Empirical Investigation of Cultivated Land Green Use Efficiency and Influencing Factors in China, 2000–2020
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methodology
3.1. Variable Selection of Measuring the CLGUE
3.2. Super-SBM with Undesired Output
3.3. Panel Regression Model
4. Results
4.1. Changes of Input and Output Variables of the CLGUE
4.2. The Spatial-Temporal Patterns of the CLGUE
4.3. The Influencing Factors of the CLGUE
5. Discussion
5.1. Comparison with Previous Studies
5.2. Policy Implications
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, L.; Wang, Y. Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years. Land Use Policy 2020, 97, 104794. [Google Scholar] [CrossRef]
- Lu, X.; Huang, S. Barriers and solutions to China’s cultivated land protection. Int. J. Environ. Stud. 2010, 67, 223–232. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [Google Scholar] [CrossRef]
- Li, H.; Song, W. Spatial transformation of changes in global cultivated land. Sci. Total Environ. 2023, 859, 160194. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhong, Z.; Cheng, G. Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019. Land Use Policy 2023, 125, 106496. [Google Scholar] [CrossRef]
- Yang, D.; Song, W. Tracking land use trajectory to map abandoned farmland in mountainous area. Ecol. Inform. 2023, 75, 102103. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, S.; Song, M. Estimating policy pressure for China’s cultivated land use protection based on an extended index. Phys. Chem. Earth Parts A/B/C 2017, 101, 21–34. [Google Scholar] [CrossRef]
- Pan, T.; Hou, S.; Liu, Y.; Tan, Q.; Liu, Y.; Gao, X. Influence of degradation on soil water availability in an alpine swamp meadow on the eastern edge of the Tibetan Plateau. Sci. Total Environ. 2020, 722, 137677. [Google Scholar] [CrossRef]
- Song, M.; Li, J.; Gao, L.; Tian, Y. Comprehensive evaluation of effects of various carbon-rich amendments on overall soil quality and crop productivity in degraded soils. Geoderma 2023, 436, 116529. [Google Scholar] [CrossRef]
- Li, X.P.; Cai, J.; Wang, Q.J.; Wang, X.W. Heterogeneous public preferences for controlling agricultural non-point source pollution based on a choice experiment. J. Environ. Manag. 2022, 305, 114413. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.; Zhang, B.; Li, Y.; Niu, W.; Zheng, W.; Kong, X.; Yu, Q.; Zhao, M.; Xia, X. A new multi-dimensional framework considering environmental impacts to assess green development level of cultivated land during 1990 to 2018 in China. Environ. Impact Assess. Rev. 2023, 98, 106927. [Google Scholar] [CrossRef]
- Singh, A. Judicious and optimal use of water and land resources for long-term agricultural sustainability. Resour. Conserv. Recycl. Adv. 2022, 13, 200067. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Q.; Wang, W.; He, Y. Analyzing the green efficiency of arable land use in China. Technol. Forecast. Soc. Chang. 2018, 133, 15–28. [Google Scholar] [CrossRef]
- Han, H.; Zhang, X. Static and dynamic cultivated land use efficiency in China: A minimum distance to strong efficient frontier approach. J. Clean. Prod. 2020, 246, 119002. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Z.; Zou, L.; Zou, L.; Zhang, H. Exploring the eco-efficiency of cultivated land utilization and its influencing factors in China’s Yangtze River Economic Belt, 2001–2018. J. Environ. Manag. 2021, 294, 112939. [Google Scholar] [CrossRef]
