A Proposed Typology of Farming Systems for Assessing Sustainable Livelihood Development Pathways in the Tien Shan Mountains of Kyrgyzstan
Abstract
:1. Introduction
2. Methodology
2.1. Study Site Characteristics
2.2. Sampling and Data Collection
2.3. Data Analysis and Construction of a Farm Typology
3. Results
3.1. Farming Systems Overview
- Cluster I: Upper mountain farms (UMF) located in high-elevation mountains between 2000 and 2400 m above sea level, mainly based on livestock and fodder production and characterized by a reduced grazing period and a low off-farm income;
- Cluster II: Lower mountain farms (LMF) located in medium-elevation mountain ranges between 1500 and 2000 m above sea level, based on livestock production fodder and other crops and characterized by a longer grazing period and a low off-farm income;
- Figure 3 shows the locations and distribution of the upper mountain farms located between 1500 and 2000 m a.s.l. in Kochkor and Kemin districts (red dots) and the lower mountain farms located above 2000 m a.s.l. in Suusmayr, At-Bashy, and Kochkor districts (green dots).
3.2. Type I: Upper Mountain Farms (UMF)
3.3. Type II: Lower Mountain Farms
4. Discussion
5. Conclusions
- -
- Implement policies to facilitate smallholder and family farmer access to quality seeds and fertilizers. In addition, introduce new crop varieties to improve agricultural productivity;
- -
- Provide extension services to farmers to encourage the adoption of sustainable grazing practices. Include education on the benefits of adopting newly improved livestock breeds to increase productivity;
- -
- Provide resources to improve rural infrastructure, including irrigation systems, roads, sanitation, and access to clean water. This initiative aims to address rural underdevelopment and promote overall agricultural growth;
- -
- Introduce a new methodology and redefine the criteria for smallholders and family farms in public policy. Work with government statistical agencies to develop an updated approach that ensures accurate representation and targeted support for these farming entities.
- -
- Conduct research focusing on cost-effective methods suitable for use by smallholder farmers to improve their fodder base. This may include advances in agricultural production technology, storage, and harvesting, with an emphasis on approaches that provide environmental benefits without requiring substantial investment;
- -
- Undertake studies to explore conditions conducive to the adoption of income diversification strategies in farming systems. In particular, focus on off-farm activities such as sustainable tourism or other value-added enterprises to provide additional sources of income for farmers;
- -
- Examine grazing alternatives that will reduce ongoing land degradation and yet provide sufficient pasture use for cattle production.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mogilevskii, R.; Abdrazakova, N.; Bolotbekova, A.; Chalbasova, S.; Dzhumaeva, S.; Tilekeyev, K. The Outcomes of 25 Years of Agricultural Reforms in Kyrgyzstan; IAMO Discussion Papers 162; Leibniz Institute of Agricultural Development in Transition Economies (IAMO): Halle, Germany, 2017; Available online: https://www.econstor.eu/handle/10419/155774 (accessed on 10 April 2023).
- Lerman, Z.; Sedik, D. Transition to smallholder agriculture in Central Asia. J. Agrar. Change 2018, 18, 904–912. [Google Scholar] [CrossRef]
- Hamidov, A.; Helming, K.; Balla, D. Impact of agricultural land use in Central Asia: A review. Agron. Sustain. Dev. 2016, 36, 6. [Google Scholar] [CrossRef]
- FAO [Food and Agriculture Organization]. Smallholders and Family Farms in Kyrgyzstan. Country Study Report; Food and Agriculture Organization of the United Nations: Budapest, Hungary, 2020; Available online: https://www.fao.org/documents/card/en/c/ca9826en (accessed on 10 April 2023).
- NSC [National Statistical Committee of the Kyrgyz Republic]. Agriculture of the Kyrgyz Republic-Statistics of the Kyrgyz Republic; Kyrgyzstan Brief Statistical Handbook; National Statistical Committee of the Kyrgyz Republic: Bishkek, Kyrgyzstan, 2022; Available online: http://www.stat.kg/en/publications/sbornik-selskoe-hozyajstvo-kyrgyzskoj-respubliki/ (accessed on 1 December 2022).
