Beyond Biodiversity: Eliciting Diverse Values of Urban Green Spaces in Flanders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Case Selection
2.3. Theoretical Framework: Code Tree
- “Nature” or intrinsic values: Worth of nature independent of any reference to humans as valuers and are worth protecting for their inherent value.
- “Nature contributions to people” (NCP) or instrumental values: Nature’s benefits to humans, associated with nature as an asset or resource.
- “People” or relational values: Importance of interactions between individuals and nature, as well as between individuals through nature, such as a connection to place, spiritual beliefs, acts of caring, and mutual exchange.
2.4. Elicitation of Values: Content Coding
2.5. Descriptors
- Local: street or small neighborhood green areas.
- Small: park-sized projects.
- Large: neighborhood-sized projects, housing development.
- Informing: This involves one-way communication from the project organizer to the local public.
- Consultation: This level allows the local public to voice their opinions without any commitment from the organizer to take them into account.
- Advising: At this level, the local public plays an active role and provides feedback that the organizer takes into consideration. With substantial justification, it remains possible to reject input from the public.
- Co-producing: This level involves a strong commitment from the local public from start to finish, resulting in a clear impact of their involvement, only limited by predefined conditions.
- Co-deciding: At the highest level, the local public takes the initiative for the project and leads it from start to finish, with an advisory role for policymakers.
2.6. Multifunctionality
- DP: Dimensions present at project p
- CP: Categories present at project p
- SCP: Subcategories present at project p
- 3: Dimensional factor
- 2: Category factor
- 1: Subcategory factor
- Example below:
- Victoria Regia Park in Ghent:
- -
- Two dimensions present (“NCP” and “People”) = 2 × 3 = 6
- -
- Three categories present (“Non-material services”, “Cultural” and “Health & Wellbeing”) = 6 + 3 × 2 = 12
- -
- Six subcategories present (“Experiences”, “Heritage values”, “Identity, sense of place”, “Stewardship”, “Education & Knowledge” and “Social relations”) = 12 + 6 × 1 = 18
2.7. Analysis
3. Results
3.1. Framework Presentation and Adaptation Process
- “Quantity and quality of GBI”: This category was moved to the “People” dimension and renamed to “Mobility”. Most GBI subcategories were combined into two categories: “Connectivity of paths & roads” and “Accessibility”. These categories represent a project’s mobility and infrastructure. Next to this, the added subcategory “Reachability” covers how easy it is to reach the project and the mobility issues or solutions that come with it. This category fits better in the relational values dimension than in the intrinsic value dimension.
- “Economy” category: A new subcategory named “Cost-efficiency and robustness” has been included, which encompasses budgetary incentives associated with these projects, including expenses during construction and planning as well as future costs. This includes adaptations to climate change.
- “Non-material contributions” category: The subcategory “Supporting identities” was removed since it was adequately covered by the subcategories “Experiences” and “Identity, sense of place”. The dotted line between “Experiences” and “Identity, sense of place” is meant to illustrate the close link between both subcategories. The interchangeability between both can certainly be argued and this is a potential future adaptation.
- “Material contributions” category: All subcategories were merged into one because of the limited need for these different subcategories.
- “Regulation of climate”: This subcategory was split into “Regulation of local climate” and “Regulation of global climate”. The former includes local temperature control measures, for instance, the placing of trees to mitigate the urban heat island effect. The latter is mainly found in climate mitigation measures pointing at a reduction in CO2 emissions. This was found to be more representative when separated.
- “Regulation of ocean acidification” and “Regulation of organisms posing harm to humans”: These subcategories have been dropped from the code tree. Both did not occur in this research. Future research might find these subcategories relevant to their focus.
