A Hot-Spot Analysis of Forest Roads Based on Soil Erosion and Sediment Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.1.1. SEDMODL
2.1.2. Geological Erosion Rate Factor (GEr)
Road Surface Material Factor (Sf)
Traffic Factor (Tf)
The Road Slope Factor (Gf)
Precipitation Factor (Pf)
Sediment Delivery Factor (Df)
Cut-Slope Cover Factor (CSf)
Cut-Slope Height Factor (CSh)
Sedimentation Caused by Road Surface and Side Streams (TS)
Sedimentation Caused by Cut-Slope Area (CS)
2.1.3. Erosion and Sedimentation Measurements Using Benchmarks
2.1.4. Model Validation and Assessment
2.1.5. Hotspot Analysis
3. Results
3.1. Statistical Analysis
3.2. Validation Analysis
3.3. Hot-Spot Analysis
4. Discussion
4.1. Soil Erosion and Sedimentation on Forest Roads
4.2. Hot-Spot Analysis for Soil Erosion on Forest Roads
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, B.; Lv, Y.; Zhan, Y.; Su, D.; Cao, S. Constructing China’s roads as works of art: A case study of “Esthetic Greenway” construction in the shennongjia region of China. Land Degrad. Dev. 2015, 26, 324–330. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 2017, 305, 314–327. [Google Scholar] [CrossRef]
- Sugden, B.D.; Woods, S.W. Sediment production from forest roads in western Montana. J. Am. Water Resour. Assoc. 2007, 43, 193–206. [Google Scholar] [CrossRef]
- Brown, K.R.; Mcguire, K.J.; Aust, W.M.; Hession, W.C.; Dolloff, C.A. The effect of increasing gravel cover on forest roads for reduced sediment delivery to stream crossings. Hydrol. Process. 2015, 29, 1129–1140. [Google Scholar] [CrossRef]
- Emami, S.N.; Yousefi, S.; Pourghasemi, H.R.; Tavangar, S.; Santosh, M. A comparative study on machine learning modeling for mass movement susceptibility mapping (a case study of Iran). Bull. Eng. Geol. Environ. 2020, 79, 5291–5308. [Google Scholar] [CrossRef]
- Haigh, M.J.; Rawat, J.S.; Rawat, M.S.; Bartarya, S.K.; Rai, S.P. Interactions between forest and landslide activity along new highways int he Kumaun Himalaya. For. Ecol. Manag. 1995, 78, 173–189. [Google Scholar] [CrossRef]
- Burroughs, E.R.; King, J.G. Reduction of soil erosion on forest roads. Gen. Tech. Rep. US Dep. Agric. For. Serv. 1989, 264, 1–19. [Google Scholar]
- Yousefi, S.; Moradi, H.; Boll, J.; Schönbrodt-Stitt, S. Effects of road construction on soil degradation and nutrient transport in Caspian Hyrcanian mixed forests. Geoderma 2016, 284, 103–112. [Google Scholar] [CrossRef]
- Fielding, J.A.H.; Hawks, B.S.; Aust, W.M.; Bolding, M.C.; Barrett, S.M. Estimated Erosion from Clearcut Timber Harvests in the Southeastern United States. For. Sci. 2022, 68, 334–342. [Google Scholar] [CrossRef]
- Vilar, L.; Gómez, I.; Martínez-Vega, J.; Echavarría, P.; Riaño, D.; Martín, M.P. Multitemporal modelling of socio-economic wildfire drivers in central Spain between the 1980s and the 2000s: Comparing generalized linear models to machine learning algorithms. PLoS ONE 2016, 11, e0161344. [Google Scholar] [CrossRef]
- Barber, C.P.; Cochrane, M.; Souza, C.M.; Laurance, W.F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 2014, 177, 203–209. [Google Scholar] [CrossRef]
- Parsakhoo, A.; Lotfalian, M.; Kavian, A.; Hosseini, S.A. Prediction of the soil erosion in a forest and sediment yield from road network through GIS and SEDMODL. Int. J. Sediment Res. 2014, 29, 118–125. [Google Scholar] [CrossRef]
- Habibzadeh, A.; Majidi, A. Estimating sediment yield from a forest road network using SEDMODEL and GIS technique (case study Arasbaran forests). ECOPERSIA 2021, 9, 235–249. [Google Scholar]
