High-Performance Landscapes: Re-Thinking Design and Management Choices to Enhance Ecological Benefits in Urban Environments
Abstract
:1. Introduction
- What specific design factors are most important for environmental benefits related to urban water conservation, increased pollinator visitor abundance and richness, and reduced emissions associated with maintenance?
- Are there tradeoffs and synergies between environmental benefits and aesthetic appeal in designed landscapes?
- What are the fundamental considerations for landscape designers, contractors, and maintenance professionals who aim to maximize environmental benefits and increase resilience in urban systems?
2. Materials and Methods
2.1. Study System
2.2. Plot Landscape Design: Predictor Variables
2.3. Data Collection: Response Variables
2.3.1. Pollinators
2.3.2. Maintenance Time and Associated Emissions
2.3.3. Water
2.3.4. Visual Ratings
2.4. Analysis
2.4.1. Model Selection for Pollinators, Maintenance-Related Variables, and Water
2.4.2. Visual Quality Ratings
2.4.3. Tradeoffs and Synergies
3. Results
3.1. Pollinators
3.2. Maintenance Time and Associated Emissions
3.3. Water
3.4. Visual Quality Ratings
3.5. Tradeoffs and Synergies
4. Discussion
4.1. Broader Environmental Benefits from Decisions in Small-Scale Urban Landscapes
4.2. Synergies in Environmental Benefits in Urban Landscapes
4.3. Tools and Approaches for Urban Landscape Designers
4.4. Opportunities for Municipal Policy to Shape Urban Landscape Design
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Glaeser, E. Engines of Innovation. Sci. Am. 2011, 305, 50–55. [Google Scholar] [CrossRef] [PubMed]
- McPhearson, T.; Andersson, E.; Elmqvist, T.; Frantzeskaki, N. Resilience of and through urban ecosystem services. Ecosyst. Serv. 2015, 12, 152–156. [Google Scholar] [CrossRef]
- Daily, G. (Ed.) Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Marzluff, J.M.; Rodewald, A.D. Conserving Biodiversity in Urbanizing Areas: Nontraditional Views from a Bird’s Perspective. Cities Environ. 2008, 1, 1–27. [Google Scholar] [CrossRef]
- Minor, E.S.; Anderson, E.; Belaire, A.J.; Garfinkel, M.; Smith, A. Urban green infrastructures and ecological networks for urban biodiversity conservation. In Urban Biodiversity; Ossola, A., Niemela, J., Eds.; Routledge: London, UK, 2017. [Google Scholar]
- Norton, B.; Evans, K.L.; Warren, P.H. Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning. Curr. Landsc. Ecol. Rep. 2016, 1, 178–192. [Google Scholar] [CrossRef]
- Lovell, S.T.; Johnston, D.M. Designing Landscapes for Performance Based on Emerging Principles in Landscape Ecology. Ecol. Soc. 2009, 14, 44. Available online: http://www. ecologyandsociety.org/vol14/iss1/art44/ (accessed on 1 July 2010). [CrossRef]
- Windhager, S.; Steiner, F.; Simmons, M.T.; Heymann, D. Toward Ecosystem Services as a Basis for Design. Landsc. J. 2010, 29, 107–123. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The cooling efficiency of urban landscape strategies in a hot dry climate. Landsc. Urban Plan. 2009, 92, 179–186. [Google Scholar] [CrossRef]
- Davies, Z.; Edmonson, J.; Heinemeyer, A.; Leake, J.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef]
- Narango, D.L.; Tallamy, D.W.; Marra, P.P. Native plants improve breeding and foraging habitat for an insectivorous bird. Biol. Conserv. 2016, 213, 42–50. [Google Scholar] [CrossRef]
