Effects of Biochar on Soil Organic Carbon in Relation to Soil Nutrient Contents, Climate Zones and Cropping Systems: A Chinese Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Collection
2.3. Data Categorisation
2.4. Meta-Analysis
3. Results
3.1. Overall Effects
3.2. Soil Nutrient Contents
3.3. Climate Zones and Cropping Systems
3.4. The Relative Importance of Moderating Variables
4. Discussion
4.1. Overall Effects of Biochar Application on SOC Content
4.2. Effects of Soil Nutrient Contents on SOC Content Responses to Biochar Application
4.3. Effects of Climate Zones and Cropping Systems on SOC Content Responses to Biochar Application
4.4. The Relative Importance of Moderating Variables Influencing SOC Change Due to Biochar Application
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fall, A.F.; Nakabonge, G.; Ssekandi, J.; Founoune-Mboup, H.; Apori, S.O.; Ndiaye, A.; Badji, A.; Ngom, K. Roles of arbuscular mycorrhizal fungi on soil fertility: Contribution in the improvement of physical, chemical and biological properties of the soil. Front. Fungal Biol. 2022, 3, 723892. [Google Scholar] [CrossRef] [PubMed]
- Eekhout, J.P.C.; de Vente, J. Global impact of climate change on soil erosion and potential for adaptation through soil conservation. Earth Sci. Rev. 2022, 226, 103921. [Google Scholar] [CrossRef]
- Chen, S.; Lin, B.W.; Li, Y.Q.; Zhou, S.N. Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China. Geoderma 2020, 357, 113937. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil. Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- James, J.N.; Gross, C.D.; Dwivedi, P.; Myers, T.; Santos, F.; Bernardi, R.; Faria, M.F.; Guerrini, I.A.; Harrison, R.; Butman, D. Land use change alters the radiocarbon age and composition of soil and water-soluble organic matter in the Brazilian cerrado. Geoderma 2019, 345, 38–50. [Google Scholar] [CrossRef]
- Bolan, N.; Hoang, S.A.; Beiyuan, J.Z.; Gupta, S.; Hou, D.Y.; Karakoti, A.; Joseph, S.; Jung, S.; Kim, K.H.; Kirkham, M.B.; et al. Multifunctional applications of biochar beyond carbon storage. Int. Mater. Rev. 2021, 67, 150–200. [Google Scholar] [CrossRef]
- Oliveira, F.R.; Patel, A.K.; Jaisi, D.P.; Adhikari, S.; Lu, H.; Khanal, S.K. Environmental application of biochar: Current status and Perspectives. Bioresour. Technol. 2017, 246, 110–122. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, S.; Verma, S.; Sar, T.; Sarsaiya, S.; Ravindran, B.; Liu, T.; Sindhu, R.; Patel, A.K.; Binod, P.; et al. Production and beneficial impact of Biochar for Environmental Application: A comprehensive review. Bioresour. Technol. 2021, 337, 125451. [Google Scholar] [CrossRef]
- Cui, Q.; Xia, J.; Yang, H.; Liu, J.; Shao, P. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Sci. Total Environ. 2021, 756, 143801. [Google Scholar] [CrossRef]
- Li, S.; Xu, C.; Qin, S.; Guo, X.; Bai, Y.; Guo, F. Molecular characteristics of biochar-derived organic matter sub-fractions extracted by ultrasonication. Sci. Total Environ. 2022, 806, 150190. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Wang, W.; Sardans, J.; Lan, X.; Fang, Y.; Singh, B.P.; Xu, X.; Wiesmeier, M.; Tariq, A.; Zeng, F.; et al. Effects of slag and biochar amendments on microorganisms and fractions of soil organic carbon during flooding in a paddy field after two years in southeastern China. Sci. Total Environ. 2022, 824, 153783. [Google Scholar] [CrossRef]
