 393. https://doi.org/10.3390/land13030393