- Yin, Y.; Hou, X.; Liu, J.; Zhou, X.; Zhang, D. Detection and attribution of changes in cultivated land use ecological efficiency: A case study on Yangtze River Economic Belt, China. Ecol. Indic. 2022, 137, 108753. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, D.; Li, J.; Liang, J.; Zhang, D.; Chen, W. Cultivated land use efficiency and its driving factors in the Yellow River Basin, China. Ecol. Indic. 2022, 144, 109411. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, W.; Wu, T.; Wang, X.; Xu, J. Spatial-temporal characteristics of cultivated land use eco-efficiency under carbon constraints and its relationship with landscape pattern dynamics. Ecol. Indic. 2022, 141, 109140. [Google Scholar] [CrossRef]
- Zhou, M.; Sun, H.; Ke, N. The Spatial and Temporal Evolution of Coordination Degree Concerning China’s Cultivated Land Green Utilization Efficiency and High-Quality Agricultural Development. Land 2023, 12, 127. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.; Xiong, L.; Wang, F. The spatial spillover effect and impact paths of agricultural industry agglomeration on agricultural non-point source pollution: A case study in Yangtze River Delta, China. J. Clean. Prod. 2023, 401, 136600. [Google Scholar] [CrossRef]
- Bianchi, M.; del Valle, I.; Tapia, C. Measuring eco-efficiency in European regions: Evidence from a territorial perspective. J. Clean. Prod. 2020, 276, 123246. [Google Scholar] [CrossRef]
- Reith, C.C.; Guidry, M.J. Eco-efficiency analysis of an agricultural research complex. J. Environ. Manag. 2003, 68, 219–229. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, W.; Li, L.; Ye, Y.; Song, X. Urban land use efficiency and improvement potential in China: A stochastic frontier analysis. Land Use Policy 2020, 99, 105046. [Google Scholar] [CrossRef]
- Luo, X.; Ao, X.; Zhang, Z.; Wan, Q.; Liu, X. Spatiotemporal variations of cultivated land use efficiency in the Yangtze River Economic Belt based on carbon emission constraints. J. Geogr. Sci. 2020, 30, 535–552. [Google Scholar] [CrossRef]
- Tan, S.; Hu, B.; Kuang, B.; Zhou, M. Regional differences and dynamic evolution of urban land green use efficiency within the Yangtze River Delta, China. Land Use Policy 2021, 106, 105449. [Google Scholar] [CrossRef]
- Liu, S.; Park, S.-H.; Choi, Y.-S.; Yeo, G.-T. Efficiency evaluation of major container terminals in the top three cities of the Pearl River Delta using SBM-DEA and undesirable DEA. Asian J. Shipp. Logist. 2022, 38, 99–106. [Google Scholar] [CrossRef]
- Huang, K.; Cao, S.; Qing, C.; Xu, D.; Liu, S. Does labour migration necessarily promote farmers’ land transfer-in?—Empirical evidence from China’s rural panel data. J. Rural Stud. 2023, 97, 534–549. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, J.; Chen, X.; Li, Y.; Chang, Y.; Zhu, D. Effect of farmland cost on the scale efficiency of agricultural production based on farmland price deviation. Habitat Int. 2023, 132, 102745. [Google Scholar] [CrossRef]
- Wang, W.; Gong, J.; Wang, Y.; Shen, Y. Exploring the effects of rural site conditions and household livelihood capitals on agricultural land transfers in China. Land Use Policy 2021, 108, 105523. [Google Scholar] [CrossRef]
- Zhang, Y.; Halder, P.; Zhang, X.; Qu, M. Analyzing the deviation between farmers’ Land transfer intention and behavior in China’s impoverished mountainous Area: A Logistic-ISM model approach. Land Use Policy 2020, 94, 104534. [Google Scholar] [CrossRef]
- Zhao, Q.; Bao, H.X.H.; Zhang, Z. Off-farm employment and agricultural land use efficiency in China. Land Use Policy 2021, 101, 105097. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, R.; Han, H.; Jiang, Z. Is farmers’ agricultural production a carbon sink or source?—Variable system boundary and household survey data. J. Clean. Prod. 2020, 266, 122108. [Google Scholar] [CrossRef]