- Qiu, H.; Liu, J.; Boorboori, M.R.; Li, D.; Chen, S.; Ma, X.; Cheng, P.; Zhang, H. Effect of biochar application rate on changes in soil labile organic carbon fractions and the association between Bacterial Community Assembly and carbon metabolism with Time. Sci. Total Environ. 2023, 855, 158876. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, W.; Sun, X.; Jiang, J.; Li, D.; Tang, G.; Xu, W.; Jia, H. Biochar Aged for Five Years Altered Carbon Fractions and Enzyme Activities of Sandy Soil. Land 2023, 12, 1645. [Google Scholar] [CrossRef]
- Pang, J.; Wang, Y.; Wang, B.; Wang, J.; Liu, E.; Gao, F.; Sun, S.; Ren, X.; Jia, Z.; Wei, T.; et al. Biochar application increases maize yield under film mulching due to higher soil organic content and soil aggregate stability in a semi-arid area. J. Soil. Sediment. 2023, 23, 1718–1732. [Google Scholar] [CrossRef]
- Joseph, U.E.; Toluwase, A.O.; Kehinde, E.O.; Omasan, E.E.; Tolulope, A.Y.; George, O.O.; Zhao, C.; Hongyan, W. Effect of biochar on soil structure and storage of soil organic carbon and nitrogen in the aggregate fractions of an Albic soil. Arch. Agron. Soil Sci. 2019, 66, 1–12. [Google Scholar] [CrossRef]
- Zhang, R.; Qu, Z.; Liu, L.; Yang, W.; Wang, L.; Li, J.; Zhang, D. Soil Respiration and Organic Carbon Response to Biochar and Their Influencing Factors. Atmosphere 2022, 13, 2038. [Google Scholar] [CrossRef]
- Hasnat, M.; Alam, M.A.; Khanam, M.; Binte, B.I.; Kabir, M.H.; Alam, M.S.; Kamal, M.Z.U.; Rahman, G.K.M.M.; Haque, M.M.; Rahman, M.M. Effect of nitrogen fertilizer and biochar on organic matter mineralization and carbon accretion in soil. Sustainability 2022, 14, 3684. [Google Scholar] [CrossRef]
- Jiang, X.; Haddix, M.L.; Cotrufo, M.F. Interactions between biochar and soil organic carbon decomposition: Effects of nitrogen and low molecular weight carbon compound addition. Soil. Biol. Biochem. 2016, 100, 92–101. [Google Scholar] [CrossRef]
- Tian, J.H.; Kuang, X.Z.; Tang, M.T.; Chen, X.D.; Huang, F.; Cai, Y.X.; Cai, K.Z. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition. Sci. Total Environ. 2021, 779, 146556. [Google Scholar] [CrossRef]
- Luo, Z.; Feng, W.; Luo, Y.; Baldock, J.; Wang, E. Soil Organic Carbon Dynamics Jointly Controlled by Climate, Carbon Inputs, Soil Properties and Soil Carbon Fractions. Glob. Change Biol. 2017, 23, 4430–4439. [Google Scholar] [CrossRef] [PubMed]
- Kan, Z.R.; Liu, Q.Y.; Wu, G.; Ma, S.-T.; Virk, A.L.; Qi, J.Y.; Zhao, X.; Zhang, H.L. Temperature and moisture driven changes in soil carbon sequestration and mineralization under biochar addition. J. Clean. Prod. 2020, 265, 121921. [Google Scholar] [CrossRef]
- Nyambo, P.; Thengeni, B.; Chiduza, C.; Araya, T. Tillage, crop rotation, residue management and biochar influence on soil chemical and biological properties. S. Afr. J. Plant Soil. 2021, 38, 390–397. [Google Scholar] [CrossRef]
- Topa, D.; Cara, I.G.; Jităreanu, G. Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. Catena 2021, 199, 105102. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environ. Int. 2016, 87, 1–12. [Google Scholar] [CrossRef]
- Smith, J.L.; Collins, H.P.; Bailey, V.L. The effect of young biochar on soil respiration. Soil Biol. Biochem. 2010, 42, 2345–2347. [Google Scholar] [CrossRef]
- Schmidt, H.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T.D.; Sánchez Monedero, M.A.; Cayuela, M.L. Biochar in agriculture—A systematic review of 26 global meta-analyses. GCB Bioenergy 2021, 13, 1708–1730. [Google Scholar] [CrossRef]
- Gross, A.; Bromm, T.; Glaser, B. Soil Organic Carbon sequestration after Biochar Application: A Global Meta-analysis. Agronomy 2021, 11, 2474. [Google Scholar] [CrossRef]
