Spatiotemporal Evolution and Prediction of Land Use and Carbon Stock in Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Natural Geographic and Socio-Economic
2.2.2. Estimated Carbon Stocks and Their Changes
2.2.3. Others
2.3. Methods
2.3.1. Logistic Regression Model
2.3.2. CA-Markov Model
2.3.3. Scenario-Based Land Use Prediction
2.3.4. Invest Model
3. Results
3.1. Characterization of LUCC and Analysis of Driving Forces
- (1)
- Cropland
- (2)
- Forest
- (3)
- Grassland
- (4)
- Water body
- (5)
- Built-up land
- (6)
- Unutilized land
3.2. Land Use Prediction Based on the Logistic-CA-Markov Model
3.3. Analysis of Shanghai’s Carbon Sequestration Capacity
3.3.1. Status of Carbon Sequestration in Shanghai
3.3.2. Carbon Stock Capacity Predictions for Shanghai under Various Scenarios
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Houghton, R.; Hackler, J. Emissions of carbon from forestry and land-use change in tropical Asia. Glob. Chang. Biol. 1999, 5, 481–492. [Google Scholar] [CrossRef]
- Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B Chem. Phys. Meteorol. 2003, 55, 378–390. [Google Scholar]
- Zalles, V.; Hansen, M.C.; Potapov, P.V.; Parker, D.; Stehman, S.V.; Pickens, A.H.; Parente, L.L.; Ferreira, L.G.; Song, X.-P.; Hernandez-Serna, A.; et al. Rapid expansion of human impact on natural land in South America since 1985. Sci. Adv. 2021, 7, eabg1620. [Google Scholar] [CrossRef] [PubMed]
- Mansori, M.; Badehian, Z.; Ghobadi, M.; Maleknia, R. Assessing the environmental destruction in forest ecosystems using landscape metrics and spatial analysis. Sci. Rep. 2023, 13, 15165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Schurgers, G.; Peñuelas, J.; Fensholt, R.; Yang, H.; Tang, J.; Tong, X.; Ciais, P.; Brandt, M. Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation. Nat. Commun. 2023, 14, 965. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, K.; Jackson, R.B.; Vindušková, O.; Abramoff, R.Z.; Ahlström, A.; Feng, W.; Harden, J.W.; Pellegrini, A.F.A.; Polley, H.W.; Soong, J.L.; et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 2022, 13, 3797. [Google Scholar] [CrossRef]
- Meersmans, J.; Arrouays, D.; Van Rompaey, A.J.; Pagé, C.; De Baets, S.; Quine, T.A. Future C loss in mid-latitude mineral soils: Climate change exceeds land use mitigation potential in France. Sci. Rep. 2016, 6, 35798. [Google Scholar] [CrossRef]
- Brown, D.G.; Verburg, P.H.; Pontius, R.G., Jr.; Lange, M.D. Opportunities to improve impact, integration, and evaluation of land change models. Curr. Opin. Environ. Sustain. 2013, 5, 452–457. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Chu, H.-J.; Wu, C.-F.; Verburg, P.H. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling–a case study. Int. J. Geogr. Inf. Sci. 2011, 25, 65–87. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Brown, D.G.; Shellito, B.A.; Manik, G.A. Using neural networks and GIS to forecast land use changes: A land transformation model. Comput. Environ. Urban Syst. 2002, 26, 553–575. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Chaoyue, W.; Xianhua, G.; Li, G.; Lifang, B.; Lilin, X.; Chunbo, W.; Tingzhen, L. Land Use Change and Its Impact on Carbon Storage in Northwest China Based on FLUS-Invest: A Case Study of Hu-Bao-Er-Yu Urban Agglomeration. Ecol. Environ. 2022, 31, 1667. [Google Scholar]