- Kerven, C.; Steimann, B.; Dear, C.; Ashley, L. Researching the future of pastoralism in Central Asia’s mountains: Examining development orthodoxies. Mt. Res. Dev. 2012, 32, 368–377. [Google Scholar] [CrossRef]
- Kulikov, M.; Schickhoff, U.; Borchardt, P. Spatial and seasonal dynamics of soil loss ratio in mountain rangelands of south-western Kyrgyzstan. J. Mt. Sci. 2016, 13, 316–329. [Google Scholar] [CrossRef]
- Fan, S.; Rue, C. The Role of Smallholder Farms in a Changing World. In The Role of Smallholder Farms in Food and Nutrition Security; Gomez y Paloma, S., Riesgo, L., Louhichi, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 13–28. [Google Scholar]
- Härri, A.; Levänen, J.; Koistinen, K. Marginalized small-scale farmers as actors in just circular-economy transitions: Exploring opportunities to circulate crop residue as raw material in India. Sustainability 2020, 12, 10–35. [Google Scholar] [CrossRef]
- Isaev, E.; Ermanova, M.; Sidle, R.C.; Zaginaev, V.; Kulikov, M.; Chontoev, D. Reconstruction of hydrometeorological data using dendrochronology and machine learning approaches to bias-correct climate models in northern Tien Shan, Kyrgyzstan. Water 2022, 14, 2297. [Google Scholar] [CrossRef]
- Rawat, D.; Schickhoff, U. Changing Climate Scenario in High Altitude Regions: Comparison of Observed Trends and Perceptions of Agro-pastoralists in Darma Valley, Uttarakhand, India. In Mountain Landscapes in Transition: Effects of Land Use and Climate Change, 1st ed.; Schickhoff, U., Singh, R.B., Mal, S., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 429–447. [Google Scholar]
- Kasymov, U.; Nikonova, V. ‘Made in Kyrgyzstan’: Innovative approaches to sustainable industrial development. Mt. Res. Dev. 2006, 26, 119–123. [Google Scholar] [CrossRef]
- Crewett, W. Improving the sustainability of pasture use in Kyrgyzstan. Mt. Res. Dev. 2012, 32, 267–274. [Google Scholar] [CrossRef]
- Kasymov, U.; Undeland, A.; Dörre, A.; Mackinnon, A. Central Asia: Kyrgyzstan and the learning experience in the design of pastoral institutions. OIE Rev. Sci. Et. Tech. 2016, 35, 511–521. [Google Scholar] [CrossRef]
- Chi, G.; Gao, J.; Wang, D.; Hagedorn, A.; Kelgenbaeva, K.; Smith, M.L.; Henebry, G.M. Agricultural Production at the Oblast Level in Post-Soviet Kyrgyzstan, 1990–2014: Implications of Demographic and Climate Changes. Res. Glob. 2020, 2, 100027. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy Global Assessment of Land Degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Robinson, S. Review of pastoral practices in High Asia. In Advances in Asian Human-Environmental Research, 1st ed.; Hermann, K., Ed.; Springer: Dodrecht, The Netherlands; Heidelberg, Germany, 2012; Volume 3, pp. 1–3. [Google Scholar] [CrossRef]
- Le, Q.B.; Nkonya, E.; Mirzabaev, A. Biomass Productivity-Based Mapping of Global Land Degradation Hotspots. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development, 1st ed.; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer: Cham, Switzerland, 2016; pp. 55–84. [Google Scholar]
- Mirzabaev, A.; Goedecke, J.; Dubovyk, O.; Djanibekov, U.; Le, Q.B.; Aw-Hassan, A. Economics of Land Degradation in Central Asia. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development, 1st ed.; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer: Cham, Switzerland, 2016; pp. 261–290. [Google Scholar]
- Robinson, S. Land Degradation in Central Asia: Evidence, Perception and Policy. In The End of Desertification? 1st ed.; Behnke, R.H., Mortimore, M., Eds.; Springer: Heidelberg, Germany, 2016; pp. 451–490. [Google Scholar]
- Qin, Y.; He, J.; Wei, M.; Du, X. Challenges threatening agricultural sustainability in Central Asia: Status and prospects. Int. J. Environ. Res. Public Health 2022, 19, 6200. [Google Scholar] [CrossRef] [PubMed]
- Zhumanova, M.; Mönnig, C.; Hergarten, C.; Darr, D.; Wrage-Mönnig, N. Assessment of vegetation degradation in mountainous pastures of the Western Tien-Shan, Kyrgyzstan, using eMODIS NDVI. Ecol. Indic. 2018, 95, 527–543. [Google Scholar] [CrossRef]