- Xu, H.; Cai, A.; Wu, D.; Liang, G.; Xiao, J.; Xu, M.; Colinet, G.; Zhang, W. Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C:N ratio and soil pH: A global meta-analysis. Soil Tillage Res. 2021, 213, 105125. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, Y.; Shi, L.; Li, G.; Pang, Z.; Liu, S.; Chen, Y.; Jia, B. Effects of biochar on soil chemical properties: A global meta-analysis of Agricultural Soil. Plant Soil Environ. 2022, 68, 272–289. [Google Scholar] [CrossRef]
- Liu, Y.; Men, M.; Peng, Z.; Chen, H.Y.H.; Yang, Y.; Peng, Y. Spatially explicit estimate of nitrogen effects on soil respiration across the globe. Glob. Change Biol. 2023, 29, 3591–3600. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Ye, X.; Gao, Y.; Liu, G.; Liu, Z.; Zhang, Q.; Liu, E.; Sun, S.; Ren, X.; Jia, Z.; et al. Environment and agricultural practices regulate enhanced biochar-induced soil carbon pools and crop yield: A meta-analysis. Sci. Total Environ. 2023, 905, 167290. [Google Scholar] [CrossRef] [PubMed]
- NATESC. Soil Fertility Survey and Quality Evaluation; China Agriculture Press: Beijing, China, 2005. [Google Scholar]
- Gao, Y.; Shao, G.; Yang, Z.; Zhang, K.; Lu, J.; Wang, Z.; Wu, S.; Xu, D. Influences of soil and biochar properties and amount of biochar and fertilizer on the performance of biochar in improving plant photosynthetic rate: A meta-analysis. Eur. J. Agron. 2021, 130, 126345. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Lu, J.; Shao, G.; Cui, J.; Wang, X.; Keabetswe, L. Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis. Agric. Water Manag. 2019, 222, 301–312. [Google Scholar] [CrossRef]
- Xiang, Y.; Deng, Q.; Duan, H.; Guo, Y. Effects of biochar application on root traits: A meta-analysis. GCB Bioenergy 2017, 9, 1563–1572. [Google Scholar] [CrossRef]
- Li, B.Z.; Guo, Y.L.; Liang, F.; Liu, W.X.; Wang, Y.J.; Cao, W.C.; Song, H.; Chen, J.S.; Guo, J.H. Global integrative meta-analysis of the responses in soil organic carbon stock to biochar amendment. J. Environ. Manag. 2024, 351, 119745. [Google Scholar] [CrossRef]
- Maestrini, B.; Herrmann, A.M.; Nannipieri, P.; Schmidt, M.W.I.; Abiven, S. Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil. Soil Biol. Biochem. 2014, 69, 291–301. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2015, 8, 512–523. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter and water retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Hoffland, E.; Kuyper, T.W.; Comans, R.N.J.; Creamer, R.E. Eco-functionality of organic matter in soils. Plant Soil 2020, 455, 1–22. [Google Scholar] [CrossRef]
- Lagomarsino, A.; Grego, S.; Kandeler, E. Soil organic carbon distribution drives microbial activity and functional diversity in particle and aggregate-size fractions. Pedobiologia 2012, 55, 101–110. [Google Scholar] [CrossRef]
- Hartley, I.P.; Garnett, M.H.; Sommerkorn, M.; Hopkins, D.W.; Fletcher, B.J.; Sloan, V.L.; Phoenix, G.K.; Wookey, P.A. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat. Clim. Change 2012, 12, 875–879. [Google Scholar] [CrossRef]
- Cheng, W.; Parton, W.J.; Gonzalez-Meler, M.A.; Phillips, R.; Asao, S.; McNickle, G.G.; Brzostek, E.; Jastrow, J.D. Synthesis and modeling perspectives of Rhizosphere priming. New Phytol. 2013, 201, 31–44. [Google Scholar] [CrossRef]
- Martínez-Dalmau, J.; Berbel, J.; Ordóñez-Fernández, R. Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability 2021, 13, 5625. [Google Scholar] [CrossRef]
- Newton, W.; Dilworth, M.; Sprent, J.; James, E. Leguminous Nitrogen-Fixing Symbioses; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Franche, C.; Lindström, K.; Elmerich, C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 2009, 321, 35–59. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Xu, X. Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytol. 2013, 198, 656–669. [Google Scholar] [CrossRef]