- Pardini, G.; Gispert, M.; Dunjó, G. Runoff erosion and nutrient depletion in five Mediterranean soils of NE Spain under different land use. Sci. Total Environ. 2023, 309, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, O.; Kalantari, Z.; Ferreira, C.S.; Chen, W.; Soleimanpour, S.M.; Kapović-Solomun, M. Contribution of physical and anthropogenic factors to gully erosion initiation. Catena 2022, 210, 105925. [Google Scholar] [CrossRef]
- Cao, L.; Elliot, W.; Long, J.W. Spatial simulation of forest road effects on hydrology and soil erosion after a wildfire. Hydrol. Process. 2021, 35, e14139. [Google Scholar] [CrossRef]
- Cao, L.; Wang, Y.; Liu, C. Study of unpaved road surface erosion based on terrestrial laser scanning. Catena 2021, 199, 105091. [Google Scholar] [CrossRef]
- Elliot, W.J.; Foltz, R.B.; Robichaud, P.R. Recent findings related to measuring and modeling forest road erosion. In Proceedings of the 18th World IMACS Congress and MODSIM International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Cairns, Australia, 13–17 July 2009; pp. 4078–4084. [Google Scholar]
- Akay, A.E.; Erdas, O.; Reis, M.; Yuksel, A. Estimating sediment yield from a forest road network by using a sediment prediction model and GIS techniques. Build. Environ. 2008, 43, 687–695. [Google Scholar] [CrossRef]
- Prendes, C.; Buján, S.; Ordoñez, C.; Canga, E. Large scale semi-automatic detection of forest roads from low density lidar data on steep terrain in Northern Spain. IForest 2019, 12, 366–374. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, A.; Jing, Y.; Zhang, G.; Yu, Z.; Yu, J.; Liu, Y.; Ding, S. Optimizing Management Practices to Reduce Sediment Connectivity between Forest Roads and Streams in a Mountainous Watershed. Remote Sens. 2022, 14, 4897. [Google Scholar] [CrossRef]
- Lei, G.; Yao, R.; Zhao, Y.; Zheng, Y. Detection and modeling of unstructured roads in forest areas based on visual-2D lidar data fusion. Forests 2021, 12, 820. [Google Scholar] [CrossRef]
- Kavian, A.; Safari, A.; Parsakhoo, A. Assessment of forest roads sediment yield using WARSEM, SEDMODL and direct measurement through rainfall simulation. J. Range Watershed Manag. 2016, 69, 167–186. [Google Scholar]
- Misirlioğlu, G.; Gümüş, S.; Yoshimura, T. Comparison of WEPP:Road Batch Model and ABAG Model for Estimating Amount of Top Soil Erosion in Forest Road Fill Slopes. Eur. J. For. Eng. 2022, 8, 26–34. [Google Scholar] [CrossRef]
- Yousefi, S.; Pourghasemi, H.R.; Emami, S.N.; Pouyan, S.; Eskandari, S.; Tiefenbacher, J.P. A machine learning framework for multi-hazards modeling and mapping in a mountainous area. Sci. Rep. 2020, 10, 12144. [Google Scholar] [CrossRef] [PubMed]
- Naghdi, R.; Dalir, P.; Gholami, V.; Pourghasemi, H.R. Modeling of sediment generation from forest roads employing SEDMODL and its calibration for Hyrcanian forests in northern Iran. Environ. Earth Sci. 2017, 76, 414. [Google Scholar] [CrossRef]
- Khandouzi, R.; Parsakhoo, A.; Sheikh, V.; Pourmalekshah, A.M. Effects of soil conservation practices on sediment yield from forest road ditches in northern Iran. Croat. J. For. Eng. 2020, 41, 299–308. [Google Scholar] [CrossRef]
- Conroy, W.J.; Dubé, K.V.; Koler, T.E. Comparison of methods to evaluate surface erosion from logging roads using watershed analyses. In Proceedings of the Watershed Management and Operations Management, Fort Collins, CO, USA, 20–24 June 2000; Volume 105, pp. 1–10. [Google Scholar] [CrossRef]