- Duulatov, E.; Pham, Q.B.; Alamanov, S.; Orozbaev, R.; Issanova, G.; Asankulov, T. Assessing the potential of soil erosion in Kyrgyzstan based on RUSLE, integrated with remote sensing. Environ. Earth Sci. 2021, 80, 658. [Google Scholar] [CrossRef]
- Umuhoza, J.; Jiapaer, G.; Yin, H.; Mind’je, R.; Gasirabo, A.; Nzabarinda, V.; Umwali, E.D. The analysis of grassland carrying capacity and its impact factors in typical mountain areas in Central Asia—A case of Kyrgyzstan and Tajikistan. Ecol. Indic. 2021, 131, 108129. [Google Scholar] [CrossRef]
- Isaev, E.; Kulikov, M.; Shibkov, E.; Sidle, R.C. Bias correction of Sentinel-2 with unmanned aerial vehicle multispectral data for use in monitoring walnut fruit forest in western Tien Shan, Kyrgyzstan. J. Appl. Remote Sens. 2021, 17, 022204. [Google Scholar] [CrossRef]
- Isakov, A.; Thorsson, J. Assessment of the Land Condition in the Kyrgyz Republic with Respect to Grazing and a Possible Development of a Quoting System on the Local Governmental Level; CAMP Alatoo Publication Series; V.R.S. Company Ltd.: Bishkek, Kyrgyzstan, 2015; Available online: https://www.grocentre.is/lrt/moya/gro/index/publication/assessment-of-land-condition-in-the-kyrgyz-republic-with-respect-to-grazing-and-possible-development-of-a-quota-system-at-the-local-government-level (accessed on 17 April 2023).
- Steimann, B. Making a Living in Uncertainty Agro-Pastoral Livelihoods and Institutional Transformations in Post-Socialist Rural Kyrgyzstan. Ph.D. Thesis, University of Zurich, Zurich, Switzerland, 2011. [Google Scholar]
- Bokontaeva, J. Farmers as a social-professional group. Vestn. IKGU Karakol 1998, 2, 18–21. (In Russian) [Google Scholar]
- Djailov, S. The development of agricultural sector of economy of the Kyrgyz Republic. Vestn. Kyrg. Natl. Univ. 2002, 8, 12–20. (In Russian) [Google Scholar]
- Akmataliev, T. Formation and development of the private farms in Kyrgyzstan and increase their production efficiency. Vestn. Kyrg.-Russ. Slav. Univ. 2006, 6, 13–18. (In Russian) [Google Scholar]
- Kydyrmyshev, T. Entrepreneurship and the Development of Small and Medium-Sized Farm Enterprises. Ph.D. Thesis, Moscow Timiryazev Agricultural Academy, Moscow, Russia, 2009. (In Russian). [Google Scholar]
- Lerman, Z. Structure and Performance of Agriculture in Central Asia; The Hebrew University of Jerusalem: Jerusalem, Israel, 2013; Available online: https://ageconsearch.umn.edu/record/164530 (accessed on 1 December 2022).
- Naseer, M.A.U.R.; Ashfaq, M.; Razzaq, A.; Ali, Q. Comparison of Water Use Efficiency, Profitability and Consumer Preferences of Different Rice Varieties in Punjab, Pakistan. Paddy Water Environ. 2020, 18, 273–282. [Google Scholar] [CrossRef]
- Ye, F.; Qin, S.; Nisar, N.; Zhang, Q.; Tong, T.; Wang, L. Does Rural Industrial Integration Improve Agricultural Productivity? Implications for Sustainable Food Production. Front. Sustain. Food Syst. 2023, 7, 1191024. [Google Scholar] [CrossRef]
- Bobojonov, I.; Aw-Hassan, A. Impacts of climate change on farm income security in Central Asia: An integrated modeling approach. Agric. Ecosyst. Environ. 2014, 188, 245–255. [Google Scholar] [CrossRef]
- Razzaq, A.; Xiao, M.; Zhou, Y.; Anwar, M.; Liu, H.; Luo, F. Towards Sustainable Water Use: Factors Influencing Farmers’ Participation in the Informal Groundwater Markets in Pakistan. Front. Environ. Sci. 2022, 10, 944156. [Google Scholar] [CrossRef]
- Gupta, R.; Kienzler, K.; Martius, C.; Mirzabaev, A.; Oweis, T.; de Pauw, E.; Qadir, M.; Shideed, K.; Sommer, R.; Thomas, R.; et al. Research Prospectus: A Vision for Sustainable Land Management Research in Central Asia; ICARDA Central Asia and Caucasus Program; Sustainable Agriculture in Central Asia and the Caucasus Series No.1; CGIAR-PFU: Tashkent, Uzbekistan, 2009; Available online: http://www.fao.org/family-farming/detail/en/c/303375/ (accessed on 1 June 2023).
