A Multi-Objective Optimization Framework for Coupled Grey–Green Infrastructure of Areas with Contamination-Induced Water Shortages Under Future Multi-Dimensional Scenarios
Abstract
:1. Introduction
2. Research Framework
3. Materials and Methods
3.1. Study Area
3.2. Future Scenarios
3.2.1. Multi-Dimensional Scenarios Setting
3.2.2. Rainfall Forecast
3.3. SWMM Development
3.3.1. Construction of the SWMM of the Site
3.3.2. Parameters Calibration and Verification
3.3.3. Types of CGGI
3.4. Multi-Objective Optimization Framework Based on NSGA-III
3.4.1. Optimization Objectives
- Economic performance.
- 2.
- Hydrological recovery.
- 3.
- Water quality protection.
- 4.
- Stormwater resource utilization.
3.4.2. Decision Variables and Constraints
3.4.3. Algorithm Setting
4. Results
4.1. Optimization of Hydrological Recovery
4.1.1. Analysis of Optimization of Hydrological Recovery from SSP-RCP Scenarios Dimension
4.1.2. Analysis of Optimization of Hydrological Recovery from Time Series Dimension
4.2. Optimization of Water Quality Protection
4.2.1. Analysis of Optimization of Water Quality Protection from SSP-RCP Scenarios Dimension
4.2.2. Analysis of Optimization of Water Quality Protection from Time Series Dimension
4.3. Optimization of Stormwater Resource Utilization
4.3.1. Analysis of Optimization of Stormwater Resource Utilization from SSP-RCP Scenario Dimension
4.3.2. Analysis of Optimization of Stormwater Resource Utilization from Time Series Dimension
5. Discussion
5.1. Impact of Climate Change from a Multi-Dimensional Perspective
5.2. Enlightenments of Stormwater Management for Areas with Contamination-Induced Water Shortages
5.3. Comparison of NSGA-III and NSGA-II
6. Conclusions
- The optimization effect of CGGI was different under different multi-dimensional scenarios. The optimization effects of hydrological recovery and water quality protection were almost opposite to those of stormwater resource utilization. Among nine multi-dimensional scenarios, the SSP245-N scenario that assumes that economic development and ecological protection maintain the current trend, with moderate radiative forcing and social vulnerability, had the best hydrological recovery effect, the best water quality protection effect, and the worst stormwater resource utilization potential. In contrast, the SSP585-F scenario that focuses on rapid economic development, with the largest carbon emissions, highest radiative forcing level and social vulnerability, had the worst hydrological recovery effect, the worst water quality protection effect, and the greatest stormwater resource utilization potential.
- Precipitation was a determinant of optimization effects, and the SSP-RCP scenarios and time series jointly influenced precipitation. In terms of the SSP-RCP scenarios, the SSP126 scenario that focuses on ecological protection, with low radiative forcing and social vulnerability, had the greatest influence on the precipitation and efficacy of CGGI in the near and middle period, and the SSP585 scenario that focuses on rapid economic development, with the largest carbon emissions, highest radiative forcing level, and social vulnerability, had the greatest influence on the precipitation and efficacy of CGGI in the far period. In terms of the time series, the far period had the greatest influence on the precipitation and efficacy of CGGI under the three SSP-RCP scenarios.