- Liao, Z.; Zhang, L. Spatio-temporal evolution and future simulation of urban agglomeration expansion in the Guangdong–Hongkong–Macau Greater Bay Area. Humanit. Soc. Sci. Commun. 2023, 10, 468. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, X.; Liu, M.; Liu, D.; Ai, G.; Chen, X. Spatio-temporal evolution characteristics analysis and optimization prediction of urban green infrastructure: A case study of Beijing, China. Sci. Rep. 2022, 12, 10702. [Google Scholar] [CrossRef] [PubMed]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’aari, Z.H. Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an Analytical Hierarchy Process and Frequency Ratio. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 65–78. [Google Scholar] [CrossRef]
- Etemadi, H.; Smoak, J.M.; Karami, J. Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery and CA–Markov algorithms to monitor and predict future change. Environ. Earth Sci. 2018, 77, 208. [Google Scholar] [CrossRef]
- Zhou, D.; Lin, Z.; Liu, L. Regional land salinization assessment and simulation through cellular automaton-Markov modeling and spatial pattern analysis. Sci. Total Environ. 2012, 439, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Wang, C.; Tan, Y.; Yang, J.; Duan, L.; Fang, Y.; Li, W.; Shu, Y.; Liu, M. Spatio-temporal evolution and driving factors of carbon storage in the Western Sichuan Plateau. Sci. Rep. 2022, 12, 8114. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- He, X.; Tian, J.; Zhang, Y.; Zhao, Z.; Cai, Z.; Wang, Y. Attribution and driving force of nitrogen losses from the Taihu Lake Basin by the InVEST and GeoDetector models. Sci. Rep. 2023, 13, 7440. [Google Scholar] [CrossRef]
- Nelson, E.; Sander, H.; Hawthorne, P.; Conte, M.; Ennaanay, D.; Wolny, S.; Manson, S.; Polasky, S. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 2010, 5, e14327. [Google Scholar] [CrossRef]
- Liu, J.; Sleeter, B.M.; Zhu, Z.; Loveland, T.R.; Sohl, T.; Howard, S.M.; Key, C.H.; Hawbaker, T.; Liu, S.; Reed, B.; et al. Critical land change information enhances the understanding of carbon balance in the United States. Glob. Chang. Biol. 2020, 26, 3920–3929. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Bell, V.; Davies, H.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The impact of projected increases in urbanization on ecosystem services. Proc. R. Soc. B Biol. Sci. 2011, 278, 3201–3208. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, N.; Wang, C.; Wu, F.; Chu, X. Effects of land use and land cover change on carbon sequestration and adaptive management in Shanghai, China. Phys. Chem. Earth Parts A/B/C 2020, 120, 102948. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Gu, X. Reduction of industrial land beyond Urban Development Boundary in Shanghai: Differences in policy responses and impact on towns and villages. Land Use Policy 2019, 82, 620–630. [Google Scholar] [CrossRef]
- Jokar Arsanjani, J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y. Research of Carbon Storage Changes in Terrestrial Ecosystems Based on InVEST Model in the Yangtze River Delta Region. J. Nanjing Xiaozhuang Univ. 2020, 36, 82–90. [Google Scholar]
- Yang, Y.; Dai, E.; Fu, H. The Assessment Framework of Ecosystem Service Value Based on InVEST Model. J. Cap. Norm. Univ. 2012, 33, 41–47. [Google Scholar]
- Sun, F.; Fang, F.; Hong, W.; Luo, H.; Yu, J.; Fang, L.; Miao, Y. Evolution Analysis and Prediction of Carbon Storage in Anhui Province Based on PLUS and InVEST Model. J. Soil Water Conserv. 2023, 37, 151–158. [Google Scholar]