- Reid, L.M.; Dunne, T. Sediment production from forest road surfaces. Water Resour. Res. 1984, 20, 1753–1761. [Google Scholar] [CrossRef]
- Valjarević, A. Long-term remote sensing-based methods for monitoring air pollution and cloud cover in the Balkan countries. Environ. Sci. Pollut. Res. 2024, 31, 27155–27171. [Google Scholar] [CrossRef]
- Kramer, B.W. Forest Road Contracting, Construction, and Maintenance for Small Forest Woodland Owners; Oregon State University: Corvallis, OR, USA, 2001. [Google Scholar]
- Safari, A.; Kavian, A.; Parsakhoo, A. Assessment of effect of road or road construction on soil physical and chemical properties in northern forests of Iran. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 835–850. [Google Scholar]
- Solgi, A.; Naghdi, R.; Zenner, E.K.; Hemmati, V.; Behjou, F.K.; Masumian, A. Evaluating the effectiveness of mulching for reducing soil erosion in cut slope and fill slope of forest roads in hyrcanian forests. Croat. J. For. Eng. 2021, 42, 259–268. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Barnett, D.; Flather, C.; Fuller, P.; Peterjohn, B.; Kartesz, J.; Master, L.L. Species richness and patterns of invasion in plants, birds, and fishes in the United States. Biol. Invasions 2006, 8, 427–447. [Google Scholar] [CrossRef]
- Yousefi, S.; Sadeghi, S.H.; Mirzaee, S.; Van Der Ploeg, M.; Keesstra, S.; Cerdà, A. Spatio-temporal variation of throughfall in a hyrcanian plain forest stand in Northern Iran. J. Hydrol. Hydromech. 2018, 66, 97–106. [Google Scholar] [CrossRef]
- Abbasi, E.; Hosseini, S.A.O.; Abdi, E.; Najafi, A. Environmental impact assessment of forest roads using the Goecybernetic Assessment Matrix (GAM): A case study from the Kheyrud forest, Iran. Iran. J. For. 2022, 13, 1–15. [Google Scholar]
- Haghighian, F.; Yousefi, S.; Keesstra, S. Identifying tree health using sentinel-2 images: A case study on Tortrix viridana L. infected oak trees in Western Iran. Geocarto Int. 2020, 37, 304–314. [Google Scholar] [CrossRef]
- Zhang, S.; Han, X.; Cruse, R.M.; Zhang, X.; Hu, W.; Yan, Y.; Guo, M. Morphological characteristics and influencing factors of permanent gully and its contribution to regional soil loss based on a field investigation of 393 km2 in Mollisols region of northeast China. Catena 2022, 217, 106467. [Google Scholar] [CrossRef]
- Chakrabortty, R.; Pal, S.C.; Sahana, M.; Mondal, A.; Dou, J.; Pham, B.T.; Yunus, A.P. Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India. Nat. Hazards 2020, 104, 1259–1294. [Google Scholar] [CrossRef]
- Pires, R.d.P.; Olofsson, K.; Persson, H.J.; Lindberg, E.; Holmgren, J. Individual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads. ISPRS J. Photogramm. Remote Sens. 2022, 187, 211–224. [Google Scholar] [CrossRef]
- Bhagat, S.; Prasad, P.R.C. Assessing the impact of spatio-temporal land use and land cover changes on land surface temperature, with a major emphasis on mining activities in the state of Chhattisgarh, India. Spat. Inf. Res. 2023, 32, 339–355. [Google Scholar] [CrossRef]
- Al-Taei, A.I.; Alesheikh, A.A.; Boloorani, A.D. Evaluating the effects of land use/land cover change on the emergence of hazardous dust sources in the Tigris-Euphrates Basin. Spat. Inf. Res. 2024, 32, 569–582. [Google Scholar] [CrossRef]
- Jordán, A.; Martínez-Zavala, L. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. For. Ecol. Manag. 2008, 255, 913–919. [Google Scholar] [CrossRef]