- Stormwater resource utilization was not significantly correlated with the CGGI scale. High and low costs can not only achieve a similar stormwater recycling effect but also do not produce stormwater overflow. This finding is applicable to stormwater management considering stormwater resource utilization in areas of the Yangtze River Delta with water shortages due to contamination, as well as stormwater management in this region where the water shortages will be effectively alleviated.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geng, T.; Jia, F.; Cai, W.J.; Wu, L.X.; Gan, B.L.; Jing, Z.; Li, S.J.; McPhaden, M.J. Increased occurrences of consecutive La Nina events under global warming. Nature 2023, 619, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.S.; Xu, Y.J. Challenges and countermeasures of urban water systems against climate change: A perspective from China. Front. Environ. Sci. Eng. 2023, 17, 156. [Google Scholar] [CrossRef]
- Jenkins, K.; Surminski, S.; Hall, J.; Crick, F. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model. Sci. Total Environ. 2017, 595, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.S.; Ligaray, M.; Pyo, J.; Park, J.P.; Kang, J.H.; Pachepsky, Y.; Chun, J.A.; Cho, K.H. A novel water quality module of the SWMM model for assessing low impact development (LID) in urban watersheds. J. Hydrol. 2020, 586, 124886. [Google Scholar] [CrossRef]
- Peng, L.; Li, Z.H. Ensemble Flood Risk Assessment in the Yangtze River Economic Belt under CMIP6 SSP-RCP Scenarios. Sustainability 2021, 13, 12097. [Google Scholar] [CrossRef]
- Abduljaleel, Y.; Salem, A.; Haq, F.; Awad, A.; Amiri, M. Improving detention ponds for effective stormwater management and water quality enhancement under future climate change: A simulation study using the PCSWMM model. Sci. Rep. 2023, 13, 5555. [Google Scholar] [CrossRef]
- Rosenberger, L.; Leandro, J.; Pauleit, S.; Erlwein, S. Sustainable stormwater management under the impact of climate change and urban densification. J. Hydrol. 2021, 596, 126137. [Google Scholar] [CrossRef]
- Kim, S. A Study on the Reduction Strategy for Stormwater Runoff in Cities through Green Infrastructure—Focused on the Green Infrastructure Plan of New York City. J. Land Plan. 2012, 47, 283–292. [Google Scholar]
- Chen, W.J.; Wang, W.Q.; Huang, G.R.; Wang, Z.L.; Lai, C.G.; Yang, Z.Y. The capacity of grey infrastructure in urban flood management: A comprehensive analysis of grey infrastructure and the green-grey approach. Int. J. Disaster Risk Reduct. 2021, 54, 102045. [Google Scholar] [CrossRef]
- Kawabata, Y.; Takimoto, K.; Nishida, T.; Koshikawa, Y.; Aizawa, A. Integration of Green and Gray Infrastructures—Conceptualization from the Perspective of Gray Engineers. Struct. Eng. Int. 2024. [Google Scholar] [CrossRef]
- Andimuthu, R.; Kandasamy, P.; Mudgal, B.V.; Jeganathan, A.; Balu, A.; Sankar, G. Performance of urban storm drainage network under changing climate scenarios: Flood mitigation in Indian coastal city. Sci. Rep. 2019, 9, 7783. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Hassini, S.; El-Dakhakhni, W. A systematic bibliometric review of optimization and resilience within low impact development stormwater management practices. J. Hydrol. 2021, 599, 126457. [Google Scholar] [CrossRef]
