Connections and Spatial Network Structure of the Tourism Economy in Beijing–Tianjin–Hebei: A Social Network Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Methods
2.3.1. Measurement of Tourism Economic Connection
- Tourism economic gravity model
- 2.
- Tourism economic quality evaluation
- 3.
- Assessment weight
2.3.2. Social Network Analysis
3. Results
3.1. Comprehensive Coefficient of Tourism Economic Quality
3.2. The Intensity of Tourism Economic Spatial Connections
3.3. SNA of Tourism Economic Spatial Correlation in BTHUA
3.3.1. The Overall Network Characteristics
3.3.2. The Individual Network Characteristics
3.3.3. Cohesive Subgroup Analysis
3.3.4. Analysis of the Core–Periphery Structure
4. Discussion
4.1. Optimization and Collaborative Development Path of the TEC’s Spatial Network Structure
4.2. Recommendations
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gan, C.; Voda, M.; Wang, K.; Chen, L.; Ye, J. Spatial network structure of the tourism economy in urban agglomeration: A social network analysis. J. Hosp. Tour. Manag. 2021, 47, 124–133. [Google Scholar] [CrossRef]
- Bao, J.; Chen, Y.; Ma, L. The process and mechanism of tourism resources evaluation:From technical evaluation to the social construction perspective. J. Nat. Resour. 2020, 35, 1556–1569. [Google Scholar] [CrossRef]
- Dogru, T.; Bulut, U. Is tourism an engine for economic recovery? Theory and empirical evidence. Tour. Manag. 2018, 67, 425–434. [Google Scholar] [CrossRef]
- Wang, J.; Huang, X.; Gong, Z.; Cao, K. Dynamic assessment of tourism carrying capacity and its impacts on tourism economic growth in urban tourism destinations in China. J. Destin. Mark. Manag. 2020, 15, 100383. [Google Scholar] [CrossRef]
- Li, S.; Liu, A.; Song, H. Does tourism support supply-side structural reform in China? Tour. Manag. 2019, 71, 305–314. [Google Scholar] [CrossRef]
- Xu, D.; Li, X.; Yan, S.; Cui, L.; Liu, X.; Zheng, Y. A Quantitative Model to Measure the Level of Culture and Tourism Integration Based on a Spatial Perspective: A Case Study of Beijing from 2000 to 2022. Sustainability 2024, 16, 4276. [Google Scholar] [CrossRef]
- Ding, C.; Gao, X.; Xie, Z. Analysing the differential impact of the COVID-19 pandemic on the resilience of the tourism economy: A case study of the Chengdu-Chongqing urban agglomeration in China. Int. J. Disaster Risk Reduct. 2024, 102, 104255. [Google Scholar] [CrossRef]
- Ruan, W.-Q.; Zhang, S.-N. Can tourism information flow enhance regional tourism economic linkages? J. Hosp. Tour. Manag. 2021, 49, 614–623. [Google Scholar] [CrossRef]
- Zhang, L.; Marzuki, A.; Liao, Z.; Zhao, K.; Huang, Z.; Chen, W. Spatial and temporal evolution of Guangdong tourism economic network structure from the perspective of social networks. Heliyon 2023, 9, e18570. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Y.; Zhu, X.; Cai, Z.; Xu, J.; Shi, S. Spatial structure of urban agglomeration under the impact of high-speed railway construction: Based on the social network analysis. Sustain. Cities Soc. 2020, 62, 102404. [Google Scholar] [CrossRef]
- Chen, J.P.; Ma, C.; Chen, S.J. Determinant of the tourism economy in Chinese cities: From an urban centrality perspective. Tour. Econ. 2024, 30, 44–66. [Google Scholar] [CrossRef]
- Erkus-Ozturk, H.; Eraydin, A. Environmental governance for sustainable tourism development: Collaborative networks and organisation building in the Antalya tourism region. Tour. Manag. 2010, 31, 113–124. [Google Scholar] [CrossRef]
- Wang, Y.C.; Qu, H.L.; Yang, J. Love spillover from a hotel sub-brand to its corporate brand: An associative network theory perspective. J. Hosp. Tour. Manag. 2020, 44, 263–271. [Google Scholar] [CrossRef]