- Perring, M.P.; Maning, P.; Hobbs, R.J.; Lugo, A.E.; Ramalho, C.E.; Standish, R.J. Novel urban ecosystems and ecosystem services. In Novel Ecosystems: Intervening in the New Ecological World Order; Hobbs, R.J., Higgs, E.S., Hall, C.M., Eds.; Wiley-Blackwell: Oxford, UK, 2013; pp. 310–325. [Google Scholar]
- Kondo, M.C.; South, E.C.; Branas, C.C. Nature-Based Strategies for Improving Urban Health and Safety. J. Urban Health 2015, 92, 800–814. [Google Scholar] [CrossRef] [PubMed]
- Aronson, M.F.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Arnold, E.; Haase, D. The carbon footprint of urban green space—A life cycle approach. Landsc. Urban Plan. 2012, 104, 220–229. [Google Scholar] [CrossRef]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef]
- Kronenberg, J.; Haase, A.; Łaszkiewicz, E.; Antal, A.; Baravikova, A.; Biernacka, M.; Dushkova, D.; Filčak, R.; Haase, D.; Ignatieva, M.; et al. Environmental justice in the context of urban green space availability, accessibility, and attractiveness in postsocialist cities. Cities 2020, 106, 102862. [Google Scholar] [CrossRef]
- Rigolon, A.; Németh, J. Green gentrification or ‘just green enough’: Do park location, size and function affect whether a place gentrifies or not? Urban Stud. 2020, 57, 402–420. [Google Scholar] [CrossRef]
- Sikorska, D.; Łaszkiewicz, E.; Krauze, K.; Sikorski, P. The role of informal green spaces in reducing inequalities in urban green space availability to children and seniors. Environ. Sci. Policy 2020, 108, 144–154. [Google Scholar] [CrossRef]
- Mitchell, M.G.; Devisscher, T. Strong relationships between urbanization, landscape structure, and ecosystem service multifunctionality in urban forest fragments. Landsc. Urban Plan. 2022, 228, 104548. [Google Scholar] [CrossRef]
- Peng, R.; Liu, T.; Cao, G. Valuating Multifunctionality of Land Use for Sustainable Development: Framework, Method, and Application. Land 2023, 12, 222. [Google Scholar] [CrossRef]
- Belaire, J.A.; Higgins, C.; Zoll, D.; Lieberknecht, K.; Bixler, R.P.; Neff, J.L.; Keitt, T.H.; Jha, S. Fine-scale monitoring and mapping of biodiversity and ecosystem services reveals multiple synergies and few tradeoffs in urban green space management. Sci. Total Environ. 2022, 849, 157801. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Egerer, M.H.; Bichier, P.; Cohen, H.; Liere, H.; Lin, B.B.; Lucatero, A.; Philpott, S.M. Multiple ecosystem service synergies and landscape-mediation of biodiversity within urban agroecosystems. Ecol. Lett. 2023, 26, 369–383. [Google Scholar] [CrossRef]
- Lowenstein, D.M.; Matteson, K.C.; Minor, E.S. Diversity of wild bees supports pollination services in an urbanized landscape. Oecologia 2015, 179, 811–821. [Google Scholar] [CrossRef]
- Matos, P.; Vieira, J.; Rocha, B.; Branquinho, C.; Pinho, P. Modeling the provision of air-quality regulation ecosystem service provided by urban green spaces using lichens as ecological indicators. Sci. Total Environ. 2019, 665, 521–530. [Google Scholar] [CrossRef]
- Pickard, B.; Van Berkel, D.; Petrasova, A.; Meentemeyer, R. Forecasts of urbanization scenarios reveal trade-offs between landscape change and ecosystem services. Landsc. Ecol. 2017, 32, 617–634. [Google Scholar] [CrossRef]