- Gulshad, K.; Szydlowski, M.; Yaseen, A.; Aslam, R.W. A comparative analysis of methods and tools for low impact development (LID) site selection. J. Environ. Manag. 2024, 354, 120212. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.Y.; Jung, K.; Li, F.P.; Li, H.Y.; Kim, J.C. Evaluation of the Main Function of Low Impact Development Based on Rainfall Events. Water 2020, 12, 2231. [Google Scholar] [CrossRef]
- Yang, W.Y.; Zhang, J. Assessing the performance of gray and green strategies for sustainable urban drainage system development: A multi-criteria decision-making analysis. J. Clean. Prod. 2021, 293, 126191. [Google Scholar] [CrossRef]
- Casal-Campos, A.; Sadr, S.M.K.; Fu, G.T.; Butler, D. Reliable, Resilient and Sustainable Urban Drainage Systems: An Analysis of Robustness under Deep Uncertainty. Environ. Sci. Technol. 2018, 52, 9008–9021. [Google Scholar] [CrossRef]
- Leng, L.Y.; Jia, H.F.; Chen, A.S.; Zhu, D.Z.; Xu, T.; Yu, S. Multi-objective optimization for green-grey infrastructures in response to external uncertainties. Sci. Total Environ. 2021, 775, 145831. [Google Scholar] [CrossRef]
- Men, H.; Lu, H.; Jiang, W.J.; Xu, D. Mathematical Optimization Method of Low-Impact Development Layout in the Sponge City. Math. Probl. Eng. 2020, 2020, 734081. [Google Scholar] [CrossRef]
- Wang, Z.T.; Pei, Y.; Li, J.Q. A Survey on Search Strategy of Evolutionary Multi-Objective Optimization Algorithms. Appl. Sci. 2023, 13, 4643. [Google Scholar] [CrossRef]
- Yang, B.Y.; Zhang, T.; Li, J.Z.; Feng, P.; Miao, Y.J.J. Optimal designs of LID based on LID experiments and SWMM for a small-scale community in Tianjin, north China. J. Environ. Manag. 2023, 334, 117442. [Google Scholar] [CrossRef]
- She, L.; Wei, M.; You, X.Y. Multi-objective layout optimization for sponge city by annealing algorithm and its environmental benefits analysis. Sustain. Cities Soc. 2021, 66, 102706. [Google Scholar] [CrossRef]
- Hou, J.W.; Ho, B.; Sun, S.Q. Spatial Optimization of Low-Impact Development Facilities Based on a Median Model and an Ant Colony Optimization. J. Hydrol. Eng. 2019, 24, 04019055. [Google Scholar] [CrossRef]
- Hou, J.W.; Zhu, M.Y.; Wang, Y.J.; Sun, S.Q. Optimal spatial priority scheme of urban LID-BMPs under different investment periods. Landsc. Urban Plan. 2020, 202, 103858. [Google Scholar] [CrossRef]
- Rahimi, I.; Gandomi, A.H.; Deb, K.; Chen, F.; Nikoo, M.R. Scheduling by NSGA-II: Review and Bibliometric Analysis. Processes 2022, 10, 98. [Google Scholar] [CrossRef]
- Karaoglan, A.D.; Yaman, R. Using response surface design to determine the optimal parameters of genetic algorithm and a case study. Int. J. Prod. Res. 2013, 51, 5039–5054. [Google Scholar]
- Dong, X.; Yi, W.; Yuan, P.; Song, Y. Optimization and trade-off framework for coupled green-grey infrastructure considering environmental performance. J. Environ. Manag. 2023, 329, 117041. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, Z.Y.; Zhang, D.Q.; Zhang, Y.; Liu, M.; Rao, Q.Y.; Li, J.J.; Tan, S.K. Optimization of integrating life cycle cost and systematic resilience for grey-green stormwater infrastructure. Sustain. Cities Soc. 2023, 90, 104379. [Google Scholar] [CrossRef]
- Liu, Z.J.; Han, Z.X.; Shi, X.Y.; Liao, X.Y.; Leng, L.Y.; Jia, H.F. Multi-objective optimization methodology for green-gray coupled runoff control infrastructure adapting spatial heterogeneity of natural endowment and urban development. Water Res. 2023, 233, 119759. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Q.H.; Wang, X.C.; Huang, J.G.; Ge, Y. Impacts of key factors on heavy metal accumulation in urban road-deposited sediments (RDS): Implications for RDS management. Chemosphere 2020, 261, 127786. [Google Scholar] [CrossRef]