- Sun, X.; Xue, J.; Dong, L. Spatiotemporal Change and Prediction of Carbon Storage in Nanjing Ecosystem Based on PLUS Model and InVEST Model. J. Ecol. Rural Environ. 2023, 39, 41–51. [Google Scholar]
- Zhang, M.; Wang, M.; Zhang, X.; Yang, Y. Evaluation of Ecosystem Services in Hangzhou Based on InVEST Model. J. Spatio-Temporal Inf. 2021, 28, 57–64. [Google Scholar]
- Wang, D. Soil organic carbon storage based on land use change in Shanghai. Shanghai Land Resour. 2021, 42, 1–6. [Google Scholar]
- Li, H.; Lei, Y.; Zeng, W. Forest Carbon Storage in China Estimated Using Forestry Inventory Data. Sci. Silvae Sin. 2011, 47, 7–12. [Google Scholar]
- Sharp, R.; Tallis, H.; Ricketts, T.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; et al. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014; p. 306. [Google Scholar]
- Pontius, R.G., Jr.; Schneider, L.C. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 239–248. [Google Scholar] [CrossRef]
- Fu, F.; Deng, S.; Wu, D.; Liu, W.; Bai, Z. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustain. Cities Soc. 2022, 80, 103760. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Yang, Y.J. Deriving suitability factors for CA-Markov land use simulation model based on local historical data. J. Environ. Manag. 2018, 206, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Guan, D.; Zhao, Z.; Tan, J. Dynamic simulation of land use change based on logistic-CA-Markov and WLC-CA-Markov models: A case study in three gorges reservoir area of Chongqing, China. Environ. Sci. Pollut. Res. 2019, 26, 20669–20688. [Google Scholar] [CrossRef]
- Han, H.; Yang, C.; Song, J. Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability 2015, 7, 4260–4279. [Google Scholar] [CrossRef]
- Zhao, D.; Xiao, M.; Huang, C.; Liang, Y.; Yang, Z. Land use scenario simulation and ecosystem service management for different regional development models of the Beibu Gulf Area, China. Remote Sens. 2021, 13, 3161. [Google Scholar] [CrossRef]
- Department, T.E. Prospect of Experts: The Interpretation of Shanghai Master Plan 2017–2035. Shanghai Urban Plan. Rev. 2018, 2, 52–56. [Google Scholar]
- Ghafoor, G.Z.; Sharif, F.; Shahid, M.G.; Shahzad, L.; Rasheed, R.; Khan, A.U.H. Assessing the impact of land use land cover change on regulatory ecosystem services of subtropical scrub forest, Soan Valley Pakistan. Sci. Rep. 2022, 12, 10052. [Google Scholar] [CrossRef] [PubMed]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Guo, J.; Wang, H. Study on carbon emission reduction effect of institutional openness in China. Sci. Rep. 2023, 13, 254. [Google Scholar] [CrossRef] [PubMed]
- Nahlik, A.M.; Fennessy, M.S. Carbon storage in US wetlands. Nat. Commun. 2016, 7, 13835. [Google Scholar] [CrossRef]
Class Code | Land Use Type | Above-Ground Vegetation Carbon Density | Below-Ground Vegetation Carbon Density | Soil Carbon Density | Dead Organic Matter Carbon Density |
---|---|---|---|---|---|
1 | Cropland | 1.89 | 0.24 | 10.46 | 0 |
2 | Forest | 3.63 | 0.73 | 9.95 | 0 |
3 | Grassland | 1.74 | 2.09 | 3.57 | 0 |
4 | Water body | 0 | 0 | 0 | 0 |
5 | Built-up land | 1.62 | 0.32 | 9.15 | 0 |
6 | Unutilized land | 2.43 | 0.49 | 7.27 | 0 |
Class | Name | Description |
---|---|---|
Natural factors | Elevation (DEM) | Elevation values for each raster |