- Ziter, C. The biodiversity–ecosystem service relationship in urban areas: A quantitative review. Oikos 2016, 125, 761–768. [Google Scholar] [CrossRef]
- Felson, A.J.; Pickett, S.T. Designed experiments: New approaches to studying urban ecosystems. Front. Ecol. Environ. 2005, 3, 549–556. [Google Scholar] [CrossRef]
- Felson, A.J.; Bradford, M.A.; Terway, T.M. Promoting Earth Stewardship through urban design experiments. Front. Ecol. Environ. 2013, 11, 362–367. [Google Scholar] [CrossRef]
- Banner, J.L.; Jackson, C.S.; Yang, Z.L.; Hayhoe, K.; Woodhouse, C.; Gulden, L.; Jacobs, K.; North, G.; Leung, R.; Washington, W.; et al. Texas Water Journal climate change impacts on Texas water A white paper assessment of the past, present and future and recommendations for action. Tex. Water J. 2010, 1, 1–19. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Marvel, K.; Williams, A.P.; Smerdon, J.E.; Anchukaitis, K.J. Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios. Earth’s Futur. 2020, 8, e2019EF001461. [Google Scholar] [CrossRef]
- Frankie, G.W.; Thorp, R.W.; Schindler, M.; Hernandez, J.; Ertter, B.; Rizzardi, M. Ecological Patterns of Bees and Their Host Ornamental Flowers in Two Northern California Cities. J. Kans. Èntomol. Soc. 2005, 78, 227–246. [Google Scholar] [CrossRef]
- Lowenstein, D.M.; Matteson, K.C.; Xiao, I.; Silva, A.M.; Minor, E.S. Humans, bees, and pollination services in the city: The case of Chicago, IL (USA). Biodivers. Conserv. 2014, 23, 2857–2874. [Google Scholar] [CrossRef]
- Cohen, H.; Philpott, S.M.; Liere, H.; Lin, B.B.; Jha, S. The relationship between pollinator community and pollination services is mediated by floral abundance in urban landscapes. Urban Ecosyst. 2021, 24, 275–290. [Google Scholar] [CrossRef]
- Lin, B.B.; Philpott, S.M.; Jha, S. The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic Appl. Ecol. 2015, 16, 189–201. [Google Scholar] [CrossRef]
- Zirkle, G.; Lal, R.; Augustin, B. Modeling Carbon Sequestration in Home Lawns. HortScience 2011, 46, 808–814. [Google Scholar] [CrossRef]
- Gu, C.; Crane II, J.; Hornberger, G.; Carrico, A. The effects of household management practices on the global warming potential of urban lawns. J. Environ. Manag. 2015, 151, 233–242. [Google Scholar] [CrossRef]
- Morris, J.; Bagby, J. Measuring environmental value for Natural Lawn and Garden Care practices. Int. J. Life Cycle Assess. 2008, 13, 226–234. [Google Scholar] [CrossRef]
- Banks, J.L.; McConnell, R. National Emissions from Lawn and Garden Equipment. U.S. Environmental Protection Agency. 2015. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/banks.pdf (accessed on 1 May 2023).
- Gotelli, N.; Ellison, M. A Primer of Ecological Statistics; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Texas A&M AgriLife. Texas Urban Landscape Guide. Available online: https://agrilifeextension.tamu.edu/asset-local/texas-urban-landscape-guide/ (accessed on 30 January 2022).
- Lady Bird Johnson Wildflower Center. Native Plant Database and Plant Lists & Collections. Available online: https://www.wildflower.org (accessed on 15 January 2017).
- Natural Resources Conservation Service. Natural Resources Conservation Service Soil Survey of Tarrant County. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey/state/?stateId=TX (accessed on 15 January 2016).