- Zhou, Y. Exploring multidecadal changes in climate and reservoir storage for assessing nonstationarity in flood peaks and risks worldwide by an integrated frequency analysis approach. Water Res. 2020, 185, 116265. [Google Scholar] [CrossRef]
- Lai, Q.; Ma, J.; He, F.; Wei, G. Response Model for Urban Area Source Pollution and Water Environmental Quality in a River Network Region. Int. J. Environ. Res. Public Health 2022, 19, 10546. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zeng, H.; Yu, H.; Ma, L.; Xu, L.; Qin, B. Water and Sediment Quality in Lakes along the Middle and Lower Reaches of the Yangtze River, China. Water Resour. Manag. 2012, 26, 3601–3618. [Google Scholar] [CrossRef]
- Li, X.; Mander, U.; Ma, Z.; Jia, Y. Water Quality Problems and Potential for Wetlands as Treatment Systems in The Yangtze River Delta, China. Wetlands 2009, 29, 1125–1132. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Pang, Y.; Wang, K.; Yu, J. Pollution Load Coordination and Eco-Compensation for Trans-Boundary Water Pollution Control: The Case of the Tri-Border Region of the Yangtze Delta. Sustainability 2024, 16, 1151. [Google Scholar] [CrossRef]
- Li, Y.L.; Tu, Y.J.; Li, G.J.; Pu, Y.L.; Chien, M.C.; Duan, Y.P. Chemical fractionation of heavy metals and zinc isotope source identification in sediments of the Huangpu River, Shanghai, China. Environ. Sci. Eur. 2024, 36, 137. [Google Scholar] [CrossRef]
- Yuan, P.K.; Wang, Y.; Chen, X.Q.; Gao, P. An overview of microplastic pollution in the environment over the megacity of Shanghai during 2013–2022. Sci. Total Environ. 2024, 912, 168986. [Google Scholar] [CrossRef]
- Wang, H.Y.; Hu, Q.Y.; Huang, C.; Lu, K.F.; He, H.D.; Peng, Z.R. Quantification of Gaseous and Particulate Emission Factors from a Cargo Ship on the Huangpu River. J. Mar. Sci. Eng. 2023, 11, 1580. [Google Scholar] [CrossRef]
- Yang, S.; Liu, P. Strategy of water pollution prevention in Taihu Lake and its effects analysis. J. Great Lakes Res. 2010, 36, 150–158. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Gao, C. Does environmental regulation promote enterprise environmental protection investments? A quasi-natural experiment from river chief system in the Yangtze river delta of China. Heliyon 2024, 10, e34867. [Google Scholar] [CrossRef]
- The State Council’s Opinions on Comprehensively Strengthening Ecological Environmental Protection and Resolutely Fighting the Tough Battle of Pollution Prevention and Control. Available online: https://www.huzhou.gov.cn/art/2018/6/18/art_1229213553_54846271.html (accessed on 10 May 2024).
- Feng, W.J.; Liu, Y.; Gao, L. Stormwater treatment for reuse: Current practice and future development—A review. J. Environ. Manag. 2022, 301, 113830. [Google Scholar] [CrossRef]
- Yin, H.; Kong, F.; Dronova, I. Hydrological performance of extensive green roofs in response to different rain events in a subtropical monsoon climate. Landsc. Ecol. Eng. 2019, 15, 297–313. [Google Scholar] [CrossRef]