- Kienzler, K.M.; Lamers, J.P.A.; McDonald, A.; Mirzabaev, A.; Ibragimov, N.; Egamberdiev, O.; Ruzibaev, E.; Akramkhanov, A. Conservation agriculture in Central Asia-What do we know and where do we go from here? Field Crops Res. 2012, 132, 95–105. [Google Scholar] [CrossRef]
- Shigaeva, J.; Kollmair, M.; Niederer, P.; Maselli, D. Livelihoods in Transition: Changing Land Use Strategies and Ecological Implications in a Post-Soviet Setting (Kyrgyzstan). Cent. Asian Surv. 2007, 26, 389–406. [Google Scholar] [CrossRef]
- Schoch, N.; Steimann, B.; Thieme, S. Migration and Animal Husbandry: Competing or Complementary Livelihood Strategies. Evidence from Kyrgyzstan. Nat. Resour. Forum 2010, 34, 211–221. [Google Scholar] [CrossRef]
- de la Martinière, R. Rural livelihood trajectories around a “bull market” in Kyrgyzstan. Mt. Res. Dev. 2012, 32, 337–344. [Google Scholar] [CrossRef]
- Hardiman, R.T.; Lacey, R.; Yi, Y.M. Use of cluster analysis for identification and classification of farming systems in Qingyang County, Central North China. Agric. Syst. 1990, 33, 115–125. [Google Scholar] [CrossRef]
- Tittonell, P.; Muriuki, A.; Shepherd, K.D.; Mugendi, D.; Kaizzi, K.C.; Okeyo, J.; Verchot, L.; Coe, R.; Vanlauwe, B. The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa–A typology of smallholder farms. Agric. Syst. 2010, 103, 83–97. [Google Scholar] [CrossRef]
- Rehman, S.U.; Predotova, M.; Khan, A.; Schlecht, E.; Buerkert, A. Socio-economic characterization of integrated cropping systems in urban and peri-urban agriculture of Faisalabad, Pakistan. J. Agric. Rural Dev. Trop. Subtrop. 2013, 114, 133–143. [Google Scholar]
- Dunjana, N.; Zengeni, R.; Wuta, M. Typological characterisation of farms in a smallholder food-cash crop production system in Zimbabwe–opportunities for livelihood sustainability. J. Agric. Rural Dev. Trop. Subtrop. 2018, 119, 11–22. [Google Scholar]
- Nandi, R.; Nedumaran, S. Understanding the aspirations of farming communities in developing countries: A systematic review of the literature. Eur. J. Dev. Res. 2021, 33, 809–832. [Google Scholar] [CrossRef]
- Gebauer, R.H. Socio-economic classification of farm households–Conceptual, methodical and empirical considerations. Eur. Rev. Agric. Econ. 1987, 14, 261–283. [Google Scholar] [CrossRef]
- Köbrich, C.; Rehman, T.; Khan, M. Typification of farming systems for constructing representative farm models: Two illustrations of the application of multivariate analyses in Chile and Pakistan. Agric. Syst. 2003, 76, 141–157. [Google Scholar] [CrossRef]
- Nuralieva, N.M.; Bekirova, D.O. Pasture Restoration Problems in Kyrgyzstan. In Sustainable Pasture Management Issues, 1st ed.; Omuralieva, D.S., Ed.; NSU Bulletin Magazine: Naryn, Kyrgyzstan, 2015; pp. 65–67. [Google Scholar]
- Tefera, T.L.; Perret, S.; Kirsten, J.F. Diversity in livelihoods and farmers’ strategies in the Hararghe Highlands, Eastern Ethiopia. Int. J. Agric. Sustain. 2011, 2, 133–146. [Google Scholar] [CrossRef]
- Guillem, E.E.; Barnes, A.P.; Rounsevell, M.D.A.; Renwick, A. Refining perception-based farmer typologies with the analysis of past census data. J. Environ. Manag. 2012, 110, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Pacini, G.C.; Colucci, D.; Baudron, F.; Righi, E.; Corbeels, M.; Tittonell, P.; Stefanini, F.M. Combining multi-dimensional scaling and cluster analysis to describe the diversity of rural households. Exp. Agric. 2014, 50, 376–397. [Google Scholar] [CrossRef]