- Whiteside, M.D.; Digman, M.A.; Gratton, E.; Treseder, K.K. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol. Biochem. 2012, 55, 7–13. [Google Scholar] [CrossRef]
- Chanda, S.; Islam, M.; Sarwar, A.K. Organic matter decomposition and nutrient release from different dhaincha (Sesbania spp.) genotypes. J. Agric. Sci. Srilanka. 2021, 16, 192–202. [Google Scholar] [CrossRef]
- Lu, H.; Bian, R.; Xia, X.; Cheng, K.; Liu, X.; Liu, Y.; Wang, P.; Li, Z.; Zheng, J.; Zhang, X.; et al. Legacy of soil health improvement with carbon increase following one time amendment of biochar in a paddy soil—A rice farm trial. Geoderma 2020, 376, 114567. [Google Scholar] [CrossRef]
- Foehse, D.; Jungk, A. Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant Soil 1983, 74, 359–368. [Google Scholar] [CrossRef]
- Paz-Ares, J.; Puga, M.I.; Rojas-Triana, M.; Martinez-Hevia, I.; Diaz, S.; Poza-Carrión, C.; Miñambres, M.; Leyva, A. Plant Adaptation to Low Phosphorus Availability: Core Signaling, Crosstalks, and Applied Implications. Mol. Plant 2022, 15, 104–124. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Cong, W.F.; Lambers, H. Plant phosphorus-acquisition and -use strategies affect soil carbon cycling. Trends Ecol. Evol. 2021, 36, 899–906. [Google Scholar] [CrossRef]
- Tarafdar, J.C.; Claassen, N. Organic phosphorus utilization by wheat plants under sterile conditions. Biol. Fertil. Soils 2003, 39, 25–29. [Google Scholar] [CrossRef]
- Neble, S.; Calvert, V.; Le Petit, J.; Criquet, S. Dynamics of phosphatase activities in a cork oak litter (Quercus suber L.) following sewage sludge application. Soil Biol. Biochem. 2007, 39, 2735–2742. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y.; Ye, X.; Xu, F. Analysis of the contribution of acid phosphatase to P efficiency in brassica napus under low phosphorus conditions. Sci. China Life Sci. 2010, 53, 709–717. [Google Scholar] [CrossRef]
- Li, W.J.; Wang, J.L.; Jiang, L.M.; Lv, G.H.; Hu, D.; Wu, D.Y.; Yang, X.D. Rhizosphere effect and water constraint jointly determined the roles of microorganism in soil phosphorus cycling in arid desert regions. Catena 2023, 222, 106809. [Google Scholar] [CrossRef]
- Shi, J.; Gong, J.; Baoyin, T.; Luo, Q.; Zhai, Z.; Zhu, C.; Yang, B.; Wang, B.; Zhang, Z.; Li, X. Short-term phosphorus addition increases soil respiration by promoting gross ecosystem production and litter decomposition in a typical temperate grassland in northern China. Catena 2021, 197, 104952. [Google Scholar] [CrossRef]
- Feng, J.; Zhu, B. A global meta-analysis of soil respiration and its components in response to phosphorus addition. Soil Biol. Biochem. 2019, 135, 38–47. [Google Scholar] [CrossRef]
- Agbenin, J. The Environmental Chemistry of Soils and Sediments, Principles and Applications; University Press Plc: Ibadan, Nigeria, 2020. [Google Scholar]
- Prodhan, M.A.; Finnegan, P.M.; Lambers, H. How Does Evolution in Phosphorus-Impoverished Landscapes Impact Plant Nitrogen and Sulfur Assimilation? Trends Plant Sci. 2019, 24, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xu, C.; Cao, Y.; Liu, J.; Chen, Y. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in cultivated land after different lengths of reclamation time in Tang County. Fresenius. Environ. Bull. 2022, 29, 6662–6671. [Google Scholar]