- Abduljaleel, Y.; Demissie, Y. Identifying Cost-Effective Low-Impact Development (LID) under Climate Change: A Multi-Objective Optimization Approach. Water 2022, 14, 3017. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using referencepoint-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [Google Scholar] [CrossRef]
- Leng, L.; Xu, C.; Jia, H.; Jia, Q. Incorporating receiving waters responses into the framework of spatial optimization of LID-BMPs in plain river network region. Water Res. 2022, 224, 119036. [Google Scholar] [CrossRef]
- Tansar, H.; Duan, H.F.; Mark, O. A multi-objective decision-making framework for implementing green-grey infrastructures to enhance urban drainage system resilience. J. Hydrol. 2023, 620, 129381. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Piao, J.; Chen, W.; Wang, L.; Chen, S. Future projections of precipitation, surface temperatures and drought events over the monsoon transitional zone in China from bias-corrected CMIP6 models. Int. J. Climatol. 2022, 42, 1203–1219. [Google Scholar] [CrossRef]
- Das, J.; Manikanta, V.; Umamahesh, N.V. Population exposure to compound extreme events in India under different emission and population scenarios. Sci. Total Environ. 2022, 806, 150424. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Vuuren, D.P.; Riahi, K.; Moss, R.; Edmonds, J.; Thomson, A.; Nakicenovic, N.; Kram, T.; Berkhout, F.; Swart, R.; Janetos, A.; et al. A proposal for a new scenario framework to support research and assessment in different climate research communities. Glob. Environ. Chang. 2012, 22, 21–35. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef]
- Grose, M.R.; Narsey, S.; Delage, F.P.; Dowdy, A.J.; Bador, M.; Boschat, G.; Chung, C.; Kajtar, J.B.; Rauniyar, S.; Freund, M.B.; et al. Insight From CMIP6 for Australia’s Future Climate. Earth’s Future 2020, 8, e2019EF001469. [Google Scholar] [CrossRef]
- Li, C.; Zwiers, F.; Zhang, X.B.; Li, G.L.; Sun, Y.; Wehner, M. Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models. J. Clim. 2021, 34, 3441–3460. [Google Scholar] [CrossRef]
- Ridder, N.N.; Pitman, A.J.; Ukkola, A.M. Do CMIP6 Climate Models Simulate Global or Regional Compound Events Skillfully? Geophys. Res. Lett. 2021, 48, e2020GL091152. [Google Scholar] [CrossRef]
- Jiang, D.B.; Hu, D.; Tian, Z.P.; Lang, X.M. Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon. Adv. Atmos. Sci. 2020, 37, 1102–1118. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Q.H.; Xie, Y.D.; Wang, Q.; Dzakpasu, M.; Xiong, J.Q.; Wang, X.C. A novel multi-objective optimization framework for urban green-gray infrastructure implementation under impacts of climate change. Sci. Total Environ. 2022, 825, 153954. [Google Scholar] [CrossRef]
- Wang, Y.W.; Zhang, Z.M.; Zhao, Z.Y.; Sagris, T.; Wang, Y. Prediction of Future Urban Rainfall and Waterlogging Scenarios Based on CMIP6: A Case Study of Beijing Urban Area. Water 2023, 15, 2045. [Google Scholar] [CrossRef]
- Xu, H.S.; Zhong, T.X.; Chen, Y.G.; Zhang, J.G. How to simulate future scenarios of urban stormwater management? A novel framework coupling climate change, urbanization, and green stormwater infrastructure development. Sci. Total Environ. 2023, 874, 162399. [Google Scholar] [CrossRef]
- Jupyter. Available online: https://jupyter.org/ (accessed on 10 May 2024).
- Li, J.X.; Zhang, G.J.; Zhang, P.T.; Jing, S.Y.; Dong, J. Simulation and Zoning Research on the Ecosystem Service in the Beijing-Tianjin-Hebei Region Based on SSP-RCP Scenarios. Land 2023, 12, 1536. [Google Scholar] [CrossRef]