Slope | The angle between the tangent plane of each raster and the horizontal ground surface | |
Socio-economic factors | GDP | GDP for each raster |
Population (POP) | Population density for each raster | |
Distance factors | Distance from railroads (DRail) | Distance from the center of each raster to the nearest railroad |
Distance from highways (DH) | Distance from the center of each raster to the nearest highway | |
Distance from rivers (DRiver) | Distance from the center of each raster to the nearest river | |
Distance from the center of the district (DC) | Distance between the center of each raster and the center of the nearest district | |
Meteorological factors | Average annual precipitation (AAP) | Average annual precipitation values for each raster |
Average annual temperature (AAT) | Annual average temperature values for each raster |
Cropland | Forest | Grassland | Water Body | Built-Up Land | Unutilized Land | ||
---|---|---|---|---|---|---|---|
DEM | β | −0.01566 | −0.03503 | −0.22948 | −0.03348 | 0.02261 | −0.18229 |
exp(β) | 0.98446 | 0.96557 | 0.79494 | 0.96708 | 1.02287 | 0.83336 | |
Slope | β | −0.01255 | −0.06317 | −0.12235 | 0.02383 | 0.01307 | −0.08533 |
exp(β) | 0.98753 | 0.93878 | 0.88484 | 1.02412 | 1.01316 | 0.91821 | |
GDP | β | −0.00004 | \ | −0.00012 | −0.00006 | 0.00005 | 0.00006 |
exp(β) | 0.99996 | \ | 0.99988 | 0.99994 | 1.00005 | 1.00006 | |
POP | β | −0.00028 | −0.00005 | −0.00049 | 0.00003 | 0.00019 | −0.00053 |
exp(β) | 0.99972 | 0.99995 | 0.99951 | 1.00003 | 1.00019 | 0.99947 | |
DRail | β | −0.00007 | −0.00009 | 0.00009 | 0.00008 | 0.00006 | \ |
exp(β) | 0.99993 | 0.99991 | 1.00009 | 1.00008 | 1.00006 | \ | |
DH | β | 0.00004 | 0.00018 | \ | 0.00009 | −0.00010 | 0.00011 |
exp(β) | 1.00004 | 1.00083 | \ | 1.00009 | 0.99990 | 1.00011 | |
DRiver | β | 0.00002 | \ | \ | −0.00014 | 0.00001 | \ |
exp(β) | 1.00002 | \ | \ | 0.99986 | 1.00001 | \ | |
DC | β | −0.00114 | 0.00001 | −0.00024 | −0.00004 | 0.00004 | −0.00009 |
exp(β) | 0.99886 | 1.00001 | 0.99972 | 0.99996 | 1.00004 | 0.99991 | |
AAP | β | −0.00003 | −0.00224 | −0.00798 | −0.00068 | 0.00155 | 0.00287 |
exp(β) | 0.99997 | 0.99776 | 0.99205 | 0.99932 | 1.00155 | 1.00288 | |
AAT | β | −2.79226 | −2.63515 | −3.79080 | −0.71647 | 0.30537 | 0.10596 |
exp(β) | 0.06128 | 0.07171 | 0.02258 | 0.48847 | 1.35713 | 1.11178 |
Land Use Type | Cropland | Forest | Grassland | Water Body | Built-Up Land | Unutilized Land |
---|---|---|---|---|---|---|
AUC | 0.756 | 0.776 | 0.923 | 0.686 | 0.801 | 0.794 |
Cropland | Forest | Grassland | Water Body | Built-Up Land | Unutilized Land | ||
---|---|---|---|---|---|---|---|
2020 | Actual 2020 | 2967.72 | 6.80 | 11.58 | 142.24 | 2491.01 | 73.07 |
2025 | Scenario I | 2628.89 | 20.83 | 26.24 | 182.57 | 2716.43 | 117.44 |
Scenario II | 2789.61 | 30.89 | 31.92 | 182.79 | 2538.53 | 118.67 | |
Scenario I changes | −338.83 | 14.03 | 14.66 | 40.34 | 225.42 | 44.38 | |
Scenario II changes | −178.11 | 24.09 | 20.35 | 40.56 | 47.52 | 45.60 | |
Differences in scenario I and II | 160.71 | 10.06 | 5.69 | 0.22 | −177.90 | 1.22 | |
2030 | Scenario I | 2503.10 | 9.54 | 17.20 | 180.74 | 2854.26 | 126.45 |
Scenario II | 2574.39 | 40.66 | 50.34 | 180.85 | 2719.09 | 127.08 | |
Scenario I changes | −464.62 | 2.74 | 5.62 | 38.50 | 363.25 | 53.38 | |
Scenario II changes | −393.33 | 33.87 | 38.77 | 38.61 | 228.08 | 54.01 | |
