Improving the Chemical Properties of Acid Sulphate Soils from the Casamance River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Soil Sampling
2.2. First Incubation Experiment
2.3. Second Incubation Experiment
2.4. Statistical Analyses
3. Results
3.1. Soils and Amendments Elemental Composition
3.2. First Incubation Experiment
3.2.1. Evolution of pH in Percolates
3.2.2. Evolution of the Redox Potential in Percolates
3.2.3. Evolution of Soluble Iron in Percolates
3.2.4. Sulphate Leaching
3.2.5. Exchangeable Aluminium
3.3. Experiment 2
3.4. Soil Solution Composition after Incubation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pons, L.J. Outline of the genesis, characteristics, classification and improvement of acid sulfate soils. In Acid Sulfate Soils; Dost, H., Ed.; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1973; Volume I, pp. 3–27. [Google Scholar]
- Michael, P.S. Ecological impacts and management of acid sulphate soil: A review. Asian J. Water Environ. Pollut. 2013, 10, 13–24. [Google Scholar]
- Fanning, D.S.; Rabenhorst, M.C.; Fitzpatrick, R.W. Historical developments in the understanding of acid sulfate soils. Geoderma 2017, 308, 191–206. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Aqueous pyrite oxidation and consequent formation of secondary iron minerals. In Acid Sulphate Weathering; Kral, D.M., Ed.; Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Rout, G.R.; Samantaray, S.; Das, P. Aluminium toxicity in plants: A review. Agronomie 2001, 21, 3–21. [Google Scholar] [CrossRef]
- Bartlett, R.J.; Riego, D.C. Effect of chelation on the toxicity of aluminium. Plant Soil 1972, 37, 419–423. [Google Scholar] [CrossRef]
- Blamey, F.P.C.; Edwards, D.G.; Asher, C.J. Effects of aluminium, OH:Al and P:Al molar ratios, and ionic strength on soybean root elongation in solution culture. Soil Sci. 1983, 136, 197–207. [Google Scholar] [CrossRef]
- Baes, C.F., Jr.; Mesmer, R.E. The Hydrolysis of Cations; Wiley Interscience: New York, NY, USA, 1976; pp. 112–118. [Google Scholar]
- Bache, B.W.; Sharp, G.S. Soluble polymeric hydroxy-aluminium ions in acid soils. J. Soil Sci. 1976, 27, 167–174. [Google Scholar] [CrossRef]
- Dent, D. Acid Sulphate Soils: A Baseline for Research and Development; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1986. [Google Scholar]
- FAO. AGROSTAT-Database. Food and Agriculture Organization. 2005. Available online: https://www.fao.org/ag/agl/agll/prosoil.htm (accessed on 23 July 2022).
- Moore, P.A.; Attanandana, T.; Patrick, W.H. Factors Affecting Rice Growth on Acid Sulfate Soils. Soil Sci. Soc. Am. J. 1990, 54, 1651–1656. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Nguyen, T.T.; Tran, Q.N.; Macdonald, B.; To, T.P.; Van Tran, D.; Van Nguyen, Q. Soil and Rice Responses to Phosphate Fertilizer in Two Contrasting Seasons on Acid Sulfate Soil. Commun. Soil Sci. Plant Anal. 2017, 48, 615–623. [Google Scholar] [CrossRef]