3.2. Descriptor Results
3.3. Overview of Values Distribution
3.4. Co-Occurrence
3.4.1. Co-Occurrence of Dimensions
3.4.2. (Co-)Occurrence of Subcategories
3.4.3. Multifunctionality Descriptor
3.5. Statistical Analyses
4. Discussion
4.1. Consistent Abundance Ratios of Value Dimensions
4.2. Multifunctionality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Participation | |||||
---|---|---|---|---|---|
Passive | Active | Not reported | |||
24 (22%) | 32 (30%) | 52 (48%) | |||
Informing | Consultation | Advising | Co-produce | Co-decide | Not reported |
12 (11%) | 12 (11%) | 11 (10%) | 16 (15%) | 5 (5%) | 52 (48%) |
Natural–technical scale for measures | |||||
Completely natural | Dominant natural with technical presence | Equal measures | Dominant technical with natural presence | Completely technical | |
7 (6%) | 44 (41%) | 36 (33%) | 21 (19%) | 0 (0%) | |
Inclusion | |||||
Multiple participation moments | Participation project | Specific target audience measures | Not reported | ||
11 (10%) | 13 (12%) | 4 (4%) | 80 (74%) | ||
Size | |||||
Large | Small | Local | |||
17(16%) | 27 (25%) | 64 (59%) |
Percentage of inhabitants with non-Belgian heritage | ||||
(0.63–15%) | (15–30%) | (30–45%) | (45–60%) | (60–80.6%) |
14 (13%) | 25 (23%) | 36 (33%) | 28 (26%) | 5 (5%) |
Population density (inhabitants per km2) | ||||
(122–2000) | (2000–4000) | (4000–6000) | (6000–8000) | (8000–15,020) |
34 (31%) | 20 (19%) | 31 (29%) | 12 (11%) | 11 (10%) |
Percentage of green area in the neighborhood | ||||
(0.43–20%) | (20–40%) | (40–60%) | (60–80%) | (80–82%) |
22 (20%) | 39 (36%) | 25 (23%) | 21 (19%) | 1 (1%) |
Interquartile coefficient | ||||
(65–80) | (80–95) | (95–105) | (105–120) | (120–136) |
13 (12%) | 43 (40%) | 27 (25%) | 24 (22%) | 3 (3%) |
Interquartile asymmetry | ||||
(10–20) | (20–25) | (25–30) | (31–36) | |
11 (10%) | 26 (24%) | 36 (33%) | 34 (31%) | |
Net taxable income (€) | ||||
(9049–10,000) | (10,000–15,000) | (15,000–20,000) | (20,000–25,000) | (25,000–25,813) |
1 (1%) | 8 (7%) | 55 (51%) | 40 (37%) | 4 (4%) |
Low MF (0–12) | Medium MF (12–24) | High MF (24–37) |
---|---|---|
19 (18%) | 66 (61%) | 22 (20%) |
Test | Type | p-Value | adj R2 |
---|---|---|---|
Population city~number of projects | Linear regression | 0.000759 | 0.664 |
MF index~natural–technical scale | Kruskal–Wallis rank sum test | 0.001058 | / |
MF index~project size | Kruskal–Wallis rank sum test | 3.735 × 10−5 | / |
MF index~participation | Kruskal–Wallis rank sum test | 0.01542 | / |
MF index~inclusivity | Kruskal–Wallis rank sum test | 0.0001045 | / |
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision; (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019.
- Ulgiati, S.; Zucaro, A. Challenges in Urban Metabolism: Sustainability and Well-Being in Cities. Front. Sustain. Cities 2019, 1. [Google Scholar] [CrossRef] [Green Version]
- UN-Habitat World Cities Report 2022 Envisaging the Future of Cities; Routledge: Nairobi, Kenya, 2022.