Differences in scenario I and II | 71.29 | 31.13 | 33.14 | 0.11 | −135.18 | 0.63 |
Land Use Type | 2010 | 2015 | 2020 | 2010–2015 | 2015–2020 | 2010–2020 |
---|---|---|---|---|---|---|
Cropland | 4099.89 | 3894.04 | 3724.61 | −205.85 | −169.43 | −375.28 |
Forest | 11.14 | 11.77 | 10.76 | 0.64 | −1.01 | −0.37 |
Grassland | 7.95 | 8.92 | 10.20 | 0.97 | 1.28 | 2.25 |
Water body | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Built-up land | 2434.55 | 2615.33 | 2761.37 | 180.78 | 146.03 | 326.81 |
Unutilized land | 77.16 | 79.04 | 81.95 | 1.88 | 2.91 | 4.79 |
Total | 6630.69 | 6609.11 | 6588.89 | −21.58 | −20.22 | −41.80 |
2010 Carbon Density | 2015 Carbon Density | 2020 Carbon Density | Mean Carbon Density | Carbon Density Ranking | |
---|---|---|---|---|---|
Huangpu | 10.14 | 10.16 | 10.18 | 10.16 | 16 |
Xuhui | 10.67 | 10.68 | 10.69 | 10.68 | 13 |
Changning | 11.20 | 11.20 | 11.19 | 11.19 | 8 |
Jing’an | 11.08 | 11.08 | 11.09 | 11.08 | 11 |
Putuo | 11.12 | 11.13 | 11.13 | 11.13 | 10 |
Hongkou | 10.84 | 10.84 | 10.85 | 10.84 | 12 |
Yangpu | 10.47 | 10.47 | 10.48 | 10.47 | 15 |
Minhang | 11.22 | 11.18 | 11.15 | 11.18 | 9 |
Baoshan | 11.29 | 11.26 | 11.24 | 11.26 | 7 |
Jiading | 11.58 | 11.52 | 11.49 | 11.53 | 5 |
Pudong | 11.55 | 11.48 | 11.45 | 11.49 | 6 |
Jinshan | 12.11 | 12.06 | 12.01 | 12.06 | 1 |
Songjiang | 11.72 | 11.69 | 11.65 | 11.69 | 4 |
Qingpu | 10.64 | 10.65 | 10.60 | 10.63 | 14 |
Fengxian | 11.98 | 11.93 | 11.89 | 11.93 | 2 |
Chongming | 11.88 | 11.86 | 11.82 | 11.85 | 3 |
Cropland | Forest | Grassland | Water Body | Built-Up Land | Unutilized Land | Total | ||
---|---|---|---|---|---|---|---|---|
2020 | Actual 2020 | 3724.61 | 10.76 | 10.20 | 0.00 | 2761.37 | 81.95 | 6588.89 |
2025 | Scenario I | 3284.69 | 18.64 | 15.10 | 0.00 | 3019.03 | 127.21 | 6464.66 |
Scenario II | 3757.42 | 59.27 | 47.03 | 0.00 | 2869.69 | 127.37 | 6860.78 | |
Scenario I changes | −439.92 | 7.87 | 4.90 | 0.00 | 257.66 | 45.26 | −124.23 | |
Scenario II changes | −195.02 | 48.51 | 36.83 | 0.00 | 108.33 | 45.42 | 271.89 | |
Differences in scenario I and II | 244.90 | 40.63 | 31.93 | 0.00 | −149.34 | 0.16 | 396.12 | |
2030 | Scenario I | 3126.77 | 14.36 | 14.30 | 0.00 | 3172.94 | 133.89 | 6462.25 |
Scenario II | 3232.04 | 58.54 | 37.80 | 0.00 | 3018.31 | 133.86 | 6480.54 | |
Scenario I changes | −597.84 | 3.59 | 4.09 | 0.00 | 411.58 | 51.94 | −126.64 | |
Scenario II changes | −492.57 | 47.77 | 27.60 | 0.00 | 256.94 | 51.91 | −108.34 | |
Differences in scenario I and II | 105.27 | 44.18 | 23.50 | 0.00 | −154.64 | −0.03 | 18.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Yu, C.; Lin, W.; Yao, J.; Zhou, W. Spatiotemporal Evolution and Prediction of Land Use and Carbon Stock in Shanghai. Land 2024, 13, 267. https://doi.org/10.3390/land13030267
Xu D, Yu C, Lin W, Yao J, Zhou W. Spatiotemporal Evolution and Prediction of Land Use and Carbon Stock in Shanghai. Land. 2024; 13(3):267. https://doi.org/10.3390/land13030267
Chicago/Turabian StyleXu, Di, Chuanqing Yu, Wenpeng Lin, Jiang Yao, and Wenying Zhou. 2024. "Spatiotemporal Evolution and Prediction of Land Use and Carbon Stock in Shanghai" Land 13, no. 3: 267. https://doi.org/10.3390/land13030267
APA StyleXu, D., Yu, C., Lin, W., Yao, J., & Zhou, W. (2024). Spatiotemporal Evolution and Prediction of Land Use and Carbon Stock in Shanghai. Land, 13(3), 267. https://doi.org/10.3390/land13030267