- Chatterjee, S.; Goswami, R.; Bandyopadhyay, P. Methodology of identification and characterization of farming systems in irrigated agriculture: Case study in West Bengal State of India. J. Agric. Sci. Technol. 2015, 17, 1127–1140. [Google Scholar]
- Kuivanen, K.S.; Alvarez, S.; Michalscheck, M.; Adjei-Nsiah, S.; Descheemaeker, K.; Mellon-Bedi, S.; Groot, J.C.J. Characterising the diversity of smallholder farming systems and their constraints and opportunities for innovation: A case study from the Northern Region, Ghana. NJAS-Wagening. J. Life Sci. 2016, 78, 153–166. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson: Saddle River, NJ, USA, 2009. [Google Scholar]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Madry, W.; Mena, Y.; Roszkowska-Madra, B.; Gozdowski, D.; Hryniewski, R.; Castel, J.M. An overview of farming system typology methodologies and their use in the study of pasture-based farming system: A review. Span. J. Agric. Res. 2013, 11, 316–326. [Google Scholar] [CrossRef]
- Diepart, J.-C.; Allaverdian, C. Farming Systems Analysis: A Guidebook for Researchers and Development Practitioners in Myanmar. GRET—Yezin Agricultural University, Yangon, Myanmar. 2018. Available online: https://www.academia.edu/38349742/Farming_Systems_Analysis_A_guidebook_for_researchers_and_development_practitioners_in_Myanmar (accessed on 12 December 2023).
- FAO [Food and Agriculture Organization]. Soil Resources, Management and Conservation Service. (FAO Soils Bulletin); FAO: Rome, Italy, 1996; Available online: https://www.fao.org/3/w2962e/w2962e00.htm (accessed on 10 April 2023).
- García-Martínez, A.; Bernués, A.; Olaizola, A.M. Simulation of Mountain Cattle Farming System Changes under Diverse Agricultural Policies and Off-Farm Labour Scenarios. Livest. Sci. 2011, 137, 73–86. [Google Scholar] [CrossRef]
- Diepart, J.-C.; Sem, T. Fragmented territories: Incomplete enclosures and agrarian change on the agricultural frontier of Samlaut District, North-West Cambodia. J. Agrar. Change 2018, 18, 156–177. [Google Scholar] [CrossRef]
- Andersen, E.; Elbersen, B.; Godeschalk, F.; Verhoog, D. Farm management indicators and farm typologies as a basis for assessments in a changing policy environment. J. Environ. Manag. 2007, 82, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Riveiro, J.A.; Mantecón, A.R.; Álvarez, C.J.; Lavín, P. A typological characterization of dairy Assaf breed sheep farms at NW of Spain based on structural factor. Agric. Syst. 2013, 120, 27–37. [Google Scholar] [CrossRef]
- Kumar, S.; Craufurd, P.; Haileslassie, A.; Ramilan, T.; Rathore, A.; Whitbread, A. Farm typology analysis and technology assessment: An application in an arid region of South Asia. Land Use Policy 2019, 88, 104149. [Google Scholar] [CrossRef]
- de Glanville, W.A.; Davis, A.; Allan, K.J.; Buza, J.; Claxton, J.R.; Crump, J.A.; Halliday, J.E.B.; Johnson, P.C.D.; Kibona, T.J.; Mmbaga, B.T.; et al. Classification and characterisation of livestock production systems in Northern Tanzania. PLoS ONE 2020, 15, e0229478. [Google Scholar] [CrossRef]
- Habanabakize, E.; Ba, K.; Corniaux, C.; Cortbaoui, P.; Vasseur, E. A typology of smallholder livestock production systems reflecting the impact of the development of a local milk collection industry: Case study of Fatick region, Senegal. Pastoralism 2022, 12, 22. [Google Scholar] [CrossRef]