- Kent, M.; Coker, P. Vegetation Description and Data Analysis: A Practical Approach; Belhaven Press: London, UK, 1992. [Google Scholar]
- Sun, H.; Kopp, K.; Kjelgren, R. Water-efficient Urban Landscapes: Integrating Different Water Use Categorizations and Plant Types. HortScience 2012, 47, 254–263. [Google Scholar] [CrossRef]
- Cusser, S.; Haddad, N.M.; Jha, S. Unexpected functional complementarity from non-bee pollinators enhances cotton yield. Agric. Ecosyst. Environ. 2021, 314, 107415. [Google Scholar] [CrossRef]
- Obrist, M.K.; Duelli, P. Rapid biodiversity assessment of arthropods for monitoring average local species richness and related ecosystem services. Biodivers. Conserv. 2010, 19, 2201–2220. [Google Scholar] [CrossRef]
- Mandelik, Y.; Dayan, T.; Chikatunov, V.; Kravchenko, V. The relative performance of taxonomic vs. environmental indicators for local biodiversity assessment: A comparative study. Ecol. Indic. 2012, 15, 171–180. [Google Scholar] [CrossRef]
- Trevino, L.; Jha, S. Bees of Central Texas—General Guide. Available online: http://w3.biosci.utexas.edu/jha/landowners-naturalists/texas-pollinator-guides (accessed on 1 February 2018).
- Michener, C.D.; McGinley, R.J.; Danforth, B.N. The Bee Genera of North and Central America (Hymenoptera: Apoidea); Smithsonian Institution Press: Washington, DC, USA, 1994. [Google Scholar]
- Koch, J.; Strange, J.P.; Williams, P. Bumble bees of the western United States. USDA Forest Service Research Notes. Pub-lication No. FS-972. 2012. Available online: https://www.ars.usda.gov/research/publications/publication/?seqNo115=286891 (accessed on 1 July 2018).
- Goulet, H.; Huber, J.T. (Eds.) Hymenoptera of the World: An Identification Guide to Families; Research Branch Agriculture Canada, Publication l894/E; Centre for Land and Biological Resources Research: Ottawa, ON, Canada, 1993. [Google Scholar]
- Iowa State University. BugGuide. 2018. Available online: https://bugguide.net/ (accessed on 1 February 2018).
- Pittenger, D.R.; Downer, A.J.; Hodel, D.R. Estimating water needs of landscape palms in Mediterranean climates. Hort Technol. 2009, 19, 700–704. [Google Scholar] [CrossRef]
- Pittenger, D. Methodology for Estimating Landscape Irrigation Demand—Review and Recommendations. A Report to the Barton Springs/Edwards Aquifer Conservation District. 2014. Available online: https://bseacd.org/ (accessed on 1 July 2017).
- ANSI/ASABE S623.1 JAN2017; Determining Landscape plant Water Demands. Revised and approved January 2017 as an American National Standard; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2017.
- Nassauer, J.I.; Wang, Z.; Dayrell, E. What will the neighbors think? Cultural norms and ecological design. Landsc. Urban Plan. 2009, 92, 282–292. [Google Scholar] [CrossRef]
- U.S. Forest Service. Landscape Aesthetic Handbook: A Handbook for Scenery Management. US Department of Agriculture, Forest Service, Agriculture Handbook Number 701. 1995. Available online: https://www.nrc.gov/docs/ML1224/ML12241A377.pdf (accessed on 15 January 2016).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Chamberlain, D.E., Gough, S., Vaughan, H., Vick, S., Eds.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Johnson, J.B.; Omland, K.S. Model selection in ecology and evolution. Trends Ecol. Evol. 2004, 19, 101–108. [Google Scholar] [CrossRef]
- Barton, K. Mu-MIn: Multi-Model Inference. R Package Version 0.12.2/r18. 2018. Available online: http://R-Forge.R-project.org/projects/mumin/ (accessed on 30 July 2019).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Chiquet, C.; Dover, J.; Mitchell, P. Birds and the urban environment: The value of green walls. Urban Ecosyst. 2013, 16, 453–462. [Google Scholar] [CrossRef]
- Matteson, K.C.; Langellotto, G.A. Determinates of inner city butterfly and bee species richness. Urban Ecosyst. 2010, 13, 222–347. [Google Scholar] [CrossRef]