- Zhang, X.Q. The Trends, Promises and Challenges of Urbanisation in the World. Habitat Int. 2016, 54, 241–252. [Google Scholar] [CrossRef]
- Keivani, R. A Review of the Main Challenges to Urban Sustainability. Int. J. Urban Sustain. Dev. 2010, 1, 5–16. [Google Scholar] [CrossRef]
- Khan, J.; Hildingsson, R.; Garting, L. Sustainable Welfare in Swedish Cities: Challenges of Eco-Social Integration in Urban Sustainability Governance. Sustainability 2020, 12, 383. [Google Scholar] [CrossRef] [Green Version]
- Jelks, N.O.; Jennings, V.; Rigolon, A. Green Gentrification and Health: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 907. [Google Scholar] [CrossRef] [PubMed]
- Kuddus, M.A.; Tynan, E.; McBryde, E. Urbanization: A Problem for the Rich and the Poor? Public Health Rev. 2020, 41, 1. [Google Scholar] [CrossRef]
- Van den Bosch, M.; Sang, Å.O. Urban Natural Environments as Nature-Based Solutions for Improved Public Health—A Systematic Review of Reviews. Environ. Res 2017, 158, 373–384. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Prior, J.; McGregor, G.; Shi, X.; Kinney, P. Urban Heat: An Increasing Threat to Global Health. BMJ 2021, 375. [Google Scholar] [CrossRef]
- Dodman, D.; Hayward, B.; Pelling, M.; Broto, V.C.; Chow, W.; Chu, E.; Dawson, R.; Khirfan, L.; McPhearson, T.; Prakash, A.; et al. Cities, Settlements and Key Infrastructure. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 907–1040. [Google Scholar]
- Stone, B.; Vargo, J.; Habeeb, D. Managing Climate Change in Cities: Will Climate Action Plans Work? Landsc. Urban Plan. 2012, 107, 263–271. [Google Scholar] [CrossRef]
- McCarthy, M.P.; Best, M.J.; Betts, R.A. Climate Change in Cities Due to Global Warming and Urban Effects. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Pei, F.; Wen, Y.; Li, X.; Wang, S.; Wu, C.; Cai, Y.; Wu, J.; Chen, J.; Feng, K.; et al. Global Urban Expansion Offsets Climate-Driven Increases in Terrestrial Net Primary Productivity. Nat. Commun. 2019, 10, 5558. [Google Scholar] [CrossRef] [Green Version]
- Wicht, M.; Kuffer, M. The Continuous Built-up Area Extracted from ISS Night-Time Lights to Compare the Amount of Urban Green Areas across European Cities. Eur. J. Remote Sens. 2019, 52, 58–73. [Google Scholar] [CrossRef]
- Concepción, E.D.; Moretti, M.; Altermatt, F.; Nobis, M.P.; Obrist, M.K. Impacts of Urbanisation on Biodiversity: The Role of Species Mobility, Degree of Specialisation and Spatial Scale. Oikos 2015, 124, 1571–1582. [Google Scholar] [CrossRef] [Green Version]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in Cities Needs Space: A Meta-Analysis of Factors Determining Intra-Urban Biodiversity Variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Sowińska-Świerkosz, B.; García, J. What Are Nature-Based Solutions (NBS)? Setting Core Ideas for Concept Clarification. Nat.-Based Solut. 2022, 2, 100009. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. (Eds.) Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; p. xiii+97pp.
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, B.A.; Kumar, P.; Okano, N.; Dasgupta, R.; Shivakoti, B.R. Nature-Based Solutions for Climate Change Adaptation: A Systematic Review of Systematic Reviews. Nat.-Based Solut. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Hansen, R. Principles for Urban Nature-Based Solutions. Ambio 2022, 51, 1388–1401. [Google Scholar] [CrossRef]
- Shepley, M.; Sachs, N.; Sadatsafavi, H.; Fournier, C.; Peditto, K. The Impact of Green Space on Violent Crime in Urban Environments: An Evidence Synthesis. Int. J. Environ. Res. Public Health 2019, 16, 5119. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.; Shen, G.Q.; Choi, S. Underlying relationships between public urban green spaces and social cohesion: A systematic literature review. City Cult. Soc. 2021, 24, 100383. [Google Scholar] [CrossRef]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; de Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring Pathways Linking Greenspace to Health: Theoretical and Methodological Guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef]