- Amiri, M.; Pourghasemi, H.R.; Ghanbarian, G.A.; Afzali, S.F. Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma 2019, 340, 55–69. [Google Scholar] [CrossRef]
- Arnáez, J.; Larrea, V.; Ortigosa, L. Surface runoff and soil erosion on unpaved forest roads from rainfall simulation tests in northeastern Spain. Catena 2004, 57, 1–14. [Google Scholar] [CrossRef]
- Valjarević, A.; Djekić, T.; Stevanović, V.; Ivanović, R.; Jandziković, B. GIS numerical and remote sensing analyses of forest changes in the Toplica region for the period of 1953–2013. Appl. Geogr. 2018, 92, 131–139. [Google Scholar] [CrossRef]
- Shahabi, H.; Amiri, Z.; Shirzadi, A. Prediction of Gully Erosion Susceptibility and Its Hazards in Kloche Bijar Watershed Using Spatial Predictive Models. Environ. Hazards. Manag. 2017, 9, 89–102. [Google Scholar] [CrossRef]
- Zhuang, Y.; Du, C.; Zhang, L.; Du, Y.; Li, S. Research trends and hotspots in soil erosion from 1932 to 2013: A literature review. Scientometrics 2015, 105, 743–758. [Google Scholar] [CrossRef]
- Kariminejad, N.; Hosseinalizadeh, M.; Pourghasemi, H.R.; Bernatek-Jakiel, A.; Campetella, G.; Ownegh, M. Evaluation of factors affecting gully headcut location using summary statistics and the maximum entropy model: Golestan Province, NE Iran. Sci. Total Environ. 2019, 677, 281–298. [Google Scholar] [CrossRef]
- Cherati, F.R.; Parsakhoo, A. Estimating Sediment Yield from Forest Road Surface using WARSEM Model (A Case Study: Darabkola Forest). Casp. J. Appl. Sci. Res. 2014, 3, 32–39. [Google Scholar]
- Clarke, M.A.; Walsh, R.P.D. Long-term erosion and surface roughness change of rain-forest terrain following selective logging, Danum Valley, Sabah, Malaysia. Catena 2006, 68, 109–123. [Google Scholar] [CrossRef]
- Dalir, P.; Naghdi, R.; Gholami, V. Assessing the rice straw effects on the soil erosion rate in forest road cut slope embankments. Casp. J. Environ. Sci. 2021, 19, 325–339. [Google Scholar] [CrossRef]
- Guo, L.; Liu, R.; Men, C.; Wang, Q.; Miao, Y.; Shoaib, M.; Wang, Y.; Jiao, L.; Zhang, Y. Multiscale spatiotemporal characteristics of landscape patterns, hotspots, and influencing factors for soil erosion. Sci. Total Environ. 2021, 779, 146474. [Google Scholar] [CrossRef]
- Kolka, R.K.; Smidt, M.F. Effects of forest road amelioration techniques on soil bulk density, surface runoff, sediment transport, soil moisture and seedling growth. For. Ecol. Manag. 2004, 202, 313–323. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; de Leeuw, J.; Okx, J.; Molenaar, C.; de Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef]
- Wang, C.; Liu, B.; Yang, Q.; Pang, G.; Long, Y.; Wang, L.; Cruse, R.M.; Dang, W.; Liu, X.; Wang, E. Unpaved road erosion after heavy storms in mountain areas of northern China. Int. Soil Water Conserv. Res. 2022, 10, 29–37. [Google Scholar] [CrossRef]
- Yousefi, S.; Avand, M.; Yariyan, P.; Pourghasemi, H.R.; Keesstra, S.; Tavangar, S.; Tabibian, S. A novel GIS-based ensemble technique for rangeland downward trend mapping as an ecological indicator change. Ecol. Indic. 2020, 117, 106591. [Google Scholar] [CrossRef]
- Yousefi, S.; Mirzaee, S.; Keesstra, S.; Surian, N.; Pourghasemi, H.R.; Zakizadeh, H.R.; Tabibian, S. Effects of an extreme flood on river morphology (case study: Karoon River, Iran). Geomorphology 2018, 304, 30–39. [Google Scholar] [CrossRef]