- Tonietto, R.; Fant, J.; Ascher, J.; Ellis, K.; Larkin, D. A comparison of bee communities of Chicago green roofs, parks and prairies. Landsc. Urban Plan. 2011, 103, 102–108. [Google Scholar] [CrossRef]
- Ballare, K.M.; Neff, J.L.; Ruppel, R.; Jha, S. Multi-scalar drivers of biodiversity: Local management mediates wild bee community response to regional urbanization. Ecol. Appl. 2019, 29, e01869. [Google Scholar] [CrossRef]
- Pardee, G.L.; Philpott, S.M. Native plants are the bee’s knees: Local and landscape predictors of bee richness and abundance in backyard gardens. Urban Ecosyst. 2014, 17, 641–659. [Google Scholar] [CrossRef]
- Quistberg, R.D.; Bichier, P.; Philpott, S.M. Landscape and Local Correlates of Bee Abundance and Species Richness in Urban Gardens. Environ. Èntomol. 2016, 45, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Mader, E.; Shepherd, M.; Vaughan, M.; Black, S.H.; LeBuhn, G. Attracting Native Pollinators: Protecting North America’s Bees and Butterflies; Storey Publishing: North Adams, MA, USA, 2011. [Google Scholar]
- U.S. Global Change Research Program. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; 2018. Available online: https://nca2018.globalchange.gov/chapter/front-matter-about/ (accessed on 1 July 2019).
- Hermitte, S.M.; Mace, R.E. The Grass is Always Greener. Outdoor Residential Water Use in Texas. Texas Water De-velopment Board Technical Note 12-01. 2012. Available online: http://www.twdb.texas.gov/publications/reports/technical_notes/doc/SeasonalWaterUseReport-final.pdf (accessed on 1 November 2018).
- Chavey, S.M. Some San Antonio Residents have Used more than 1M Gallons of Water so Far this Year. Here’s why. San Antonio Express News. 2018. Available online: https://www.expressnews.com/news/local/article/San-Antonio-residents-companies-water-use-13159113.php (accessed on 1 July 2019).
- Beard, J.B.; Green, R.L. The Role of Turfgrasses in Environmental Protection and Their Benefits to Humans. J. Environ. Qual. 1994, 23, 452–460. [Google Scholar] [CrossRef]
- Livesley, S.J.; McPherson, E.J.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef]
- Bakhshi, A.A.; Demonsabert, S.M. Estimating the carbon footprint of the municipal water cycle. J. AWWA 2012, 104, E337–E347. [Google Scholar] [CrossRef]
- City of Austin, Texas. Water Forward: A Water Plan for the Next 100 Years. Austin, Texas Water Forward Task Board. 2018. Available online: http://austintexas.gov/sites/default/files/files/Water/WaterForward/Water_Forward_Plan_Report_-_A_Water_Plan_for_the_Next_100_Years.pdf (accessed on 15 November 2018).
- Steffan-Dewenter, I.; Kessler, M.; Barkmann, J.; Bos, M.M.; Buchori, D.; Erasmi, S.; Faust, H.; Gerold, G.; Glenk, K.; Gradstein, S.R.; et al. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc. Natl. Acad. Sci. USA 2007, 104, 4973–4978. [Google Scholar] [CrossRef] [PubMed]
- Luck, G.W.; Harrington, R.; Harrison, P.A.; Kremen, C.; Berry, P.M.; Bugter, R.; Dawson, T.P.; de Bello, F.; Díaz, S.; Feld, C.K.; et al. Quantifying the Contribution of Organisms to the Provision of Ecosystem Services. BioScience 2009, 59, 223–235. [Google Scholar] [CrossRef]
- Fuller, R.A.; Irvine, K.N.; Devine-Wright, P.; Warren, P.H.; Gaston, K.J. Psychological benefits of greenspace increase with biodiversity. Biol. Lett. 2007, 3, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Majewska, A.A.; Altizer, S. Planting gardens to support insect pollinators. Conserv. Biol. 2018, 34, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Diekelmann, J.; Schuster, R. Natural Landscaping: Designing with Native Plant Communities; University of Wisconsin Press: Madison, WI, USA, 2002. [Google Scholar]
- Pham, M.A.; Scott, S.B.; Fyie, L.R.; Gardiner, M.M. Sustainable landscaping programs in the United States and their potential to encourage conservation and support ecosystem services. Urban Ecosyst. 2022, 25, 1481–1490. [Google Scholar] [CrossRef]
- Landscape Performance Series Benefits Toolkit. Available online: https://www.landscapeperformance.org/benefits-toolkit (accessed on 27 July 2023).