- Kirilenko, A.P.; Stepchenkova, S.O.; Hernandez, J.M. Comparative clustering of destination attractions for different origin markets with network and spatial analyses of online reviews. Tour. Manag. 2019, 72, 400–410. [Google Scholar] [CrossRef]
- Asero, V.; Gozzo, S.; Tomaselli, V. Building Tourism Networks through Tourist Mobility. J. Travel Res. 2016, 55, 751–763. [Google Scholar] [CrossRef]
- Yin, P.; Lin, Z.B.; Prideaux, B. The impact of high-speed railway on tourism spatial structures between two adjoining metropolitan cities in China: Beijing and Tianjin. J. Transp. Geogr. 2019, 80, 102495. [Google Scholar] [CrossRef]
- Gong, H.X.; Zheng, Y.M.; Shi, J.L.; Wang, J.X.; Yang, H.Z.; Sibalo, S.P.A.; Mwamlima, A.; Li, J.Y.; Xu, S.T.; Xu, D.D.; et al. An Examination of the Spatial Spillover Effects of Tourism Transportation on Sustainable Development from a Multiple-Indicator Cross-Perspective. Sustainability 2023, 15, 4522. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, R.; He, B. The Carbon Emission Reduction Effect of Tourism Economy and Its Formation Mechanism: An Empirical Study of China’s 92 Tourism-Dependent Cities. Int. J. Environ. Res. Public Health 2022, 19, 1824. [Google Scholar] [CrossRef]
- Wang, D.G.; Niu, Y.; Qian, J. Evolution and optimization of China’s urban tourism spatial structure: A high speed rail perspective. Tour. Manag. 2018, 64, 218–232. [Google Scholar] [CrossRef]
- Chang, P.P.; Pang, X.R.; He, X.; Zhu, Y.T.; Zhou, C.S. Exploring the Spatial Relationship between Nighttime Light and Tourism Economy: Evidence from 31 Provinces in China. Sustainability 2022, 14, 7350. [Google Scholar] [CrossRef]
- Li, H.Y.; Sun, Z.Y.; Yang, C.Y. Dynamic linkages between tourism development, renewable energy and high-quality economic development: Evidence from spatial Durbin model. PLoS ONE 2024, 19, e0295448. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; An, L.D.; Chen, H.; Zhao, Y.Y. Spatial Correlation and Influencing Factors of Tourism Eco-Efficiency in the Urban Agglomeration of the Yangtze River Delta Based on Social Network Analysis. Land 2022, 11, 2089. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.Y. A Study on the Coupling Coordination of Urban Resilience and the Tourism Economy in the Beijing-Tianjin-Hebei Region. Sustainability 2024, 16, 4946. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhang, Y. Spatial-temporal evolution and influencing factors of tourism eco-efficiency in China’s Beijing-Tianjin-Hebei region. Front. Environ. Sci. 2022, 10, 1067835. [Google Scholar] [CrossRef]
- Li, S.J.; Wei, Y.K. Exploring the mechanism of coordinated development with multi-source data fusion: A case study in Beijing-Tianjin-Hebei Region, China. Front. Ecol. Evol. 2023, 11, 1173867. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, N.; Mu, H.; Miao, J.; Li, W.; Li, M. Assessment of urban resilience and subsystem coupling coordination in the Beijing-Tianjin-Hebei urban agglomeration. Sustain. Cities Soc. 2024, 100, 105058. [Google Scholar] [CrossRef]
- Liu, P.; Qin, Y.; Luo, Y.Y.; Wang, X.X.; Guo, X.W. Structure of low-carbon economy spatial correlation network in urban agglomeration. J. Clean. Prod. 2023, 394, 136359. [Google Scholar] [CrossRef]
- Chen, T.Y.; Zhou, Y.K.; Zou, D.; Wu, J.T.; Chen, Y.; Wu, J.P.; Wang, J. Deciphering China’s Socio-Economic Disparities: A Comprehensive Study Using Nighttime Light Data. Remote Sens. 2023, 15, 4581. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, X.Y.; Li, D.R.; Jiang, B.Y. Evaluating the Potential of LJ1-01 Nighttime Light Data for Modeling Socio-Economic Parameters. Sensors 2019, 19, 1465. [Google Scholar] [CrossRef]