- Guo, W.; Bai, Y.; Cui, Z.; Wang, W.; Li, J.; Su, Z. The impact of concentrated flow and slope on unpaved loess-road erosion on the Chinese Loess Plateau. Land Degrad. Dev. 2021, 32, 914–925. [Google Scholar] [CrossRef]
- Mahdavi, A. Forests and rangelands? wildfire risk zoning using GIS and AHP techniques. Casp. J. Environ. Sci. 2012, 10, 43–52. [Google Scholar]
- Mohammady, M.; Pourghasemi, H.R.; Amiri, M. Land subsidence susceptibility assessment using random forest machine learning algorithm. Environ. Earth Sci. 2019, 78, 503. [Google Scholar] [CrossRef]
- Safari, A.; Kavian, A.; Parsakhoo, A.; Saleh, I.; Jordán, A. Impact of different parts of skid trails on runoff and soil erosion in the Hyrcanian forest (northern Iran). Geoderma 2016, 263, 161–167. [Google Scholar] [CrossRef]
- Rahmati, O.; Yousefi, S.; Kalantari, Z.; Uuemaa, E.; Teimurian, T.; Keesstra, S.; Pham, T.D.; Bui, D.T. Multi-hazard exposure mapping using machine learning techniques: A case study from Iran. Remote Sens. 2019, 11, 1943. [Google Scholar] [CrossRef]
- Seutloali, K.E.; Beckedahl, H.R. A review of road-related soil erosion: An assessment of causes. Earth Sci. Res. J. 2015, 19, 73–80. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, A.; Yu, Z.; Yu, J.; Liu, Y.; Zhang, G.; Liu, G.; Wang, P.; Ding, S. Factors contributing to rill erosion of forest roads in a mountainous watershed. J. Environ. Manag. 2023, 326, 116829. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Yan, Q.; Li, K.; Ma, X.; Li, G.; Wu, Z.; Pan, Q.; Chen, X. The Ecological Environmental Effects and Topographic Gradient Analysis of Transformation in the Production–Living–Ecological Spaces in the Northern Slope of the Tianshan Mountains. Land 2024, 13, 1170. [Google Scholar] [CrossRef]
- Valjarević, A. GIS-Based Methods for Identifying River Networks Types and Changing River Basins. Water Resour. Manag. 2024, 17, 1–19. [Google Scholar] [CrossRef]
Lithology | The Geologic Age of Formation | ||||
---|---|---|---|---|---|
Quaternary | Tertiary | Mesozoic | Paleozoic | Precambrian | |
Metamorphic | - | 37 | 37 | 37 | 37 |
Schist | - | 148 | 148 | 148 | 148 |
Basalt | 37 | 37 | 74 | 74 | 74 |
Andesite | 37 | 37 | 74 | 74 | 74 |
Ash | 124 | 124 | 124 | 124 | 124 |
Tuff | 124 | 124 | 74 | 74 | 74 |
Gabbro | - | 25 | 25 | 25 | 25 |
Granite | - | 49 | 74 | 74 | 74 |
Intrusive | - | 37 | 37 | 37 | 37 |
Hard Sediment | - | 37 | 37 | 74 | 74 |
Gravelly Sediment | 37 | 37 | - | - | - |
Soft Sediment | 74 | 74 | - | - | - |
Fine-Grained Soft Sediment | 148 | 148 | - | - | - |
Surface Type | Surfacing Factor |
---|---|
Asphalt | 0.03 |
Gravel | 0.20 |
Pitrun | 0.50 |
Grassed native | 0.50 |
Native surface | 1.00 |
Native with ruts | 2.00 |
Road Classes | Road Descriptions | Traffic Factor |
---|---|---|
Highway | Main highway | 120 |
Main Haul | Heavily used by log truck traffic throughout the year; usually, the main access road in a watershed that is being actively logged | 120 |
County Road | The wide, county-maintained road that receives heavy residential and/or log truck use | 50 |
Primary Road | Receives heavy to moderate use by log trucks throughout all or most of the year | 10 |
Secondary Road | Receives light log truck use during the year. May occasionally be heavily used to access a timber sale. Receives car/pickup or recreational use | 2 |
Spur Road | The short road was used to access a logging unit. Used to haul logs for a brief time while the unit is logged. On average receives little use | 1 |