- Husson, O.; Phung, M.T.; van Mensvoort, M. Soil and water indicators for optimal practices when reclaiming acid sulphate soils in the Plain of Reeds, Vietnam. Agric. Water Manag. 2000, 45, 127–143. [Google Scholar] [CrossRef]
- Jonston, S.G.; Keene, A.F.; Bush, R.T.; Burton, F.D.; Sullivan, I.A.; Smith, D.; McElnea, A.E.; Martens, M.A.; Willbrahan, S. Contemporary pedogenesis of severely degraded tropical acid sulfate soils after introduction of regular tidal inundation. Geoderma 2009, 149, 335–346. [Google Scholar] [CrossRef]
- Sahrawat, K. Iron toxicity in wetland rice and the role of other nutrients. J. Plant Nutr. 2004, 27, 1471–1504. [Google Scholar] [CrossRef]
- Diedhiou, S.; Ousmane Kemo Goudiaby, A.; Paterne Sagna, Y.; Diatta, Y.; Dalanda Diallo, M.; Ndoye, I. Effect of Iron Toxicity on Rice Growth in Sulfato-ferruginous Lowland of South Senegal. Am. J. Agric. For. 2020, 8, 9. [Google Scholar] [CrossRef]
- Prade, K. Einfluss der Nährstoffversorgung auf die Eisentoxizität bei Nassreis (Oryza sativa L.) in der Basse Casamance, Senegal. Ph.D. Thesis, Hohenheim Universität, Stuttgart, Germany, 1987; pp. 1–22. [Google Scholar]
- Ponnamperuma, F.N. The chemistry of submerged soils. Adv. Agron. 1972, 24, 29–96. [Google Scholar]
- Fageria, N.K.; Carvalho, G.D.; Santos, A.B.; Ferreira, E.P.B.; Knupp, A.M. Chemistry of Lowland Rice Soils and Nutrient Availability. Commun. Soil Sci. Plant Anal. 2011, 42, 1913–1933. [Google Scholar] [CrossRef]
- Becker, M.; Asch, F. Iron toxicity in rice—Conditions and management concepts. J. Plant Nutr. Soil Sci. 2005, 168, 558–573. [Google Scholar] [CrossRef]
- Prade, K.; Ottow, J.C.G.; Jacq, V.A.; Malouf, G.; Loyer, J.Y. Relations entre les propriétés des sols de rizières inondées et la toxicité ferreuse en basse Casamance (Sénégal). Études, revue et synthèse de travaux antérieurs. Cahiers-ORSTOM. Pédologie 1990, 25, 453–474. [Google Scholar]
- FAO. FAOSTAT Online Database. 2021. Available online: https://www.fao.org/faostat/en/#data (accessed on 1 September 2021).
- Diagne, M.; Demont, M.; Seck, P.A.; Diaw, A. Self-sufficiency policy and irrigated rice productivity in the Senegal River Valley. Food Secur. 2013, 5, 55–68. [Google Scholar] [CrossRef]
- Fiorillo, E.; Di Giuseppe, E.; Fontanelli, G.; Maselli, F. Lowland rice mapping in Sédhiou region (Senegal) using sentinel 1 and sentinel 2 data and random forest. Remote Sens. 2020, 12, 3403. [Google Scholar] [CrossRef]
- Koudahe, K.; Djaman, K.; Bodian, A.; Irmak, S.; Sall, M.; Diop, L.; Balde, A.B.; Rudnick, D.R. Trend Analysis in Rainfall, Reference Evapotranspiration and Aridity Index in Southern Senegal: Adaptation to the Vulnerability of Rainfed Rice Cultivation to Climate Change. Atmos. Clim. Sci. 2017, 7, 476–495. [Google Scholar] [CrossRef]
- Descroix, L.; Sané, Y.; Thior, M.; Manga, S.P.; Ba, B.D.; Mingou, J.; Mendy, V.; Coly, S.; Dièye, A.; Badiane, A.; et al. Inverse estuaries in West Africa: Evidence of the rainfall recovery? Water 2020, 12, 647. [Google Scholar] [CrossRef]