- Wu, H.; Guo, S.; Guo, P.; Shan, B.; Zhang, Y. Agricultural water and land resources allocation considering carbon sink/source and water scarcity/degradation footprint. Sci. Total Environ. 2022, 819, 152058. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, K.; Yang, Q.; Hao, S.; Feng, Z.; Ma, J. Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015. Land Use Policy 2023, 125, 106505. [Google Scholar] [CrossRef]
- Yang, B.; Chen, X.; Wang, Z.; Li, W.; Zhang, C.; Yao, X. Analyzing land use structure efficiency with carbon emissions: A case study in the Middle Reaches of the Yangtze River, China. J. Clean. Prod. 2020, 274, 123076. [Google Scholar] [CrossRef]
- Yin, G.; Lin, Z.; Jiang, X.; Yan, H.; Wang, X. Spatiotemporal differentiations of arable land use intensity—A comparative study of two typical grain producing regions in northern and southern China. J. Clean. Prod. 2019, 208, 1159–1170. [Google Scholar] [CrossRef]
- Tian, X.; Geng, Y.; Viglia, S.; Bleischwitz, R.; Buonocore, E.; Ulgiati, S. Regional disparities in the Chinese economy. An emergy evaluation of provincial international trade. Resour. Conserv. Recycl. 2017, 126, 1–11. [Google Scholar] [CrossRef]
- He, S.; Bayrak, M.M.; Lin, H. A comparative analysis of multi-scalar regional inequality in China. Geoforum 2017, 78, 1–11. [Google Scholar] [CrossRef]
- Song, X.; Feng, Q.; Xia, F.; Li, X.; Scheffran, J. Impacts of changing urban land-use structure on sustainable city growth in China: A population-density dynamics perspective. Habitat Int. 2021, 107, 102296. [Google Scholar] [CrossRef]
- Kay, S.; Rega, C.; Moreno, G.; den Herder, M.; Palma, J.H.N.; Borek, R.; Crous-Duran, J.; Freese, D.; Giannitsopoulos, M.; Graves, A.; et al. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 2019, 83, 581–593. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J. Regional differentiation research on net carbon effect of agricultural production in China. J. Nat. Resour. 2013, 28, 1298–1309. (In Chinese) [Google Scholar]
- Chen, M.; Chen, J.; Du, P. An inventory analysis of rural pollution loads in China. Water Sci. Technol. 2006, 54, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Wang, X.J. Modeling for point-non-point source effluent trading: Perspective of non-point sources regulation in China. Sci. Total Environ. 2002, 292, 167–176. [Google Scholar] [CrossRef]
- Dubey, A.; Lal, R. Carbon Footprint and Sustainability of Agricultural Production Systems in Punjab, India, and Ohio, USA. J. Crops Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Liu, J.; Zhang, D.; Zhao, M.; Xia, C. Impact of urbanization on the eco-efficiency of cultivated land utilization: A case study on the Yangtze River Economic Belt, China. J. Clean. Prod. 2019, 238, 117916. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, H.; Ren, C.; Sun, D.; Yang, J. Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty. Agric. Water Manag. 2020, 239, 106264. [Google Scholar] [CrossRef]
- Wichelns, D.; Qadir, M. Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agric. Water Manag. 2015, 157, 31–38. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Z.; Wu, H. Detection and attribution of changes in agricultural eco-efficiency within rapid urbanized areas: A case study in the Urban agglomeration in the middle Reaches of Yangtze River, China. Ecol. Indic. 2022, 144, 109533. [Google Scholar] [CrossRef]
Factor Layer | Indicator Layer | Variables | Abbreviations | Units |