- van de Steeg, J.A.; Verburg, P.H.; Baltenweck, I.; Staal, S.J. Characterization of the Spatial Distribution of Farming Systems in the Kenyan Highlands. Appl. Geogr. 2010, 30, 239–253. [Google Scholar] [CrossRef]
- Bernués, A.; Ruiz, R.; Olaizola, A.; Villalba, D.; Casasús, I. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: Synergies and trade-offs. Livest. Sci. 2011, 139, 44–57. [Google Scholar] [CrossRef]
- Kerven, C.; Robinson, S.; Behnke, R.; Kushenov, K.; Milner-Gulland, E.J. A pastoral frontier: From chaos to capitalism and the re-colonisation of the Kazakh rangelands. J. Arid Environ. 2016, 127, 106–119. [Google Scholar] [CrossRef]
- Xenarios, S.; Gafurov, A.; Schmidt-Vogt, D.; Sehring, J.; Manandhar, S.; Hergarten, C.; Shigaeva, J.; Foggin, M. Climate change and adaptation of mountain societies in Central Asia: Uncertainties, knowledge gaps, and data constraints. Reg. Environ. Change 2019, 19, 1339–1352. [Google Scholar] [CrossRef]
- Sidle, R.C.; Khan, A.A.; Caiserman, A.; Qadamov, A.; Khojazoda, Z. Food security in high mountains of Central Asia: A broader perspective. BioScience 2023, 73, 347–363. [Google Scholar] [CrossRef]
- Li, X.L.; Yuan, Q.H.; Wan, L.Q.; He, F.; Li, X.L.; Yuan, Q.H.; Wan, L.Q.; He, F. Perspectives on livestock production systems in China. Rangel. J. 2008, 30, 211–220. [Google Scholar] [CrossRef]
- Tulachan, P.M.; Neupane, A. Livestock in Mixed Farming Systems of the Hindu Kush-Himalayas: Trends Sustainabilty; FAO International Centre for Integrated Mountain Development: Rome, Italy, 1999; Available online: https://www.fao.org/3/x5862e/x5862e01.htm (accessed on 22 May 2023).
- Maltsoglou, I.; Taniguchi, K. Poverty, Livestock and Household Typologies in Nepal; Pro-Poor Livestock Policy Initiative Working Paper No. 13; FAO [Food and Agricultural Organisation of the United Nations]: Rome, Italy, 2004; Available online: https://www.fao.org/3/bp221e/bp221e.pdf (accessed on 10 December 2023).
- Hameed, A.; Tariq, M.; Buerkert, A.; Schlecht, E. Constraints and prospects of utilising mountain pastures in Gilgit-Baltistan, Pakistan. Pastoralism 2022, 12, 41. [Google Scholar] [CrossRef]
- Slim, S.; Jeddi, F.B.; Rezgui, S.; Mallat, L.; Abdouli, H.; Missaoui, H.; Jellali, S.; Tibaoui, G.; Tayachi, L. Typology of farmers in mountainous areas of northern Tunisia. J. New Sci. 2014, 1, 1. [Google Scholar]
- Challa, T.G.; Mamo, A.T.; Tibeso, A.N.; Dawud, I. Rural Livelihood Diversification Status and Determinant Factors in Arsi, Ethiopia. Int. J. Bus. Econ. Res. 2019, 8, 23–30. [Google Scholar] [CrossRef]
- Musafiri, C.M.; Macharia, J.M.; Ng’etich, O.K.; Kiboi, M.N.; Okeyo, J.; Shisanya, C.A.; Okwuosa, E.A.; Mugendi, D.N.; Ngetich, F.K. Farming systems’ typologies analysis to inform agricultural greenhouse gas emissions potential from smallholder rain-fed farms in Kenya. Sci. Afr. 2020, 8, e00458. [Google Scholar] [CrossRef]
- Carmona, A.; Nahuelhual, L.; Echeverría, C.; Báez, A. Linking farming systems to landscape change: An empirical and spatially explicit study in southern Chile. Agric. Ecosyst. Environ. 2010, 139, 40–50. [Google Scholar] [CrossRef]
- Etter, A.; van Wyngaarden, W. Andean forests and farming systems in part of the Eastern Cordillera (Colombia). Mt. Res. Dev. 2000, 20, 236–245. [Google Scholar] [CrossRef]
- Steinfeld, H.; Mäki-Hokkonen, J. A Classification of Livestock Production Systems; FAO: Rome, Italy, 1997; Available online: https://www.fao.org/3/v8180t/v8180T0y.htm#conclusions (accessed on 10 December 2023).