- Montoroi, J.-P. Les sols et l’agriculture dans le domaine estuarien de Basse Casamance. In Conservation et Utilisation Durable European Scientific Journal January; Grepin, G., Pomerleau, C., Pirot, J.-Y., Eds.; des Ressources Naturelles du Bassin Hydrographique de la Casamance; AJAC-ZG, ISRA, ORSTOM, UICN: Ziguinchor-Dakar, Senegal, 1993; Volume 16, pp. 52–59. [Google Scholar]
- Albergel, J.; Brunet, D.; Dubée, G.; Montoroi, J.-P.; Zante, P. Gestion d’un barrage anti-sel en basse Casamance (Sénégal). In Usage Agricole de l’eau; Paul, C., Ed.; ORSTOM: Paris, France; Journées Hydrologiques de l’ORSTOM, 6: Ellier, France, 1992; pp. 33–45. [Google Scholar]
- Brunet, D. Un aménagement hydraulique simple pour la réhabilitation des sols salés: La riziculture en Basse Casamance. Sécheresse 1994, 5, 37–44. [Google Scholar]
- Bacci, M. Characterization of climate risks for rice crop in Casamance, Senegal. In Renewing Local Planning to Face Climate Change in the Tropics. Green Energy and Technology; Tiepolo, M., Pezzoli, A., Tarchiani, V., Eds.; Chapter 4; Springer: Cham, Switzerland, 2017; pp. 57–72. [Google Scholar] [CrossRef]
- Sambou, H.; Sambou, B.; Mbengue, R.; Sadio, M.; Sambou, P.C. Dynamics of Land use Around the Micro-Dam Anti-Salt in the Sub-Watershed of Agnack Lower Casamance (Senegal). Am. J. Remote Sens. 2015, 3, 29. [Google Scholar] [CrossRef]
- Michael, P.S.; Fitzpatrick, R.W.; Reid, R.J. The importance of soil carbon and nitrogen for amelioration of acid sulphate soils. Soil Use Manag. 2016, 32, 97–105. [Google Scholar] [CrossRef]
- Diallo, N.H. Improved Management of Acid Sulfate Soils for Rice Production in Casamance, Senegal. Master’s Thesis, Virginia Polytechnic Institute, Blacksburg, VA, USA, 2016; 86 p. [Google Scholar]
- Ebimol, N.L.; Suresh, P.R.; Binitha, N.K.; Santhi, G.R. Management of Iron and Aluminium Toxicity in Acid Sulphate Soils of Kuttanad. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1496–1503. [Google Scholar] [CrossRef]
- Devi, V.S.; Swadija, O.K.; Mathew, R. Acidity amelioration for rice yield enhancement in acid sulphate (Vaikom kari) soils of Kuttanad in Kerala. J. Crop Weed 2017, 13, 78–81. [Google Scholar]
- Michael, P.S.; Fitzpatrick, R.; Reid, R. The role of organic matter in ameliorating acid sulfate soils with sulfuric horizons. Geoderma 2015, 255–256, 42–49. [Google Scholar] [CrossRef]
- Halim, N.S.A.; Abdullah, R.; Karsani, S.A.; Osman, N.; Panhwar, Q.A.; Ishak, C.F. Influence of soil amendments on the growth and yield of rice in acidic soil. Agronomy 2018, 8, 165. [Google Scholar] [CrossRef]
- Ferdous, S.A.; Miah, M.N.H.; Hoque, M.; Hossain, S.; Hasan, A.K. Enhancing rice yield in acidic soil through liming and fertilizer management. J. Bangladesh Agric. Univ. 2018, 16, 357–365. [Google Scholar] [CrossRef]
- Ghosh, M.; Ashiq, W.; Bhogilal Vasava, H.; Vidana Gamage, D.N.; Patra, P.K.; Biswas, A. Short-term carbon sequestration and changes of soil organic carbon pools in rice under integrated nutrient management in India. Agriculture 2021, 11, 348. [Google Scholar] [CrossRef]