- Wang, F.; Guo, R.; Zhang, N.; Yang, S.; Cao, W. Soil organic carbon storages and bacterial communities along a restored mangrove soil chronosequence in the Jiulong River Estuary: From tidal flats to mangrove afforestation. Fundam. Res. 2023, 3, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Hou, E.Q.; Chen, C.G.; Wen, D.Z.; Liu, X. Relationships of phosphorus fractions to organic carbon content in surface soils in mature subtropical forests, Dinghushan, China. Soil Res. 2014, 52, 55–63. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Potassium: A neglected nutrient in Global Change. Glob. Ecol. Biogeogr. 2015, 24, 261–275. [Google Scholar] [CrossRef]
- Ragel, P.; Raddatz, N.; Leidi, E.O.; Quintero, F.J.; Pardo, J.M. Regulation of K+ nutrition in plants. Front. Plant Sci. 2019, 10, 281. [Google Scholar]
- Ryan, J.; Sommer, R. Soil fertility and crop nutrition research at an international center in the Mediterranean region: Achievements and future perspective. Arch. Agric. Soil Sci. 2012, 58, 41–54. [Google Scholar] [CrossRef]
- Singh, K.; Bansai, S.K. Potassium indexing of crops grown on eight benchmark soil series of India. Com. Soil Sci. Plant Anal. 2009, 40, 1369–1379. [Google Scholar] [CrossRef]
- Yawson, D.O.; Amoach, K.K.; Asare, P.A.; Techie-Menson, J.; Afutu, E.; Atiah, K.; Sanieri, A.K.; Sare-Larbi, S.; Adu, M.O. A meta-analysis of modifications of root system traits of crop plants to potassium (K) deprivation. In Plant Roots; Yildirim, E., Turan, M., Ekinci, M., Eds.; InTech: London, UK, 2021. [Google Scholar]
- Van Schöll, L.; Smits, M.M.; Hoffland, E. Ectomycorrhizal Weathering of the Soil Minerals Muscovite and Hornblende. New Phytol. 2006, 171, 805–814. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Z.; Yu, S.; Chen, H. Organic acids exuded from roots increase the available potassium content in the rhizosphere soil: A rhizobag experiment in Nicotiana tabacum. HortScience 2019, 54, 23–27. [Google Scholar] [CrossRef]
- Usherwood, N.R. The role of potassium in crop quality. In Potassium in Agriculture; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 2008, 133, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Du, X.; Wang, F.; Sha, J.; Chen, Q.; Tian, G.; Zhu, Z.; Ge, S.; Jiang, Y. Growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front. Plant Sci. 2020, 11, 904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gao, M.; Li, S.; Alva, A.K.; Ashraf, M. Potassium fertilization mitigates the adverse effects of drought on selected Zea mays cultivars. Turk. J. Bot. 2014, 38, 713–723. [Google Scholar] [CrossRef]
- Yang, K.; Chen, Y.; He, J.; Zhao, L.; Lu, H.; Qin, J.; Zheng, D.; Li, X. Development of a daily soil moisture product for the period of 2002–2011 in Chinese mainland. Sci. China Earth Sci. 2020, 63, 1113–1125. [Google Scholar] [CrossRef]
- Bai, T.; Wang, P.; Qiu, Y.; Zhang, Y.; Hu, S. Nitrogen availability mediates soil carbon cycling response to climate warming: A meta-analysis. Glob. Change Biol. 2023, 29, 2608–2626. [Google Scholar] [CrossRef]
- Chen, K.; Huo, T.; Zhang, Y.; Guo, T.; Liang, J. Response of soil organic carbon decomposition to intensified water variability co-determined by the microbial community and aggregate changes in a temperate grassland soil of northern China. Soil Biol. Biochem. 2023, 176, 108875. [Google Scholar] [CrossRef]
- Dang, C.; Shao, Z.; Huang, X.; Qian, J.; Cheng, G.; Ding, Q.; Fan, Y. Assessment of the Importance of Increasing Temperature and Decreasing Soil Moisture on Global Ecosystem Productivity Using Solar-induced Chlorophyll Fluorescence. Glob. Change Biol. 2022, 28, 2066–2080. [Google Scholar] [CrossRef] [PubMed]
- Larkin, R.P. Soil health paradigms and implications for disease management. Annu. Rev. Phytopathol. 2015, 53, 199–221. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zhang, K.; Jeong, J.; Zeng, Z.; Zang, H. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 2020, 245, 107659. [Google Scholar] [CrossRef]