- Castel, J.M.; Mena, Y.; Delgado-Pertínez, M.; Camúnez, J.; Basulto, J.; Caravaca, F.; Guzmán-Guerrero, J.L.; Alcalde, M.J. Charac-terization of semi-extensive goat production systems in southern Spain. Small Rumin. Res. 2003, 47, 133–143. [Google Scholar] [CrossRef]
- Castel, J.M.; Ma̧dry, W.; Gozdowski, D.; Roszkowska-Ma̧dra, B.; Da̧browski, M.; Lupa, W.; Mena, Y. Family dairy farms in the Podlasie province, Poland: Farm typology according to farming system. Span. J. Agric. Res. 2010, 8, 946–961. [Google Scholar] [CrossRef]
- D’Angelo, M.; Enne, G.; Madrau, S.; Percich, L.; Previtali, F.; Pulina, G.; Zucca, C. Mitigating land degradation in Mediterranean agro-silvo-pastoral systems: A GIS-based approach. CATENA 2000, 40, 37–49. [Google Scholar] [CrossRef]
- Usai, M.G.; Casu, S.; Molle, G.; Decandia, M.; Ligios, S.; Carta, A. Using cluster analysis to characterize the goat farming system in Sardinia. Livest. Sci. 2006, 104, 63–76. [Google Scholar] [CrossRef]
- Gaspar, P.; Escribano, M.; Mesías, F.J.; de Ledesma, A.R.; Pulido, F. Sheep farms in the Spanish rangelands (Dehesas): Typologies according to livestock management and economic indicators. Small Rumin. Res. 2008, 74, 52–63. [Google Scholar] [CrossRef]
- Ayantunde, A.A.; de Leeuw, J.; Turner, M.D.; Said, M. Challenges of assessing the sustainability of (agro)-pastoral systems. Livest. Sci. 2011, 139, 30–43. [Google Scholar] [CrossRef]
- Schmidt, M.; Sagynbekova, L. Migration Past and present: Changing patterns in Kyrgyzstan. Cent. Asian Surv. 2008, 27, 111–127. [Google Scholar] [CrossRef]
- Sabyrbekov, R. Income diversification strategies among pastoralists in Central Asia: Findings from Kyrgyzstan. Pastoralism 2019, 9, 14. [Google Scholar] [CrossRef]
- Kulikov, M.; Schickhoff, U. Vegetation and climate interaction patterns in Kyrgyzstan: Spatial discretization based on time series analysis. Erdkunde 2017, 71, 143–165. [Google Scholar] [CrossRef]
- Tagaev, K. Assessment of Community-Based Pasture Management in Mountains Inner Tien Shan. A Case Study of Cholpon Aiyl Aimak in Naryn Province, Kyrgyz Republic. United Nations University Land Restoration Training Programme. 2018. Available online: https://www.grocentre.is/static/gro/publication/473/document/tagaev2018.pdf (accessed on 12 December 2023).
- van Berkum, S. Agricultural Potential and Food Security in Central Asia in the Light of Climate Change; University of Wageningen: Wageningen, The Netherlands, 2015; Available online: https://edepot.wur.nl/351542 (accessed on 10 April 2023).
- FAO [Food and Agriculture Organization]. National Gender Profile of Agricultural and Rural Livelihoods—Kyrgyz Republic; FAO: Ankara, Turkey, 2016; Available online: https://www.fao.org/3/i5763e/i5763e.pdf (accessed on 10 April 2023).
- Fitzherbert, A. Country Pasture/Forage Resource Profiles—Kyrgyzstan; FAO: Rome, Italy, 2006; Available online: http://docplayer.net/63276635-Country-pasture-forage-resource-profiles-kyrgyzstan-by-anthony-fitzherbert.html (accessed on 10 April 2023).