- Ge, J.; Meng, B.; Liang, T.; Feng, Q.; Gao, J.; Yang, S.; Huang, X.; Xie, H. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sens. Environ. 2018, 218, 162–173. [Google Scholar] [CrossRef]
- Liang, L.W.; Chen, M.X.; Luo, X.Y.; Xian, Y. Changes pattern in the population and economic gravity centers since the Reform and Opening up in China: The widening gaps between the South and North. J. Clean. Prod. 2021, 310, 127379. [Google Scholar] [CrossRef]
- Manrique-de-Lara-Peñate, C.; Santana Gallego, M.; Valle, E.V. The economic impact of global uncertainty and security threats on international tourism. Econ. Model. 2022, 113, 105892. [Google Scholar] [CrossRef]
- Shen, W.; Liang, H.; Dong, L.; Ren, J.; Wang, G. Synergistic CO2 reduction effects in Chinese urban agglomerations: Perspectives from social network analysis. Sci. Total Environ. 2021, 798, 149352. [Google Scholar] [CrossRef] [PubMed]
- Dejean, S. The role of distance and social networks in the geography of crowdfunding: Evidence from France. Reg. Stud. 2020, 54, 329–339. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z. Research on Spatial Correlation Network Structure of Inter-Provincial Electronic Information Manufacturing Industry in China. Sustainability 2019, 11, 3534. [Google Scholar] [CrossRef]
- Danish; Wang, Z.H. Dynamic relationship between tourism, economic growth, and environmental quality. J. Sustain. Tour. 2018, 26, 1928–1943. [Google Scholar] [CrossRef]
- Shan, Y.; Ren, Z. Does tourism development and renewable energy consumption drive high quality economic development? Resour. Pol. 2023, 80, 103270. [Google Scholar] [CrossRef]
- Meng, G.; Wang, K.; Wang, F.; Dong, Y. Analysis of the tourism-economy-ecology coupling coordination and high-quality development path in karst Guizhou Province, China. Ecol. Indic. 2023, 154, 110858. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, Q.; Zhu, Z. Modeling, Evaluation and Analysis of Tourism Destination Competitiveness: A Case Study of the Yangtze River Delta of China. Asia Pac. J. Tour. Res. 2014, 19, 932–949. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, C.-L.; Gu, L.-W.; Zhang, Y. The evaluation of tourism destination competitiveness by TOPSIS & information entropy—A case in the Yangtze River Delta of China. Tour. Manag. 2011, 32, 443–451. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, Y.; Huang, X.; Zhai, J. Climate resilience of urban water systems: A case study of sponge cities in China. J. Clean. Prod. 2024, 451, 141781. [Google Scholar] [CrossRef]
- He, C.C.; Han, Q.; de Vries, B.; Wang, X.M.; Zhao, G.C. Evaluation of sustainable land management in urban area: A case study of Shanghai, China. Ecol. Indic. 2017, 80, 106–113. [Google Scholar] [CrossRef]
- Jing, X.; Tao, S.; Hu, H.; Sun, M.; Wang, M. Spatio-temporal evaluation of ecological security of cultivated land in China based on DPSIR-entropy weight TOPSIS model and analysis of obstacle factors. Ecol. Indic. 2024, 166, 112579. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Zeng, S.Z.; Lin, Z.S.; Ullah, K. Comprehensive evaluation and spatial-temporal differences analysis of China’s inter-provincial doing business environment based on Entropy-CoCoSo method. Front. Environ. Sci. 2023, 10, 1088064. [Google Scholar] [CrossRef]
- Guo, K.; Liang, X.J.; Zhang, X.C.; Luo, R.B.; Qiu, T.Q.; He, Z.H.; Zhang, K.X. Development of an adverse outcome pathways approach for land resource and environment management at the regional scale. Ecol. Indic. 2023, 157, 111210. [Google Scholar] [CrossRef]