- Sehgal, A.; Singh, G.; Quintana, N.; Kaur, G.; Ebelhar, W.; Nelson, K.A.; Dhillon, J. Long-term crop rotation affects crop yield and economic returns in humid subtropical climate. Field Crops Res. 2023, 298, 108952. [Google Scholar] [CrossRef]
- D’Acunto, L.; Andrade, J.F.; Poggio, S.L.; Semmartin, M. Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community. Agric. Ecosyst. Environ. 2018, 257, 159–164. [Google Scholar] [CrossRef]
- Omonode, R.A.; Vyn, T.J.; Smith, D.R.; Hegymegi, P.; Gál, A. Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn–soybean rotations. Soil Tillage Res. 2007, 95, 182–195. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Yu, Z.; Yao, Q.; Li, Y.; Liang, A.; Zhang, W.; Mi, G.; Jin, J.; Liu, X. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil Tillage Res. 2020, 197, 104503. [Google Scholar] [CrossRef]
- Zhao, R.; Luo, H.; Wang, Z.; Hu, L. Benefits of continuous plow tillage to fragrant rice performance. Agron. J. 2020, 112, 4171–4181. [Google Scholar] [CrossRef]
- Du, P.; Luo, H.; He, J.; Mei, T.; Du, B.; Hu, L. Different tillage induces regulation in 2-acetyl-1-pyrroline biosynthesis in direct-seeded fragrant rice. BMC Plant Biol. 2019, 19, 308. [Google Scholar] [CrossRef]
- Gao, Q.; Ma, L.; Fang, Y.; Zhang, A.; Li, G.; Wang, J.; Wu, D.; Wu, W.; Du, Z. Conservation tillage for 17 years alters the molecular composition of organic matter in soil profile. Sci. Total Environ. 2021, 762, 143116. [Google Scholar] [CrossRef]
- Amami, R.; Ibrahimi, K.; Sher, F.; Milham, P.; Ghazouani, H.; Chehaibi, S.; Hussain, Z.; Iqbal, H.M.N. Impacts of Different Tillage Practices on Soil Water Infiltration for Sustainable Agriculture. Sustainability 2021, 13, 3155. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, H.; Xue, J.; Liu, S.; Chen, F. A nine-year study on the effects of tillage on net annual global warming potential in double rice-cropping systems in Southern China. Soil Tillage Res. 2021, 206, 104797. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, Y.; Han, I.; Wang, P.; Mei, Q.; Huang, Y. Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Sci. Rep. 2020, 10, 8837. [Google Scholar] [CrossRef]
- Gao, W.; Ma, T.; Shi, B.; Yang, Z.; Li, Y.; Zhu, J.; He, J.-S. Effects of nitrogen and phosphorus addition on the mineralization potential of soil organic carbon and the corresponding regulations in the Tibetan alpine grassland. Appl. Soil Ecol. 2024, 196, 105314. [Google Scholar] [CrossRef]
- Meyer, N.; Welp, G.; Rodionov, A.; Borchard, N.; Martius, C.; Amelung, W. Nitrogen and Phosphorus Supply Controls Soil Organic Carbon Mineralization in Tropical Topsoil and Subsoil. Soil Biol. Biochem. 2018, 119, 152–161. [Google Scholar] [CrossRef]
- Zifcakova, L. Factors Affecting Soil Microbial Processes. In Carbon and Nitrogen Cycling in Soil; Datta, R., Meena, R.S., Pathan, S.I., Ceccherini, M.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 439–461. [Google Scholar]
- Wang, H.; Hu, G.; Xu, W.; Boutton, T.W.; Zhuge, Y.; Bai, E. Effects of nitrogen addition on soil organic carbon mineralization after maize stalk addition. Eur. J. Soil Biol. 2018, 89, 33–38. [Google Scholar] [CrossRef]
- Xue, B.; Huang, L.; Li, X.; Lu, J.; Gao, R.; Kamran, M. Straw residue incorporation and potassium fertilization enhances soil aggregate stability by altering soil content of iron oxide and organic carbon in a rice–rape cropping system. Land Degrad. Dev. 2022, 33, 2567–2584. [Google Scholar] [CrossRef]
- Liu, K.; Jing, H.; Han, T.; Li, Y.; Li, D.; Qaswar, M.; Abbas, M.; Wang, B.; Du, J.; Zhang, L.; et al. The relationship between soil aggregate-associated potassium and soil organic carbon with glucose addition in an Acrisol following long-term fertilization. Soil. Tillage Res. 2022, 222, 105438. [Google Scholar]
