Effects of Temperature and Carrier Gas on Phosphorus Transformation in Biosolids Biochar
Abstract
1. Introduction
2. Materials and Methodology
2.1. Sample Collection and Preparation of Biochar
2.1.1. Biosolids Collection
2.1.2. Biochar Preparation
2.2. Sequential Extracting Procedure for Biosolids and Its Derived Biochar
2.2.1. P Fractionation
2.2.2. Solution-State 31P NMR Analysis for Biosolids and Biochar
2.2.3. X-Ray Diffraction Analysis (XRD)
2.3. Data Analysis and Statistical Significance
3. Results and Discussion
3.1. Effects of Pyrolysis Temperature on P Speciation of Biosolids and Biochar
3.2. Influence of Pyrolysis Atmosphere on P Speciation of Biosolids and Biochar
3.3. 31P Liquid NMR
3.4. XRD Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Li, Y.; Xu, Y.; Lu, X. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 2020, 244, 125471. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef]
- Adhikari, S.; Gascó, G.; Méndez, A.; Surapaneni, A.; Jegatheesan, V.; Shah, K.; Paz-Ferreiro, J. Influence of pyrolysis parameters on phosphorus fractions of biosolids derived biochar. Sci. Total Environ. 2019, 695, 133846. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhai, Y.; Li, S.; Liu, X.; Wang, B.; Liu, X.; Fan, Y.; Shi, H.; Li, C.; Zhu, Y. Thermal treatment of sewage sludge: A comparative review of the conversion principle, recovery methods and bioavailability-predicting of phosphorus. Chemosphere 2022, 291, 133053. [Google Scholar] [CrossRef] [PubMed]
- Mayer, B.K.; Baker, L.A.; Boyer, T.H.; Drechsel, P.; Gifford, M.; Hanjra, M.A.; Parameswaran, P.; Stoltzfus, J.; Westerhoff, P.; Rittmann, B.E. Total value of phosphorus recovery. Environ. Sci. Technol. 2016, 13, 6606–6620. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef]
- Huang, R.; Tang, Y. Speciation dynamics of phosphorus during (hydro) thermal treatments of sewage sludge. Environ. Sci. Technol. 2015, 49, 14466–14474. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Z.; Li, Y.; He, J.; Wu, X. Physicochemical properties of biochars produced from biosolids in Victoria, Australia. Int. J. Environ. Res. Public Health 2018, 15, 1459. [Google Scholar] [CrossRef]
- Li, M.; Tang, Y.; Lu, X.-Y.; Zhang, Z.; Cao, Y. Phosphorus speciation in sewage sludge and the sludge-derived biochar by a combination of experimental methods and theoretical simulation. Water Res. 2018, 140, 90–99. [Google Scholar] [CrossRef]
- Xiong, Q.; Wu, X.; Lv, H.; Liu, S.; Hou, H.; Wu, X. Influence of rice husk addition on phosphorus fractions and heavy metals risk of biochar derived from sewage sludge. Chemosphere 2021, 280, 130566. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Shao, H.; Sun, J. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and 31P NMR analysis. Environ. Sci. Technol. 2016, 569, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, A.; Wernberg, O.; Skou, E.; Sommer, S.G. Effect of incineration temperature on phosphorus availability in bio-ash from manure. Environ. Technol. 2011, 32, 633–638. [Google Scholar] [CrossRef]
- Hedley, M.J.; Stewart, J.; Chauhan, B. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 1982, 465, 970–976. [Google Scholar] [CrossRef]
- Qian, T.-T.; Jiang, H. Migration of phosphorus in sewage sludge during different thermal treatment processes. ACS Sustain. Chem. Eng. 2014, 2, 1411–1419. [Google Scholar] [CrossRef]
- Cade-Menun, B.J. Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta 2005, 66, 359–371. [Google Scholar] [CrossRef]