- Zeng, C.; Deng, X.Z.; Xu, S.; Wang, Y.T.; Cui, J.X. An integrated approach for assessing the urban ecosystem health of megacities in China. Cities 2016, 53, 110–119. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, J.; Zhu, Y.; Zhang, H. Research on tourism ecological safety evaluation of Huizhou Cultural and ecological reserve based on entropy-TOPSIS. Heliyon 2024, 10, e24325. [Google Scholar] [CrossRef]
- Li, J.Q.; Yang, N.; Shen, Z.Y. Evaluation of the water quality monitoring network layout based on driving-pressure-state-response framework and entropy weight TOPSIS model: A case study of Liao River, China. J. Environ. Manag. 2024, 361, 121267. [Google Scholar] [CrossRef]
- Liu, B.; Huang, S.; Fu, H. An application of network analysis on tourist attractions: The case of Xinjiang, China. Tour. Manag. 2017, 58, 132–141. [Google Scholar] [CrossRef]
- Gregson, J.; Sowa, M.; Flynn, H.K. Evaluating Form and Function of Regional Partnerships: Applying Social Network Analysis to the Network for a Healthy California, 2001–2007. J. Nutr. Educ. Behav. 2011, 43, S67–S74. [Google Scholar] [CrossRef]
- Bai, C.; Zhou, L.; Xia, M.; Feng, C. Analysis of the spatial association network structure of China’s transportation carbon emissions and its driving factors. J. Environ. Manag. 2020, 253, 109765. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Andrades, J.A.; García-Rodríguez, I.; Benavides, C.; Alaiz-Moretón, H.; Labra Gayo, J.E. An ontology-based multi-domain model in social network analysis: Experimental validation and case study. Inf. Sci. 2020, 540, 390–413. [Google Scholar] [CrossRef]
- Shi, S.N.; Liu, M.H.; Xi, J.C. Hierarchical Structure and Organizational Model of County Tourism Network of the Tibetan Plateau. Land 2022, 11, 1880. [Google Scholar] [CrossRef]
- Wang, K.; Wang, M.H.; Gan, C.; Chen, Q.C.; Voda, M. Tourism Economic Network Structural Characteristics of National Parks in the Central Region of China. Sustainability 2021, 13, 4805. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G. Models of core/periphery structures. Soc. Netw. 2000, 21, 375–395. [Google Scholar] [CrossRef]
- Ma, L.; Yang, L.; Jiang, X.; Huang, D. Analysis of business interruption risk factors of Chinese enterprises during flood disasters based on social network analysis. Clim. Risk Manag. 2021, 33, 100353. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Xu, J.; Fujiki, Y. Evolution characteristics of the spatial network structure of tourism efficiency in China: A province-level analysis. J. Destin. Mark. Manag. 2020, 18, 100509. [Google Scholar] [CrossRef]
- Lv, K.; Feng, X.; Kelly, S.; Zhu, L.; Deng, M. A study on embodied carbon transfer at the provincial level of China from a social network perspective. J. Clean. Prod. 2019, 225, 1089–1104. [Google Scholar] [CrossRef]
- Li, A.; Mou, N.; Zhang, L.; Yang, T.; Liu, W.; Liu, F. Tourism Flow Between Major Cities During China’s National Day Holiday: A Social Network Analysis Using Weibo Check-in Data. IEEE Access 2020, 8, 225675–225691. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Y.; Liu, N. Analysis on Tourism Economic Connection of Beijing-Tianjin-Hebei Based on the Improved Gravity Model. China Bus. Mark. 2020, 34, 121–128. [Google Scholar] [CrossRef]
- The People’s Government of Hebei Province, China. Hebei Province Tourism High Quality Development Plan. Beijing 2018. Available online: https://www.hebei.gov.cn/columns/b22afae0-df96-48fa-b3a0-38a652afcf79/202309/06/c92422ca-b507-476d-b6b4-acc038c36098.html (accessed on 18 July 2024).