- Masulili, A.; Utomo, W.H.; Syechfani, M.S. Biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. J. Agric. Sci. 2010, 2, 39–47. [Google Scholar]
- Hengl, T.; Leenaars, J.G.B.; Shepherd, K.D.; Walsh, M.G.; Heuvelink, G.B.M.; Mamo, T.; Tilahun, H.; Berkhout, E.; Cooper, M.; Fegraus, E.; et al. Soil nutrient maps of Sub-Saharan Africa: Assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutr. Cycl. Agroecosyst. 2017, 109, 77–102. [Google Scholar] [CrossRef] [PubMed]
- Fall, A.C.A.L. Sustainable management of coastal saline soils in the Saloum river Basin, Senegal. Int. J. Biol. Chem. Sci. 2017, 11, 1903. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Aguilera Rodriguez, I.; Pérez Silva, R.M.; Marañon Reyes, A. Determinación de sulfato por el método turbidimétrico en aguas y aguas residuales. Validación del método. Rev. Cuba. Química 2010, 22, 39–44. [Google Scholar]
- Thomas, G.W. Exchangeable cations. In Methods of Soil Analysis, Parts I and II; Page, A.L., Ed.; Chapter 7; Agronomy N° 9; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Meda, A.R.; Cassiolato, M.E.; Pwan, M.A.; Miyazawa, M. Alleviating soil acidity trough plant organic compounds. Braz. Arch. Biol. Technol. 2001, 44, 185–189. [Google Scholar] [CrossRef]
- Sáez, J.A.; Belda, R.M.; Bernal, M.P.; Fornes, F. Biochar improves agro-environmental aspects of pig slurry compost as a substrate for crops with energy and remediation uses. Ind. Crops Prod. 2016, 94, 97–106. [Google Scholar] [CrossRef]
- Yuan, C.; Fitzpatrick, R.; Mosley, L.M.; Marschner, P. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties. J. Hazard. Mater. 2015, 298, 138–145. [Google Scholar] [CrossRef]
- Tanaka, A.; Navasero, S.A. Growth of the rice plant on acid sulfate soils. Soil Sci. Plant Nutr. 1966, 12, 23–30. [Google Scholar] [CrossRef]
- Patrick, W.H., Jr.; Reddy, C.N. Chemical changes in rice soils. In Soils and Rice; The International Rice Research Institute: Manila, Philippines, 1978; pp. 361–379. [Google Scholar]
- Fall, A.C.H.L.; Sane, Y. Diagnostic des constraintes de mise en valeur rizicoles des sols fluviomarins du Marigot de Bignona, Basse Casamance, Sénégal. Eur. Sci. J. 2020, 16, 360–377. [Google Scholar] [CrossRef]
- Jayalath, N.; Mosley, L.M.; Fitzpatrick, R.W.; Marschner, P. Addition of organic matter influences pH changes in reduced and oxidised acid sulfate soils. Geoderma 2016, 262, 125–132. [Google Scholar] [CrossRef]
- Yuan, C.; Mosley, L.M.; Fitzpatrick, R.; Marschner, P. Organic matter addition can prevent acidification during oxidation of sandy hypersulfidic and hyposulfidic material: Effect of application form, rate and C/N ratio. Geoderma 2016, 276, 26–32. [Google Scholar] [CrossRef]
- Annisa, W.; Cahyana, D.; Syahbuddin, H.; Rachman, A. Laboratory Study of Methane Flux from Acid Sulphate Soil in South Kalimantan. IOP Conf. Ser. Mater. Sci. Eng. 2017, 209, 012089. [Google Scholar] [CrossRef]
- Fahmi, A.; Radjagukguk, B.; Purwanto, B.H. The Leaching of Iron and Loss of Phosphate in Acid Sulphate Soil Due to Rice Straw and Phosphate Fertilizer Application. J. Trop. Soils 2012, 17, 19–24. [Google Scholar] [CrossRef]