Variable | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|
Agro-ecology and socioeconomic | |||||
Elevation of village (m a.s.l.) | 1910 | 211 | 1600 | 2300.0 | 2000 |
Remittances (USD) | 261 | 811 | 0.00 | 6276 | 250.0 |
Off-farm income (USD) | 2249 | 2060 | 0.00 | 14,811 | 1882 |
Farm income (USD) | 3797 | 4154 | 0.00 | 26,008 | 2510 |
Land use | 4.90 | 2.93 | 0.00 | 16.60 | 4.50 |
Fallow (ha) | 1.41 | 4.15 | 0.00 | 27.00 | 0.00 |
Cultivated area (ha) | 5.32 | 5.08 | 0.00 | 30.00 | 4.08 |
Irrigated area (ha) | 2.45 | 2.66 | 0.00 | 16.50 | 2.00 |
Labor | |||||
Length of grazing (hired herder) (months) | 5.87 | 0.88 | 3.50 | 7.70 | 5.60 |
Grazing period (months) | 7.83 | 1.38 | 4.00 | 11.00 | 8.00 |
Livestock capacity and production methods | |||||
Herd size (livestock units) | 16.30 | 8.94 | 1.10 | 42.20 | 14.20 |
Horses (heads) | 5.30 | 4.83 | 0.00 | 31.00 | 4.40 |
Sheep (heads) | 3.80 | 4.04 | 0.00 | 36.00 | 4.80 |
Cattle (heads) | 4.90 | 2.93 | 0.00 | 16.60 | 4.50 |
Fattened-up livestock (heads) | 1.05 | 1.89 | 0.00 | 14.45 | 1.00 |
Production inputs and methods (crops) | |||||
Fodder (grain) (t) | 2.34 | 4.22 | 0.00 | 30.00 | 1.20 |
Fodder (hay) (kg) | 690 | 751 | 0.00 | 8695 | 751 |
Usage of fertilizer (kg/ha) | 20.40 | 73.25 | 0.00 | 500.0 | 0.00 |
Barley yield (t/ha) | 1.26 | 1.35 | 0.00 | 6.00 | 1.05 |
Principal Component | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Herd size | 0.932 | ||||
Horses | 0.795 | ||||
Farm income | 0.699 | ||||
Sheep | 0.672 | ||||
Cattle | 0.659 | ||||
Fattened-up livestock | 0.545 | ||||
Cultivated area | 0.883 | ||||
Fodder (grain) | 0.824 | ||||
Fodder (hay) | 0.623 | ||||
Fallow | 0.548 | ||||
Usage of fertilizer | 0.693 | ||||
Elevation of village | –0.647 | ||||
Irrigated area | 0.624 | ||||
Barley yield | 0.521 | 0.584 | |||
Grazing period | 0.904 | ||||
Length of grazing (hired herder) | 0.901 | ||||
Remittances | 0.843 | ||||
Off-farm income | 0.806 |
Variable | Unit of Measurement | Farming System Type | |
---|---|---|---|
Upper Mountain (n = 125) | Lower Mountain (n = 108) | ||
Elevation of village, location * | m a.s.l. | 2200 | 1700 |
Grazing period * | month | 7.2 | 8.5 |
Length of grazing (hired herder) | month | 6.3 | 5.5 |
Herd size | livestock unit | 16.4 | 16.2 |
Herd composition: | |||
Cattle | % | 31 | 30 |
Sheep/Goat | % | 35 | 34 |
Horses | % | 30 | 35 |
Yak | % | 3 | <1 |
Poultry | % | 1 | <1 |
Farm size: | ha | 8.4 | 4.9 |
Cultivated land * | ha | 5.9 | 4.7 |
out of which irrigated land | ha | 1.3 | 3.8 |
Uncultivated land | ha | 2.5 | 0.2 |
Land use system: | |||
Meadows | % | 47 | 17 |
Legumes for fodder | % | 27 | 38 |
Barley | % | 23 | 23 |
Wheat | % | <1 | 10 |
Potatoes | % | 2 | 8 |
Other crops | % | <1 | 4 |
Farm income | USD | 4430 | 6111 |
Farm income sources: | |||
Livestock | % | 49 | 38 |
Crops | % | 40 | 52 |
Other | % | 11 | 10 |
Proportion of market sales in farm: | |||
Share of total farm product sales | % | 26.5 | 35.2 |
Share of sales in livestock production | % | 35.7 | 33.2 |
Share of market sales in crop production | % | 17.3 | 37.2 |
Off-farm income * | USD | 1933 | 2616 |
Off-farm income sources | |||
Public sector | % | 18 | 25 |
Pensions | % | 55 | 42 |
Business/employment | % | 16 | 17 |
Remittances | % | 11 | 16 |
Household income | 6363 | 8727 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azarov, A.; Sidle, R.C.; Darr, D.; Verner, V.; Polesny, Z. A Proposed Typology of Farming Systems for Assessing Sustainable Livelihood Development Pathways in the Tien Shan Mountains of Kyrgyzstan. Land 2024, 13, 126. https://doi.org/10.3390/land13020126
Azarov A, Sidle RC, Darr D, Verner V, Polesny Z. A Proposed Typology of Farming Systems for Assessing Sustainable Livelihood Development Pathways in the Tien Shan Mountains of Kyrgyzstan. Land. 2024; 13(2):126. https://doi.org/10.3390/land13020126
Chicago/Turabian StyleAzarov, Azamat, Roy C. Sidle, Dietrich Darr, Vladimir Verner, and Zbynek Polesny. 2024. "A Proposed Typology of Farming Systems for Assessing Sustainable Livelihood Development Pathways in the Tien Shan Mountains of Kyrgyzstan" Land 13, no. 2: 126. https://doi.org/10.3390/land13020126