- Sustainable Sites Initiative. Available online: www.sustainablesites.org (accessed on 27 July 2023).
- Lerman, S.B.; Turner, V.K.; Bang, C. Homeowner Associations as a Vehicle for Promoting Native Urban Biodiversity. Ecol. Soc. 2012, 17, 45. [Google Scholar] [CrossRef]
- Jin, L.; Wang, Y. The practice and potential of the SITES v2 rating system for the sustainable design of a landscape: A case study of Chicago’s Navy Pier. Front. Environ. Sci. 2023, 11, 966726. [Google Scholar] [CrossRef]
- Landscape for Life. Available online: https://landscapeforlife.colostate.edu (accessed on 27 July 2023).
- Egerer, M.; Lin, B.B.; Philpott, S.M. Water Use Behavior, Learning, and Adaptation to Future Change in Urban Gardens. Front. Sustain. Food Syst. 2018, 2, 71. [Google Scholar] [CrossRef]
- Wheeler, S.M. Reimagining Sustainable Cities: Strategies for Designing Greener, Healthier, More Equitable Communities; University of California Press: Oakland, CA, USA, 2021. [Google Scholar]
- Matsler, M.; Finewood, M.; Richards, R.; Pierce, O.; Ledermann, Z. Institutionalizing barriers to access? An equity scan of green stormwater infrastructure (GSI) incentive programs in the United States. J. Environ. Policy Plan. 2023, 25, 413–428. [Google Scholar] [CrossRef]
- Wrigley, K.; Crawford, R.H. Identifying policy solutions for improving the energy efficiency of rental properties. Energy Policy 2017, 108, 369–378. [Google Scholar] [CrossRef]
- Riedman, E.; Roman, L.A.; Pearsall, H.; Maslin, M.; Ifill, T.; Dentice, D. Why don’t people plant trees? Uncovering barriers to participation in urban tree planting initiatives. Urban For. Urban Green. 2022, 73, 127597. [Google Scholar] [CrossRef]
- Larson, K.L.; Andrade, R.; Nelson, K.C.; Wheeler, M.M.; Engebreston, J.M.; Hall, S.J.; Avolio, M.L.; Groffman, P.M.; Grove, M.; Heffernan, J.B.; et al. Municipal regulation of residential landscapes across US cities: Patterns and implications for landscape sustainability. J. Environ. Manag. 2020, 275, 111132. [Google Scholar] [CrossRef] [PubMed]
- Pincetl, S.; Gillespie, T.W.; Pataki, D.E.; Porse, E.; Jia, S.; Kidera, E.; Nobles, N.; Rodriguez, J.; Choi, D.-A. Evaluating the effects of turf-replacement programs in Los Angeles. Landsc. Urban Plan. 2019, 185, 210–221. [Google Scholar] [CrossRef]
- Sisser, J.M.; Nelson, K.C.; Larson, K.L.; Ogden, L.A.; Polsky, C.; Chowdhury, R.R. Lawn enforcement: How mu-icipal policies and neighborhood norms influence homeowner residential landscape management. Landsc. Urban Plan. 2016, 150, 16–25. [Google Scholar] [CrossRef]
- Lerman, S.B.; Contosta, A.R.; Milam, J.; Bang, C. To mow or to mow less: Lawn mowing frequency affects bee abundance and diversity in suburban yards. Biol. Conserv. 2018, 221, 160–174. [Google Scholar] [CrossRef]
- Goh, K. Planning the Green New Deal: Climate Justice and the Politics of Sites and Scales. J. Am. Plan. Assoc. 2020, 86, 188–195. [Google Scholar] [CrossRef]
- Solis, M.; Lieberknecht, K.; Oden, M.; Liu, H. Labor Lacuna: Local Climate Action & the Left-Out World of Workforce Development. In review.