- Diedhiou, P.C.C.; Sambou, A.; Ndour, O.N.N.; Diedhiou, S.K. Comparative Analysis of Rice Performance and Profitability with the System of Rice Intensification (SRI) and Traditional Practices (TP) in Ziguinchor District, Senegal. For. Agric. Rev. 2021, 2, 22–36. [Google Scholar] [CrossRef]
- Fall, T.; Galbraith, J.; Thompson, T.; Thomason, W.; Abaye, O. Soil Management for Improved Rice Production in Casamance, Senegal. Master’s Theses, Virginia Tech, Blacksburg, VA, USA, 2016; pp. 23–43. [Google Scholar]
- Schmidt, H.; Eickhorst, T.; Tippkötter, R. Monitoring of root growth and redox conditions in paddy soil rhizotrons by redox electrodes and image analysis. Plant Soil 2011, 341, 221–232. [Google Scholar] [CrossRef]
- Patrick, W.H., Jr. The role of inorganic redox systems in controlling reduction in paddy soils. In Proceedings of Symposium on Paddy Soils; Springer: Berlin, Germany, 1981; pp. 107–119. [Google Scholar]
- Patra, B.N.; Mohany, S.K. Effects of nutrients and liming on changes in pH, redox potential and uptake of iron and manganese by wetland rice in iron-toxic soils. Bio. Fertil. Soils 1994, 17, 285–288. [Google Scholar] [CrossRef]
- Yang, Z.; Kanda, K.; Tsurata, H.; Minani, K. Measurement of biogenic sulfur gases emission from some Chinese and Japanese soils. Atmos. Environ. 1996, 30, 2399–2405. [Google Scholar] [CrossRef]
- Schulz, S.; Dickschat, J.S. Bacterial volatiles: The smell of small organisms. Nat. Prod. Rep. 2007, 24, 814–842. [Google Scholar] [CrossRef]
- Shetty, R.; Prakash, N.B. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Sci. Rep. 2020, 10, 12249. [Google Scholar] [CrossRef]
- Shetty, R.; Vidya, C.S.N.; Prakash, N.B.; Lux, A.; Vaculik, M. Aluminium toxicity in plants and its possible mitigation in acid soils by biochar: A review. Sci. Total Environ. 2021, 765, 142744. [Google Scholar] [CrossRef]
- Kölbl, A.; Bucka, F.; Marschner, P.; Mosley, L.; Fitzpatrick, R.; Schulz, S.; Lueders, T.; Kögel-Knabner, I. Consumption and alteration of different organic matter sources during remediation of a sandy sulfuric soil. Geoderma 2019, 347, 220–232. [Google Scholar] [CrossRef]
- Kölbl, A.; Kaiser, K.; Winkler, P.; Mosley, L.; Fitzpatrick, R.; Marschner, P.; Wagner, F.E.; Häusler, W.; Mikutta, R. Transformation of jarosite during simulated remediation of a sandy sulfuric soil. Sci. Total Environ. 2021, 773, 145546. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yang, L.; Yang, Y.; Ouyang, Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric. Water Manag. 2004, 70, 67–81. [Google Scholar] [CrossRef]
- van Oort, P.A.J.; Saito, K.; Tanaka, A.; Amovin-Assagba, E.; van Bassel, L.G.J.; van Wart, J.; de Groot, H.; van Ittersum, M.K.; Cassman, K.G.M.; Wopereis, M.C.S. Assessment of rice self-sufficiency in 2025 in eight African countries. Glob. Food Secur. 2015, 5, 39–49. [Google Scholar] [CrossRef]