- Ministry of Culture and Tourism, China. Tianjin Tourism Promotion Regulations. Beijing 2022. Available online: https://www.mct.gov.cn/whzx/qgwhxxlb/tj/202208/t20220803_935114.htm (accessed on 18 July 2024).
Target | First-Level Indicator | Second-Level Indicator | Unit |
---|---|---|---|
Tourism economy quality | Tourism scale | Number of domestic tourists | Million person-times |
Number of foreign tourists | Person-times | ||
Total star-rated hotel | Number | ||
Night Light Brightness | / | ||
Tourism performance | Domestic tourism revenue | RMB 100 million Yuan | |
Foreign tourism revenue | USD 10,000 | ||
Percentage of total tourism revenue in GDP | % | ||
Percentage of total tourism revenue in the tertiary industry | % | ||
Transportation condition | Ratio of highway mileage to the city area | km/km2 | |
Ratio of railway mileage to the city area | km/km2 | ||
Tourist resources environment | Per capita green space area | km2/Person | |
Vegetation coverage | / | ||
Number of tourist attractions of levels 3A-5A | Number |
Indicator | Formula | Meaning of Variables | Description |
---|---|---|---|
Network density (ND) | L is the number of associations; N is the number of nodes in the network | Measure the closeness of connections between cities | |
Network connectedness (NC) | V is the number of unreachable point pairs in the network | Measure the robustness or fragility of a network | |
Network hierarchy (NH) | K is the number of symmetrically reachable points | Represent the dominant position of network nodes in the entire network | |
Network efficiency (NE) | M is the number of redundant lines | Check the degree of redundant lines in the network | |
Degree centrality (DC) | n is the number of nodes connected to a city, and N is the node number in the network | Reflect the degree to which a city is at the center of a spatial correlation network | |
Closeness centrality (CC) | dij is the shortest distance between city i and city j | Reflect the degree to which a city in the network is not controlled by other nodes |
City | 2013 | 2018 | 2022 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Out-Degree | In-Degree | Degree | Out-Closeness | In-Closeness | Out-Degree | In-Degree | Degree | Out-Closeness | In-Closeness | Out-Degree | In-Degree | Degree | Out-Closeness | In-Closeness | |
Beijing | 12 | 1 | 100.0 | 1.00 | 0.35 | 12 | 1 | 100.0 | 1.00 | 0.35 | 12 | 1 | 100.0 | 1.00 | 0.52 |
Tianjin | 11 | 1 | 91.67 | 0.92 | 0.35 | 9 | 1 | 75.00 | 0.80 | 0.35 | 12 | 1 | 100.0 | 1.00 | 0.52 |
Shijiazhuang | 3 | 2 | 41.67 | 0.40 | 0.38 | 3 | 2 | 41.67 | 0.40 | 0.38 | 3 | 2 | 41.67 | 0.57 | 0.55 |
Tangshan | 0 | 2 | 16.67 | 0.33 | 0.38 | 0 | 2 | 16.67 | 0.33 | 0.38 | 1 | 2 | 25.00 | 0.52 | 0.55 |