- Bai, T.Q.; Fan, L.K.; Song, G.X.; Song, H.Q.; Ru, X.T.; Wang, Y.B.; Zhang, H.P.; Min, R.Q.; Wang, W.J. Effects of Land Use/Cover and Meteorological Changes on Regional Climate under Different SSP-RCP Scenarios: A Case Study in Zhengzhou, China. Remote Sens. 2023, 15, 2601. [Google Scholar] [CrossRef]
- Li, S.Y.; Miao, L.J.; Jiang, Z.H.; Wang, G.J.; Gnyawali, K.R.; Zhang, J.; Zhang, H.; Fang, K.; He, Y.; Li, C. Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099. Adv. Clim. Chang. Res. 2020, 11, 210–217. [Google Scholar] [CrossRef]
- Su, B.D.; Huang, J.L.; Mondal, S.K.; Zhai, J.Q.; Wang, Y.J.; Wen, S.S.; Gao, M.N.; Lv, Y.R.; Jiang, S.; Jiang, T.; et al. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos. Res. 2021, 250, 105375. [Google Scholar] [CrossRef]
- Niu, J.Y.; Wu, J.Y.; Qin, W.M.; Wang, L.C.; Yang, C.; Zhang, M.; Zhang, Y.J.; Qi, Q.H. Projection of future carbon benefits by photovoltaic power potential in China using CMIP6 statistical downscaling data. Environ. Res. Lett. 2023, 18, 094013. [Google Scholar] [CrossRef]
- Sun, P.; Zou, Y.F.; Yao, R.; Ma, Z.C.; Bian, Y.J.; Ge, C.H.; Lv, Y.F. Compound and successive events of extreme precipitation and extreme runoff under heatwaves based on CMIP6 models. Sci. Total Environ. 2023, 878, 162980. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Hu, H.; Mao, X. Projected Alterations in Snowmelt Streamflow with Climate Change in Shiyang River Basin of Northwest China Using Modified Swat Model; SSRN. 2023. Available online: https://ssrn.com/abstract=4652847 (accessed on 15 October 2023).
- Ma, Z.C.; Sun, P.; Zhang, Q.; Zou, Y.F.; Lv, Y.F.; Li, H.; Chen, D.H. The Characteristics and Evaluation of Future Droughts across China through the CMIP6 Multi-Model Ensemble. Remote Sens. 2022, 14, 1097. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Wen, Z.M.; Chen, Y.M.; Cao, Y.; Ren, J.Y. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agr. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Jian, S.Q.; Shi, S.J.; Cui, J.K.; Zhu, T.S.; Hu, C.H. Study on fractional vegetation cover dynamic in the Yellow River Basin, China from 1901 to 2100. Front. For. Glob. Chang. 2023, 6, 1157285. [Google Scholar] [CrossRef]
- Chen, C.Z.; Gan, R.; Feng, D.M.; Yang, F.; Zuo, Q.T. Quantifying the contribution of SWAT modelling and CMIP6 inputting to streamflow prediction uncertainty under climate change. J. Clean. Prod. 2022, 364, 132675. [Google Scholar] [CrossRef]
- Li, J.D.; Strong, C.; Wang, J.; Burian, S. An Event-Based Resilience Index to Assess the Impacts of Land Imperviousness and Climate Changes on Flooding Risks in Urban Drainage Systems. Water 2023, 15, 2663. [Google Scholar] [CrossRef]
- Climate Change Research Center. Available online: https://ccrc.iap.ac.cn (accessed on 15 December 2023).
- Cui, T.; Li, C.; Tian, F.Q. Evaluation of Temperature and Precipitation Simulations in CMIP6 Models Over the Tibetan Plateau. Earth Space Sci. 2021, 8, e2020EA001620. [Google Scholar] [CrossRef]
- Zamani, Y.; Monfared, S.A.H.; Moghaddam, M.A.; Hamidianpour, M. A comparison of CMIP6 and CMIP5 projections for precipitation to observational data: The case of Northeastern Iran. Theor. Appl. Climatol. 2020, 142, 1613–1623. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model User’s Manual Version 5.1. EPA/600/R-05/040; US Environmental Protection Agency: Cincinnati, OH, USA, 2015.