- Mosley, L.M.; Biswas, T.K.; Dang, T.; Palmer, D.; Cummings, C.; Daly, R.; Simpson, S.; Kirby, J. Fate and dynamics of metal precipitates arising from acid drainage discharges to a river system. Chemosphere 2018, 212, 811–820. [Google Scholar] [CrossRef]
Plot | pH 1.2,5 Soil/Water | Sand | Silt | Clay | EC 1:5 Extract | Soluble SO42- | Oxidable Organic Carbon | Alex |
---|---|---|---|---|---|---|---|---|
% | % | % | dS/m | mg/kg | g/kg | cmolc/kg | ||
P1 | 4.01 | 17.5 | 42.6 | 39.9 | 0.73 | 689 | 6.20 | 4.76 |
P2 | 4.16 | 14.4 | 43.3 | 42.3 | 0.33 | 146 | 6.27 | 3.54 |
P3 | 4.02 | 11.9 | 53.5 | 34.5 | 0.35 | 155 | 3.83 | 3.27 |
P4 | 4.26 | 15.7 | 37.9 | 46.4 | 0.17 | 54 | 5.71 | 3.43 |
Plateau | 4.43 | 28.4 | 34.6 | 37 | 0.28 | 231 | 0.5 | 1.27 |
Soil | Depth | C | N | C/N | P | S | K | Ca | Mg | Fe | Al |
---|---|---|---|---|---|---|---|---|---|---|---|
P1 | (0–10) | 41.1 | 3.7 | 11.0 | 0.49 | 2.5 | 1.28 | 0.3 | 0.79 | 42.1 | 62.7 |
(10–20) | 22.6 | 2.0 | 11.3 | 0.21 | 0.9 | 1.39 | 0.1 | 0.84 | 13.8 | 90.8 | |
P2 | (0–10) | 30.8 | 2.5 | 12.0 | 0.35 | 0.8 | 1.24 | 0.2 | 0.67 | 16.1 | 52.2 |
(10–20) | 25.7 | 2.1 | 12.2 | 0.24 | 0.5 | 1.05 | 0.1 | 0.54 | 9.8 | 43.4 | |
P3 | (10–20) | 17.4 | 1.6 | 11.0 | 0.15 | 0.6 | 1.00 | 0.1 | 0.57 | 7.5 | 57.3 |
P4 | (0–10) | 28.2 | 2.3 | 12.2 | 0.32 | 0.6 | 1.22 | 0.1 | 0.70 | 21.9 | 63.5 |
Rice straw | 387.4 | 10.5 | 36.7 | 0.72 | 1.3 | 11.7 | 3.1 | 1.73 | 0.2 | 0.2 | |
Manure | 220.8 | 19.2 | 11.5 | 7.09 | 6.5 | 11.9 | 37.0 | 70.6 | 7.3 | 4.4 | |
Biochar * | 627 | 9 | 70.0 | 1.80 | 0.1 | 7.7 | 37.6 | 4.0 | 1.6 | nd |
Amendment | Al/Alc | Ca/Cac | Fe/Fec | K/Kc | Mg/Mgc | Mn/Mnc | S/Sc |
---|---|---|---|---|---|---|---|
Control | 1 c | 1 a | 1 a | 1 | 1 a | 1 a | 1 ab |
Rice straw | 0.09 ± 0.10 a | 0.55 ± 0.28 a | 714.77 ± 469.19 b | 3.19 ± 3.06 | 0.80 ± 0.27 a | 0.54 ± 0.38 a | 0.35 ± 0.39 a |
Manure | 0.24 ± 0.15 b | 5.50 ± 1.92 b | 1.51 ± 1.14 a | 5.20 ± 4.84 | 3.02 ± 0.64 c | 2.19 ± 1.11 b | 3.68 ± 2.83 c |
Biochar | 0.09 ± 0.06 a | 5.18 ± 1.91 b | 0.29 ± 0.16 a | 2.35 ± 1.77 | 1.51 ± 0.28 b | 2.35 ± 1.08 b | 2.29 ± 1.29 bc |
P | 0.0000 | 0.0000 | 0.0000 | 0.1732 | 0.0000 | 0.0015 | 0.0075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bautista, I.; Oliver, J.; Lidón, A.; Osca, J.M.; Sanjuán, N. Improving the Chemical Properties of Acid Sulphate Soils from the Casamance River Basin. Land 2023, 12, 1693. https://doi.org/10.3390/land12091693
Bautista I, Oliver J, Lidón A, Osca JM, Sanjuán N. Improving the Chemical Properties of Acid Sulphate Soils from the Casamance River Basin. Land. 2023; 12(9):1693. https://doi.org/10.3390/land12091693
Chicago/Turabian StyleBautista, Inmaculada, Joana Oliver, Antonio Lidón, Jose María Osca, and Neus Sanjuán. 2023. "Improving the Chemical Properties of Acid Sulphate Soils from the Casamance River Basin" Land 12, no. 9: 1693. https://doi.org/10.3390/land12091693
APA StyleBautista, I., Oliver, J., Lidón, A., Osca, J. M., & Sanjuán, N. (2023). Improving the Chemical Properties of Acid Sulphate Soils from the Casamance River Basin. Land, 12(9), 1693. https://doi.org/10.3390/land12091693