---|---|---|---|---|
Inputs | Land | The sown area of cultivated land | SACL | 1000 hectares |
Labors | Number of employees in the primary industry | NEPI | 10,000 peoples | |
Means of production | Total power of agricultural machinery | TPAM | gigawatt | |
Usage of agricultural films | UAF | ton | ||
Usage of pesticides | UP | ton | ||
Usage of chemical fertilizers | UCF | 10,000 tons | ||
Expected outputs | Economic output | Total value of agricultural outputs | TVAO | 100 million yuan |
Social output | Grain output | GO | 10,000 tons | |
Environmental output | Total carbon sinks | TCS | ton | |
Unexpected outputs | Non-point source pollution | Total emissions of COD, TN and TP | NPSP | 1010 m3 |
Carbon emission | Total carbon emissions | TCE | 10,000 tons |
Crops | Economic Coefficient | Water Coefficient | Carbon Absorption Rate |
---|---|---|---|
Rice | 45.00 | 12.00 | 41.40 |
Wheat | 40.00 | 12.00 | 48.50 |
Corn | 40.00 | 13.00 | 47.10 |
Millet | 35.00 | 15.00 | 44.60 |
Sorghum | 35.00 | 15.00 | 44.60 |
Beans | 34.00 | 13.00 | 45.00 |
Potato | 70.00 | 70.00 | 42.30 |
Carbon Emission Sources | Fertilizers | Plastic Film | Diesel Fuel Consumption | Tillage | Agricultural Irrigation |
---|---|---|---|---|---|
Emission coefficients | 0.8956 kg·kg−1 | 5.18 kg·kg−1 | 0.5927 kg·kg−1 | 312.60 kg·km−2 | 25.00 kg·hm−2 |
Variables | Abbreviations | Calculating Methods | Units |
---|---|---|---|
Crop diversity index | Diversity | The rate of sown area and the total area of cultivated land | % |
GDP per capita | GPC | The rate of total GDP and total population | % |
Urbanization level | Urbanization | The rate of urban population and total population | % |
Effective irrigation rate | EIR | The rate of total irrigation area and the total area of cultivated land | % |
Proportion of natural disaster area | Disaster | The rate of natural disaster area and the total area of a region | % |
Fiscal support for agriculture | FSA | The rate of fiscal support for agriculture and the total fiscal support | % |
Variables | China | Northeastern China | Eastern China | Central China | Western China |
---|---|---|---|---|---|
Diversity | 0.074 * | 0.136 ** | 0.085 * | −0.064 ** | 0.057 * |
GPC | 0.016 ** | 0.009 ** | −0.002 * | −0.003 ** | 0.024 ** |
Urbanization | 0.008 * | 0.003 * | −0.011 | −0.005 *** | 0.007 * |
EIR | 0.026 *** | −0.004 * | 0.006 ** | 0.031 * | −0.018 ** |
Disaster | −0.046 * | −0.035 | −0.052 | −0.041 | −0.038 ** |
FSA | 0.387 * | 0.514 * | 0.224 ** | 0.417 *** | 0.482 ** |
3.254 * | 4.547 ** | 2.214 | 3.185 * | 3.201 | |
Adjusted R | 0.768 | 0.821 | 0.865 | 0.921 | 0.746 |
F-statistic | 95.124 | 36.214 | 49.524 | 53.165 | 185.457 |
Prob.(F) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Wang, Y.; Li, Y.; Mo, L. Empirical Investigation of Cultivated Land Green Use Efficiency and Influencing Factors in China, 2000–2020. Land 2023, 12, 1589. https://doi.org/10.3390/land12081589
Yang B, Wang Y, Li Y, Mo L. Empirical Investigation of Cultivated Land Green Use Efficiency and Influencing Factors in China, 2000–2020. Land. 2023; 12(8):1589. https://doi.org/10.3390/land12081589
Chicago/Turabian StyleYang, Bin, Ying Wang, Yan Li, and Lizi Mo. 2023. "Empirical Investigation of Cultivated Land Green Use Efficiency and Influencing Factors in China, 2000–2020" Land 12, no. 8: 1589. https://doi.org/10.3390/land12081589
APA StyleYang, B., Wang, Y., Li, Y., & Mo, L. (2023). Empirical Investigation of Cultivated Land Green Use Efficiency and Influencing Factors in China, 2000–2020. Land, 12(8), 1589. https://doi.org/10.3390/land12081589