- Uchimiya, M.; Hiradate, S. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. J. Agric. Food Chem. 2014, 62, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Xiong, X.; Che, D.; Liu, H.; Sun, B. Effects of sludge pyrolysis temperature and atmosphere on characteristics of biochar and gaseous products. Korean J. Chem. Eng. 2021, 38, 55–63. [Google Scholar] [CrossRef]
- Kończak, M.; Oleszczuk, P. Co-pyrolysis of sewage sludge and biomass in carbon dioxide as a carrier gas affects the total and leachable metals in biochars. J. Hazard. Mater. 2020, 400, 123144. [Google Scholar] [CrossRef]
- Tiessen, H.; Moir, J. Characterization of available P by sequential extraction. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 293–306. ISBN 9780429126222. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1952, 27, 31–36. [Google Scholar] [CrossRef]
- Alotaibi, K.D.; Arcand, M.; Ziadi, N. Effect of biochar addition on legacy phosphorus availability in long-term cultivated arid soil. Chem. Biol. Technol. Agric. 2021, 8, 47. [Google Scholar] [CrossRef]
- Lajtha, K.; Driscoll, C.T.; Jarrell, J.M.; Elliott, E.T. Soil phosphorus: Characterization and total element analysis. In Standard Soil Methods for Long-Term Ecological Research; Robertson, G.P., Coleman, D.C., Bledsoe, C.S., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 115–142. ISBN 9780195120837. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation; Routledge: Oxford, UK, 2024; ISBN 9781032286150. [Google Scholar]
- Aktar, S.; Hossain, A.; Rathnayake, N.; Patel, S.; Gasco, G.; Mendez, A.; de Figueiredo, C.; Surapaneni, A.; Shah, K.; Paz-Ferreiro, J. Effects of temperature and carrier gas on physico-chemical properties of biochar derived from biosolids. J. Anal. Appl. Pyrolsis 2022, 164, 105542. [Google Scholar] [CrossRef]
- Braun, T.; Reuter, J.; Rudolph, J. Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO. Waste Manag. 2019, 87, 71–77. [Google Scholar] [CrossRef]
- Zhang, Z.; Ju, R.; Zhou, H.; Chen, H. Migration characteristics of heavy metals during sludge pyrolysis. Waste Manag. 2021, 120, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Yuan, S. The effect of preparing temperature and atmosphere on biochar’s quality for soil improving. Waste Biomass Valorization 2019, 10, 1395–1405. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Guo, X. Investigation on mechanism of phosphate removal on carbonized sludge adsorbent. J. Environ. Sci. 2018, 64, 335–344. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, X.; Li, H.; Chen, X.; Zeng, F. Kinetics evaluation and thermal decomposition characteristics of co-pyrolysis of municipal sewage sludge and hazelnut shell. Bioresour. Technol. 2018, 247, 21–29. [Google Scholar] [CrossRef]
- Zhang, J.; Lü, F.; Zhang, H.; Shao, L.; Chen, D.; He, P. Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication. Sci. Rep. 2015, 5, 9406. [Google Scholar] [CrossRef]
P Fractions | Biosolids | BC400 | BC500 | BC600 | BN400 | BN500 | BN600 |
---|---|---|---|---|---|---|---|
H2O-Pi | 2706 ± 257 | 484 ± 38 | 423 ± 52 | 194 ± 15 | 298 ± 6 | 178 ± 13 | 80 ± 11 |
NaHCO3-Pt | 5946 ± 97 | 3081 ± 35 | 2459 ± 82 | 1743 ± 24 | 3230 ± 53 | 2138 ± 90 | 1550± 87 |
NaHCO3-Pi | 4826 ± 164 | 2572 ± 42 | 2258 ± 35 | 1516 ± 49 | 2830 ± 40 | 1814 ± 40 | 1341 ± 19 |
NaHCO3-Po | 1119 ± 70 | 509 ± 35 | 200 ± 41 | 227 ± 13 | 399 ± 39 | 323 ± 29 | 209 ± 19 |
NaOH-Pt | 4354 ± 28 | 7085 ± 16 | 6574 ± 12 | 2845 ± 10 | 6827 ± 13 | 4317 ± 08 | 2521 ± 22 |
NaOH-Pi | 3245 ± 28 | 6267 ±12 | 5405 ± 31 | 2278 ± 17 | 5847 ± 04 | 3414 ± 07 | 2134 ± 12 |
NaOH-Po | 2114 ± 07 | 818 ± 04 | 1168 ±19 | 567 ± 27 | 980 ± 09 | 902 ± 09 | 387 ± 11 |
HCl-P | 3421 ± 44 | 10,630 ± 18 | 10,951 ± 34 | 11,925 ± 42 | 10,815 ± 88 | 11,316 ± 94 | 12,150 ± 17 |