Qinhuangdao | 0 | 2 | 16.67 | 0.33 | 0.38 | 0 | 2 | 16.67 | 0.33 | 0.38 | 0 | 3 | 25.00 | 0.50 | 0.57 |
Handan | 1 | 4 | 33.33 | 0.35 | 0.43 | 1 | 4 | 33.33 | 0.35 | 0.43 | 1 | 4 | 33.33 | 0.52 | 0.60 |
Xingtai | 1 | 4 | 33.33 | 0.35 | 0.43 | 1 | 3 | 25.00 | 0.35 | 0.41 | 1 | 4 | 33.33 | 0.52 | 0.60 |
Baoding | 0 | 2 | 16.67 | 0.33 | 0.38 | 0 | 2 | 16.67 | 0.33 | 0.38 | 0 | 2 | 16.67 | 0.50 | 0.55 |
Zhangjiakou | 0 | 1 | 8.33 | 0.33 | 0.36 | 0 | 1 | 8.33 | 0.33 | 0.36 | 0 | 2 | 16.67 | 0.50 | 0.55 |
Chengde | 0 | 2 | 16.67 | 0.33 | 0.38 | 0 | 1 | 8.33 | 0.33 | 0.36 | 0 | 2 | 16.67 | 0.50 | 0.55 |
Cangzhou | 0 | 2 | 16.67 | 0.33 | 0.38 | 0 | 2 | 16.67 | 0.33 | 0.38 | 0 | 2 | 16.67 | 0.50 | 0.55 |
Langfang | 0 | 2 | 16.67 | 0.33 | 0.38 | 0 | 2 | 16.67 | 0.33 | 0.38 | 0 | 2 | 16.67 | 0.50 | 0.55 |
Hengshui | 0 | 3 | 25.00 | 0.33 | 0.40 | 0 | 3 | 25.00 | 0.33 | 0.40 | 0 | 3 | 25.00 | 0.50 | 0.57 |
Mean | 2.15 | 2.15 | 33.33 | 0.44 | 0.38 | 2.00 | 2.00 | 30.77 | 0.43 | 0.38 | 2.31 | 2.31 | 35.90 | 0.59 | 0.55 |
Year | Area | Core Area | Periphery Area | City |
---|---|---|---|---|
2013 | Core area | 0.667 | 0.472 | Beijing, Tianjin, Handan, Xingtai |
Periphery area | 0.056 | 0.014 | Shijiazhuang, Tangshan, Qinhuangdao, Baoding, Zhangjiakou, Chengde, Cangzhou, Langfang, Hengshui | |
2018 | Core area | 0.583 | 0.500 | Beijing, Tianjin, Shijiazhuang, Handan |
Periphery area | 0.028 | 0.000 | Tangshan, Qinhuangdao, Xingtai, Baoding, Zhangjiakou, Chengde, Cangzhou, Langfang, Hengshui | |
2022 | Core area | 0.667 | 0.500 | Beijing, Tianjin, Handan, Xingtai |
Periphery area | 0.056 | 0.028 | Shijiazhuang, Tangshan, Qinhuangdao, Baoding, Zhangjiakou, Chengde, Cangzhou, Langfang, Hengshui |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Huang, X.; Shi, J.; Zheng, Y.; Wang, J. Connections and Spatial Network Structure of the Tourism Economy in Beijing–Tianjin–Hebei: A Social Network Perspective. Land 2024, 13, 1691. https://doi.org/10.3390/land13101691
Zhang X, Huang X, Shi J, Zheng Y, Wang J. Connections and Spatial Network Structure of the Tourism Economy in Beijing–Tianjin–Hebei: A Social Network Perspective. Land. 2024; 13(10):1691. https://doi.org/10.3390/land13101691
Chicago/Turabian StyleZhang, Xiaoyuan, Xiankai Huang, Jinlian Shi, Yaomin Zheng, and Jiahong Wang. 2024. "Connections and Spatial Network Structure of the Tourism Economy in Beijing–Tianjin–Hebei: A Social Network Perspective" Land 13, no. 10: 1691. https://doi.org/10.3390/land13101691
APA StyleZhang, X., Huang, X., Shi, J., Zheng, Y., & Wang, J. (2024). Connections and Spatial Network Structure of the Tourism Economy in Beijing–Tianjin–Hebei: A Social Network Perspective. Land, 13(10), 1691. https://doi.org/10.3390/land13101691