- Benbi, D.K.; Khosa, M.K. Effects of temperature, moisture, and chemical composition of organic substrates on C mineralization in soils. Commun. Soil. Sci. Plant Anal. 2014, 45, 2734–2753. [Google Scholar] [CrossRef]
- Yu, H.; Sui, Y.; Chen, Y.; Bao, T.; Jiao, X. Soil organic carbon mineralization and its temperature sensitivity under different substrate levels in the mollisols of Northeast China. Life 2022, 12, 712. [Google Scholar] [CrossRef]
- Nazir, M.S.; Jabbar, A.; Waheed, Z.; Ghaffar, A.; Aslam, M. Response of late sown wheat to seeding density and nitrogen management. Pak. J. Biol. Sci. 2000, 3, 998–1001. [Google Scholar] [CrossRef]
- Curtin, D.; Campbell, C.A.; Jalil, A. Effects of acidity on mineralization: PH-dependence of organic matter mineralization in weakly acidic soils. Soil. Biol. Biochem. 1998, 30, 57–64. [Google Scholar] [CrossRef]
- Gross, A.; Glaser, B. Meta-analysis on how manure application changes soil organic carbon storage. Sci. Rep. 2021, 11, 5516. [Google Scholar] [CrossRef]
- Yaduvanshi, N.; Sharma, D.R. Tillage and residual organic manures/chemical amendment effects on soil organic matter and yield of wheat under sodic water irrigation. Soil Tillage Res. 2008, 98, 11–16. [Google Scholar] [CrossRef]
- Bogužas, V.; Mikučionienė, R.; Šlepetienė, A.; Sinkevičienė, A.; Feiza, V.; Steponavičienė, V.; Adamavičienė, A. Long-term effect of tillage systems, straw and green manure combinations on soil organic matter. Zemdirbyste-Agriculture 2015, 102, 243–250. [Google Scholar] [CrossRef]
- Hassan, M.; Liu, Y.; Naidu, R.; Parikh, S.J.; Du, J.; Qi, F.; Willett, I.R. (2020). Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Sci. Total Environ. 2020, 744, 140714. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.A.; Lustosa Filho, J.F.; Melo, L.C.A.; de Assis, I.R.; de Oliveira, T.S. Influence of pyrolysis temperature and feedstock on the properties of biochars produced from agricultural and industrial wastes. J. Anal. Appl. Pyrolysis. 2020, 149, 104839. [Google Scholar] [CrossRef]
- Tu, P.; Zhang, G.; Wei, G.; Li, J.; Li, Y.; Deng, L.; Yuan, H. Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants. Bioresour. Bioprocess. 2022, 9, 131. [Google Scholar] [CrossRef]
- Qambrani, N.A.; Rahman, M.M.; Won, S.; Shim, S.; Ra, C. Biochar properties and ecofriendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev. 2017, 79, 255–273. [Google Scholar] [CrossRef]
- Yin, Y.; He, X.; Gao, R.; Ma, H.; Yang, Y. Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon. J. Integr. Agric. 2014, 13, 491–498. [Google Scholar] [CrossRef]
- Hammes, K.; Smernik, R.J.; Skjemstad, J.O.; Schmidt, M.W.I. Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. Appl. Geochem. 2008, 23, 2113–2122. [Google Scholar] [CrossRef]
- Troeh, F.R.; Thompson, L.M. Soils and Soil Fertility; Blackwell: New York, NY, USA, 2005. [Google Scholar]
- Zhang, C.; Nie, S.; Liang, J.; Zeng, G.; Wu, H.; Hua, S.; Liu, J.; Yuan, Y.; Xiao, H.; Deng, L.; et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci. Total Environ. 2016, 558, 785–790. [Google Scholar] [CrossRef]
- Song, W.; Guo, M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis. 2012, 94, 138–145. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Bogomolova, I.; Glaser, B. Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 2014, 70, 229–236. [Google Scholar] [CrossRef]
- Asif, M.; Ali, A.; Safdar, M.E.; Maqsood, M.; Hussain, S.; Arif, M. Growth and yield of wheat as influenced by different levels of irrigation and nitrogen. Int. J. Agric. Appl. Sci. 2009, 1, 25–28. [Google Scholar]