Res. Pt | 300 ± 30 | 4904 ± 17 | 9505 ± 19 | 10,114 ± 21 | 1464 ± 25 | 8657 ± 14 | 8360 ± 17 |
Total P-Pt | 24,802 ± 88 | 35,026 ± 17 | 37,579 ± 30 | 30,618 ± 81 | 31,313 ± 94 | 31,738 ± 88 | 28,099 ± 69 |
Tests of Between-Subjects Effects | ||||||
---|---|---|---|---|---|---|
Source | Dependent Variable | Type III Sum of Squares | df | Mean Square | F | Sig. |
Temperature | H2O-Pi | 300,385.256 | 2 | 150,192.628 | 46.519 | <0.001 |
NaHCO3-Pt | 9,163,254.583 | 2 | 4,581,627.291 | 250.454 | <0.001 | |
NaHCO3-Pi | 6,484,043.721 | 2 | 3,242,021.861 | 140.633 | <0.001 | |
NaHCO3-Po | 252,454.661 | 2 | 126,227.331 | 3.441 | 0.054 | |
NaOH-Pt | 75,116,270.954 | 2 | 37,558,135.477 | 593.817 | <0.001 | |
NaOH-Pi | 59,734,061.367 | 2 | 29,867,030.683 | 286.233 | <0.001 | |
NaOH-Po | 1,355,725.909 | 2 | 677,862.955 | 6.216 | 0.009 | |
HCl-P | 347,498.284 | 2 | 173,749.142 | 0.114 | 0.893 | |
Residual Pt | 409,908,059.994 | 2 | 204,954,029.997 | 383.615 | <0.001 | |
Environment | H2O-Pi | 312,500.245 | 1 | 312,500.245 | 96.791 | <0.001 |
NaHCO3-Pt | 88,985.394 | 1 | 88,985.394 | 4.864 | 0.041 | |
NaHCO3-Pi | 86,828.252 | 1 | 86,828.252 | 3.766 | 0.068 | |
NaHCO3-Po | 13.234 | 1 | 13.234 | 0.000 | 0.985 | |
NaOH-Pt | 5,375,567.101 | 1 | 5,375,567.101 | 84.991 | <0.001 | |
NaOH-Pi | 4,355,221.547 | 1 | 4,355,221.547 | 41.739 | <0.001 | |
NaOH-Po | 53,643.270 | 1 | 53,643.270 | 0.492 | 0.492 | |
HCl-P | 30,669,771.101 | 1 | 30,669,771.101 | 20.172 | <0.001 | |
Residual Pt | 49,108,186.942 | 1 | 49,108,186.942 | 91.916 | <0.001 | |
Temperature x Environment | H2O-Pi | 41,575.336 | 2 | 20,787.668 | 6.439 | 0.008 |
NaHCO3-Pt | 235,494.559 | 2 | 117,747.280 | 6.437 | 0.008 | |
NaHCO3-Pi | 502,530.144 | 2 | 251,265.072 | 10.899 | 0.001 | |
NaHCO3-Po | 55,168.121 | 2 | 27,584.060 | 0.752 | 0.486 | |
NaOH-Pt | 5,159,576.512 | 2 | 2,579,788.256 | 40.788 | <0.001 | |
NaOH-Pi | 3,972,398.784 | 2 | 1,986,199.392 | 19.035 | <0.001 | |
NaOH-Po | 204,697.579 | 2 | 102,348.789 | 0.938 | 0.410 | |
HCl-P | 2,569,374.571 | 2 | 1,284,687.286 | 0.845 | 0.446 | |
Residual Pt | 25,876,886.580 | 2 | 12,938,443.290 | 24.217 | <0.001 |
Ortho-P | Ortho-Monoester | Pyro-P | |
---|---|---|---|
Biosolids | 12,737.47 (88%) | 1439.46 (10%) | 175.54 (1%) |
BC400 | 6980.00 (70%) | - | 3079.41 (30%) |
BC500 | 6149.055 (86%) | - | 999.46 (14%) |
BC600 | 4518.02 (96%) | - | 163.16 (4%) |
BN400 | 5098.11 (74%) | - | 1751.39 (25%) |
BN500 | 5019.12 (88%) | - | 624.44 (12%) |
BN600 | 3772.66 (97%) | - | 100.60 (3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aktar, S.; Hossain, M.A.; Gasco, G.; Mendez, A.; de Figueiredo, C.C.; Shah, K.; Paz-Ferreiro, J. Effects of Temperature and Carrier Gas on Phosphorus Transformation in Biosolids Biochar. Land 2024, 13, 2132. https://doi.org/10.3390/land13122132
Aktar S, Hossain MA, Gasco G, Mendez A, de Figueiredo CC, Shah K, Paz-Ferreiro J. Effects of Temperature and Carrier Gas on Phosphorus Transformation in Biosolids Biochar. Land. 2024; 13(12):2132. https://doi.org/10.3390/land13122132
Chicago/Turabian StyleAktar, Shefali, Md Afzal Hossain, Gabriel Gasco, Ana Mendez, Cicero Celio de Figueiredo, Kalpit Shah, and Jorge Paz-Ferreiro. 2024. "Effects of Temperature and Carrier Gas on Phosphorus Transformation in Biosolids Biochar" Land 13, no. 12: 2132. https://doi.org/10.3390/land13122132
APA StyleAktar, S., Hossain, M. A., Gasco, G., Mendez, A., de Figueiredo, C. C., Shah, K., & Paz-Ferreiro, J. (2024). Effects of Temperature and Carrier Gas on Phosphorus Transformation in Biosolids Biochar. Land, 13(12), 2132. https://doi.org/10.3390/land13122132