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Dell, T.; Razzaghmanesh, M.; Sharvelle, S.; Arabi, M. Development and Application of a SWMM-Based Simulation Model for Municipal Scale Hydrologic Assessments. Water 2021, 13, 1644. [Google Scholar] [CrossRef]
- Hua, P.; Yang, W.Y.; Qi, X.C.; Jiang, S.S.; Xie, J.Q.; Gu, X.Y.; Li, H.H.; Zhang, J.; Krebs, P. Evaluating the effect of urban flooding reduction strategies in response to design rainfall and low impact development. J. Clean. Prod. 2020, 242, 118515. [Google Scholar] [CrossRef]
- Wang, N.; Chu, X.F. Revised Horton model for event and continuous simulations of infiltration. J. Hydrol. 2020, 589, 125215. [Google Scholar] [CrossRef]
- Yang, W.Y.; Zhang, J.; Mei, S.B.; Krebs, P. Impact of antecedent dry-weather period and rainfall magnitude on the performance of low impact development practices in urban flooding and non-point pollution mitigation. J. Clean. Prod. 2021, 320, 128946. [Google Scholar] [CrossRef]
- Duan, H.F.; Li, F.; Yan, H.X. Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: LID Implementation and Analysis. Water Resour. Manag. 2016, 30, 4635–4648. [Google Scholar] [CrossRef]
- Dong, X.Y.; Yuan, P.; Song, Y.H.; Yi, W.X. Optimizing Green-Gray Infrastructure for Non-Point Source Pollution Control under Future Uncertainties. Int. J. Environ. Res. Public Health 2021, 18, 7586. [Google Scholar] [CrossRef]
- Liu, Z.J.; Xu, C.Q.; Xu, T.; Jia, H.F.; Zhang, X.; Chen, Z.X.; Yin, D.K. Integrating socioecological indexes in multiobjective intelligent optimization of green-grey coupled infrastructures. Resour. Conserv. Recycl. 2021, 174, 105801. [Google Scholar] [CrossRef]
- Bakhshipour, A.E.; Dittmer, U.; Haghighi, A.; Nowak, W. Hybrid green-blue-gray decentralized urban drainage systems design, a simulation-optimization framework. J. Environ. Manag. 2019, 249, 109364. [Google Scholar] [CrossRef]
- Wang, Z.L.; Zhou, S.Q.; Wang, M.; Zhang, D.Q. Cost-benefit analysis of low-impact development at hectare scale for urban stormwater source control in response to anticipated climatic change. J. Environ. Manag. 2020, 264, 110483. [Google Scholar] [CrossRef] [PubMed]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Multiobjective optimization of low impact development stormwater controls. J. Hydrol. 2018, 562, 564–576. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Zhang, D.Q.; Zhang, Y.; Su, J.; Zhou, S.Q.; Bakhshipour, A.E.; Tan, S.K. Assessing hydrological performance for optimized integrated grey-green infrastructure in response to climate change based on shared socio-economic pathways. Sustain. Cities Soc. 2023, 91, 104436. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Zhang, D.Q.; Qi, J.D.; Fu, W.C.; Zhang, Y.; Rao, Q.Y.; Bakhshipour, A.E.; Tan, S.K. Assessing and optimizing the hydrological performance of Grey-Green infrastructure systems in response to climate change and non-stationary time series. Water Res. 2023, 232, 119720. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.Y.; Yu, H.J.; He, S.J.; Lai, C.G.; Li, X.Y.; Jiang, X.T. The Mitigating Efficacy of Multi-Functional Storage Spaces in Alleviating Urban Floods across Diverse Rainfall Scenarios. Sustainability 2024, 16, 6417. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Xu, C.Q.; Liu, Z.J.; Yin, D.K.; Jia, H.F.; Guan, Y.T. Spatial layout optimization of green infrastructure based on life cycle multi-objective optimization algorithm and SWMM model. Resour. Conserv. Recycl. 2023, 191, 106906. [Google Scholar] [CrossRef]