- Jan, M.T.; Shah, M.; Khan, S. Type of N-fertilizer, rate and timing effect on wheat production. Sarhad J. Agri. 2002, 18, 405–410. [Google Scholar]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K.; et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar 2020, 2, 421–438. [Google Scholar] [CrossRef]
- Tanimoto, M.; Roberts, K.; Dolan, L. Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant. J. 1995, 8, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Pitts, R.J.; Cernac, A.; Estelle, M. Auxin and ethylene promote root hair elongation Inarabidopsis. Plant J. 1998, 16, 553–560. [Google Scholar] [CrossRef]
- Foreman, J.; Demidchik, V.; Bothwell, J.H.; Mylona, P.; Miedema, H.; Torres, M.A.; Linstead, P.; Costa, S.; Brownlee, C.; Jones, J.D.; et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 2003, 422, 442–446. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, C.; Chen, X.; Tao, P.; Jin, Z.; Han, Z. Persistent effects of biochar on soil organic carbon mineralization and resistant carbon pool in upland red soil, China. Environ. Earth Sci. 2018, 77, 177. [Google Scholar] [CrossRef]
- Herath, H.M.S.K.; Camps-Arbestain, M.; Hedley, M.J.; Kirschbaum, M.U.F.; Wang, T.; van Hale, R. Experimental Evidence for Sequestering C with Biochar by Avoidance of CO2 Emissions from Original Feedstock and Protection of Native Soil Organic Matter. GCB Bioenergy 2015, 7, 512–526. [Google Scholar] [CrossRef]
- Melas, G.B.; Ortiz, O.; AlacaÑIz, J.M. Can biochar protect labile organic matter against mineralization in soil? Pedosphere 2017, 27, 822–831. [Google Scholar] [CrossRef]
- Maestrini, B.; Abiven, S.; Singh, N.; Bird, J.; Torn, M.S.; Schmidt, M.W.I. Carbon losses from pyrolysed and original wood in a forest soil under natural and increased N deposition. Biogeosciences 2014, 11, 5199–5213. [Google Scholar] [CrossRef]
- Gross, A.; Bromm, T.; Polifka, S.; Fischer, D.; Glaser, B. Long-term biochar and soil organic carbon stability—Evidence from field experiments in Germany. Sci. Total. Environ. 2024, 954, 176340. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Shao, G.; Lu, J.; Zhang, K.; Wu, S.; Wang, Z. Effects of biochar application on crop water use efficiency depend on experimental conditions: A meta-analysis. Field Crops Res. 2020, 249, 107763. [Google Scholar] [CrossRef]
- Smith, S.; De, S.I. Root system architecture: Insights from Arabidopsis and cereal crops. Philos. Trans. R. Soc. B 2012, 367, 1441–1452. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, L.; Shao, G.; Gao, Y.; Song, E.; Lu, J. Effects of Biochar on Soil Organic Carbon in Relation to Soil Nutrient Contents, Climate Zones and Cropping Systems: A Chinese Meta-Analysis. Land 2024, 13, 1608. https://doi.org/10.3390/land13101608
Tian L, Shao G, Gao Y, Song E, Lu J. Effects of Biochar on Soil Organic Carbon in Relation to Soil Nutrient Contents, Climate Zones and Cropping Systems: A Chinese Meta-Analysis. Land. 2024; 13(10):1608. https://doi.org/10.3390/land13101608
Chicago/Turabian StyleTian, Longjia, Guangcheng Shao, Yang Gao, Enze Song, and Jia Lu. 2024. "Effects of Biochar on Soil Organic Carbon in Relation to Soil Nutrient Contents, Climate Zones and Cropping Systems: A Chinese Meta-Analysis" Land 13, no. 10: 1608. https://doi.org/10.3390/land13101608
APA StyleTian, L., Shao, G., Gao, Y., Song, E., & Lu, J. (2024). Effects of Biochar on Soil Organic Carbon in Relation to Soil Nutrient Contents, Climate Zones and Cropping Systems: A Chinese Meta-Analysis. Land, 13(10), 1608. https://doi.org/10.3390/land13101608