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef]
- Belaire, J.A.; Whelan, C.J.; Minor, E.S. Having our yards and sharing them too: The collective effects of yards on native bird species in an urban landscape. Ecol. Appl. 2014, 24, 2132–2143. [Google Scholar] [CrossRef] [PubMed]
- Kinzig, A.P.; Warren, P.; Martin, C.; Hope, D.; Katti, M. The Effects of Human Socioeconomic Status and Cultural Characteristics on Urban Patterns of Biodiversity. Ecol. Soc. 2005, 10. [Google Scholar] [CrossRef]
Design Variable | Description | Min–Max | Mean (Std. Dev.) |
---|---|---|---|
Native plant coverage * | Cover of plants native to ecoregion (%) | 22–100% | 80% (18%) |
Plant richness | Total number of unique plant species | 2–7 | 4.3 (1.5) |
Vegetation adaptation to soil moisture * | Plot-level index of soil moisture adaptation for the plant community in each plot * | 0.8–8.5 | 3.2 (2.7) |
Response Variables | Native Plants (% Cover) | Plant Richness | Vegetation Adaptation to Soil Moisture | R2 |
---|---|---|---|---|
Pollinators | ||||
Visitors | x | 0.22 *** | x | 0.32 |
Visitor richness | x | 0.07 *** | x | 0.31 |
Water | ||||
‘Dry days’ | x | x | −2.06 *** | 0.48 |
Irrigation rate (inches per month) | x | x | 0.50 *** | 0.63 |
Maintenance | ||||
Total time | x | 0.01 | x | 0.09 |
Total fuel-powered equipment time | −0.03 ** | 0.02 | x | 0.20 |
Water | Pollinators | Maintenance Emissions | Visual Quality | |
---|---|---|---|---|
Water | −0.47 ** | 0.35 | −0.77 | |
Pollinators | −0.39 * | 0.94 ** | ||
Maintenance emissions | 0.43 | |||
Visual quality |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belaire, J.A.; Bass, H.; Venhaus, H.; Barfield, K.; Pannkuk, T.; Lieberknecht, K.; Jha, S. High-Performance Landscapes: Re-Thinking Design and Management Choices to Enhance Ecological Benefits in Urban Environments. Land 2023, 12, 1689. https://doi.org/10.3390/land12091689
Belaire JA, Bass H, Venhaus H, Barfield K, Pannkuk T, Lieberknecht K, Jha S. High-Performance Landscapes: Re-Thinking Design and Management Choices to Enhance Ecological Benefits in Urban Environments. Land. 2023; 12(9):1689. https://doi.org/10.3390/land12091689
Chicago/Turabian StyleBelaire, J. Amy, Heather Bass, Heather Venhaus, Keri Barfield, Tim Pannkuk, Katherine Lieberknecht, and Shalene Jha. 2023. "High-Performance Landscapes: Re-Thinking Design and Management Choices to Enhance Ecological Benefits in Urban Environments" Land 12, no. 9: 1689. https://doi.org/10.3390/land12091689
APA StyleBelaire, J. A., Bass, H., Venhaus, H., Barfield, K., Pannkuk, T., Lieberknecht, K., & Jha, S. (2023). High-Performance Landscapes: Re-Thinking Design and Management Choices to Enhance Ecological Benefits in Urban Environments. Land, 12(9), 1689. https://doi.org/10.3390/land12091689