Abandoned/blocked | The road is blocked by a tank trap and boulders or is no longer used by traffic. | 0.1 |
Vegetation or Rock Cover (%) | CSf |
---|---|
0 | 1.0000 |
10 | 0.7700 |
20 | 0.6155 |
30 | 0.5222 |
40 | 0.4435 |
50 | 0.3742 |
60 | 0.3116 |
70 | 0.2540 |
80 | 0.2003 |
90 | 0.1500 |
100 | 0.1023 |
Road | County | Length (m) | Width (m) | The Average Traffic (Machine/Hour) | Road Age (Year) | Surface Materials | Road Type Based on Model |
---|---|---|---|---|---|---|---|
Tabarak | Kuhrang | 5643 | 5 | 6 | 23 | Native surface | Native surface |
Nazi | Kuhrang | 5171 | 6 | 8 | 31 | Gravel+ Native surface | Gravel+ Native surface |
Bideleh | Lordegan | 5828 | 4.5 | 4 | 21 | Gravel+ Native surface | Gravel+ Native surface |
Kohian | Lordegan | 3493 | 4 | 1 | 11 | Native surface | Native with ruts |
Road | Length (m) | Af | TS (ton/Year) | CS (ton/Year) | Total Sediment (ton/Year) |
---|---|---|---|---|---|
Nazi | 5171 | 2 | 1392 | 80.7 | 2947 |
Tabarak | 5643 | 2 | 153 | 19 | 344 |
Bideleh | 5828 | 2 | 103.8 | 13.3 | 234 |
Kohian | 3493 | 2 | 44.7 | 8.4 | 106.4 |
Total Erosion | GEr | CSh | CSf | Pf | Gf | Tf | Sf | W | Lr | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Total erosion | Pearson Correlation | 1 | 0.882 ** | 0.250 ** | 0.079 | 0.393 ** | 0.269 ** | 0.328 ** | 0.247 ** | 0.493 ** | −0.080 |
Sig. | 0.000 | 0.000 | 0.064 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.062 | ||
N | 370 | 370 | 370 | 370 | 370 | 370 | 370 | 370 | 370 | 370 |
Benchmark-Change | Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|---|
Between Groups | (Combined) | 435.078 | 2 | 217.539 | 8.432 | 0.000 ** | |
Linear Term | Contrast | 429.810 | 1 | 429.810 | 16.660 | 0.000 ** | |
Deviation | 5.268 | 1 | 5.268 | 0.204 | 0.652 | ||
Within Groups | 3637.575 | 141 | 25.798 | ||||
Total | 4072.653 | 143 |
Paired Differences | t | df | Sig. (2-Tailed) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | ||||||
Lower | Upper | ||||||||
Pair 1 | D5–D15 | 1.71 | 6.26 | 0.90493 | −0.11027 | 3.53068 | 1.890 | 47 | 0.065 |
Pair 2 | D15–D25 | 2.52 | 3.69 | 0.53329 | 1.44883 | 3.59451 | 4.729 | 47 | 0.000 ** |
Pair 3 | D5–D25 | 4.23 | 8.21 | 1.18590 | 1.84616 | 6.61759 | 3.569 | 47 | 0.001 ** |
Forest Road | Road Length (m) | Hot Spot (m) | Hot Spot (%) |
---|---|---|---|
Nazi | 5171 | 1593 | 30.81 |
Tabarak | 5643 | 1276 | 22.62 |
Bideleh | 5828 | 2321 | 39.84 |
Kohian | 3493 | 509 | 14.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousefi, S.; Emami, S.N.; Nekoeimehr, M.; Rahmati, O.; Imaizumi, F.; Gomez, C.; Valjarevic, A. A Hot-Spot Analysis of Forest Roads Based on Soil Erosion and Sediment Production. Land 2024, 13, 1583. https://doi.org/10.3390/land13101583
Yousefi S, Emami SN, Nekoeimehr M, Rahmati O, Imaizumi F, Gomez C, Valjarevic A. A Hot-Spot Analysis of Forest Roads Based on Soil Erosion and Sediment Production. Land. 2024; 13(10):1583. https://doi.org/10.3390/land13101583
Chicago/Turabian StyleYousefi, Saleh, Sayed Naeim Emami, Mohammad Nekoeimehr, Omid Rahmati, Fumitoshi Imaizumi, Christopher Gomez, and Aleksandar Valjarevic. 2024. "A Hot-Spot Analysis of Forest Roads Based on Soil Erosion and Sediment Production" Land 13, no. 10: 1583. https://doi.org/10.3390/land13101583
APA StyleYousefi, S., Emami, S. N., Nekoeimehr, M., Rahmati, O., Imaizumi, F., Gomez, C., & Valjarevic, A. (2024). A Hot-Spot Analysis of Forest Roads Based on Soil Erosion and Sediment Production. Land, 13(10), 1583. https://doi.org/10.3390/land13101583