Serial Number | Model Name | Institution | Country | Atmospheric Model Resolution |
---|---|---|---|---|
1 | CanESM5 | CCCMA | Canada | 2.81° × 2.79° |
2 | CMCC-ESM2 | CMCC | Italy | 1.25° × 0.94° |
3 | GFDL-ESM4 | NOAA-GFDL | America | 1.25° × 1° |
4 | IPSL-CM6A-LR | IPSL | France | 2.5° × 1.27° |
5 | MIROC6 | JAMSTEC | Japan | 1.41° × 1.4° |
6 | MRI-ESM2-0 | MRI | Japan | 1.13° × 1.12° |
7 | NorESM2-LM | NCC | Norway | 2.5° × 1.89° |
8 | NESM3 | NUIST | China | 1.88° × 1.86° |
Parameter Name | Initial Value | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 |
---|---|---|---|---|---|---|---|---|---|
N-Imperv | 0.013 | 0.012 | 0.013 | 0.014 | 0.014 | 0.015 | 0.015 | 0.015 | 0.015 |
N-Perv | 0.15 | 0.2 | 0.25 | 0.25 | 0.25 | 0.2 | 0.25 | 0.25 | 0.2 |
D-Imperv | 2 | 2 | 2.25 | 2.25 | 2.4 | 2.3 | 2.4 | 2.4 | 2.3 |
D-Perv | 5 | 5 | 5 | 8.5 | 9 | 8.5 | 8.5 | 9.5 | 8.5 |
MaxRate | 60 | 65 | 65 | 65 | 70 | 65 | 70 | 70 | 65 |
MinRate | 3.18 | 3.2 | 3.2 | 3.25 | 3.3 | 3.25 | 3.3 | 3.3 | 3.25 |
Decay | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Simulated runoff coefficient | 0.6076 | 0.5900 | 0.5833 | 0.5648 | 0.5578 | 0.5650 | 0.5583 | 0.5572 | 0.5650 |
Target runoff coefficient | 0.5530 | 0.5530 | 0.5530 | 0.5530 | 0.5530 | 0.5530 | 0.5530 | 0.5530 | 0.5530 |
D-value | 0.0546 | 0.0370 | 0.0303 | 0.0118 | 0.0048 | 0.0120 | 0.0053 | 0.0042 | 0.0120 |
Return Period | Precipitation (mm) | Runoff (mm) | Simulated Value of the Runoff Coefficient | Simulation D-Value | |
---|---|---|---|---|---|
2a | 45.653 | 26.246 | 0.5749 | 0.0219 | 1.83% |
3a | 49.014 | 28.977 | 0.5912 | 0.0382 | 3.03% |
CGGI | Construction Cost (RMB/m2) | Percentage of the Operation and Maintenance Cost (%) | Service Life (Years) | Discount Rate (%) |
---|---|---|---|---|
Bioretention facility | 536.76 | 5 | 30 | 6 |
Green roof | 477.75 | 5 | 30 | 6 |
Permeable pavement | 315.42 | 5 | 30 | 6 |
Storage tank | 2335.05 | 8 | 25 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Cheng, J.; Xu, H.; Li, J. A Multi-Objective Optimization Framework for Coupled Grey–Green Infrastructure of Areas with Contamination-Induced Water Shortages Under Future Multi-Dimensional Scenarios. Land 2024, 13, 1932. https://doi.org/10.3390/land13111932
Xu Z, Cheng J, Xu H, Li J. A Multi-Objective Optimization Framework for Coupled Grey–Green Infrastructure of Areas with Contamination-Induced Water Shortages Under Future Multi-Dimensional Scenarios. Land. 2024; 13(11):1932. https://doi.org/10.3390/land13111932
Chicago/Turabian StyleXu, Zixiang, Jiaqing Cheng, Haishun Xu, and Jining Li. 2024. "A Multi-Objective Optimization Framework for Coupled Grey–Green Infrastructure of Areas with Contamination-Induced Water Shortages Under Future Multi-Dimensional Scenarios" Land 13, no. 11: 1932. https://doi.org/10.3390/land13111932
APA StyleXu, Z., Cheng, J., Xu, H., & Li, J. (2024). A Multi-Objective Optimization Framework for Coupled Grey–Green Infrastructure of Areas with Contamination-Induced Water Shortages Under Future Multi-Dimensional Scenarios. Land, 13(11), 1932. https://doi.org/10.3390/land13111932