- Pietilä, M.; Neuvonen, M.; Borodulin, K.; Korpela, K.; Sievänen, T.; Tyrväinen, L. Relationships between Exposure to Urban Green Spaces, Physical Activity and Self-Rated Health. J. Outdoor Recreat. Tour. 2015, 10, 44–54. [Google Scholar] [CrossRef]
- White, M.P.; Alcock, I.; Wheeler, B.W.; Depledge, M.H. Would You Be Happier Living in a Greener Urban Area? A Fixed-Effects Analysis of Panel Data. Psychol. Sci. 2013, 24, 920–928. [Google Scholar] [CrossRef]
- Mavoa, S.; Davern, M.; Breed, M.; Hahs, A. Higher Levels of Greenness and Biodiversity Associate with Greater Subjective Wellbeing in Adults Living in Melbourne, Australia. Health Place 2019, 57, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the Empirical Evidence. Landsc. Urban Plan 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Grimm, N.B. Nature-Based Approaches to Managing Climate Change Impacts in Cities. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190124. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N.; Qureshi, S.; Haase, D. Human-Environment Interactions in Urban Green Spaces—A Systematic Review of Contemporary Issues and Prospects for Future Research. Environ. Impact Assess Rev. 2015, 50, 25–34. [Google Scholar] [CrossRef]
- Ives, C.D.; Lentini, P.E.; Threlfall, C.G.; Ikin, K.; Shanahan, D.F.; Garrard, G.E.; Bekessy, S.A.; Fuller, R.A.; Mumaw, L.; Rayner, L.; et al. Cities Are Hotspots for Threatened Species. Glob. Ecol. Biogeogr. 2016, 25, 117–126. [Google Scholar] [CrossRef]
- Ottburg, F.; Lammertsma, D.; Dimmers, W.; Lerink, B.; Schelhaas, M.-J.; Janssen, J. Tiny Forests: Groene Mini-Oases in de Stad; Wageningen Environmental Research: Wageningen, The Netherlands, 2022. [Google Scholar]
- Mustafa, A.; Teller, J. Self-Reinforcing Processes Governing Urban Sprawl in Belgium: Evidence over Six Decades. Sustainability 2020, 12, 4097. [Google Scholar] [CrossRef]
- Schneiders, A.; Alaerts, K.; Michels, H.; Stevens, M.; Van Gossum, P.; Van Reeth, W.; Vught, I. Natuurrapport 2020: Feiten en cijfers voor een nieuw biodiversiteitsbeleid; p62 (Mededelingen van het Instituut voor Natuur- en Bosonderzoek; Nr. 2); Instituut voor Natuur- en Bosonderzoek: Brussels, Belgium, 2020. [Google Scholar] [CrossRef]
- Eurostat—Regions and Cities Illustrated (RCI). Available online: https://ec.europa.eu/eurostat/cache/RCI/#?vis=degurb.gen&lang=en (accessed on 23 May 2023).
- Pisman, A.; Vanacker, S.; Bieseman, H.; Vanongeval, L.; Van Steertegem, M.; Poelmans, L.; Van Dyck, K. (Eds.) Ruimterapport 2021; Departement Omgeving: Brussels, Belgium, 2021. Available online: https://omgeving.vlaanderen.be/nl/ruimterapport. (accessed on 8 April 2023).
- Nabijheid van Groen. Available online: https://www.vlaanderen.be/statistiek-vlaanderen/milieu-en-natuur/nabijheid-van-groen (accessed on 6 April 2023).
- Joris, A.; De Nocker, L.; Hugo, L.; Katelijne, N.; Ilse, S.; Linda, M.; Francis, T.; Steven, B. Daarom Groen! Waarom u Wint Bij Groen in Uw Stad of Gemeente; Vlaamse Instelling voor Technologisch Onderzoek: Boeretang, Belgium, 2012. [Google Scholar]
- Blootstelling En Gezondheidseffecten van Fijn Stof (PM10 En Pm2,5). Available online: https://www.vmm.be/lucht/fijn-stof/blootstelling-en-gezondheidseffecten-fijn-stof (accessed on 13 April 2023).
- Hoge Gezondheidsraad. Groene en Blauwe Steden: Natuur en Menselijke Gezondheid in een Stedelijke Omgeving; HGR: Brussels, Belgium, 2021; Advies nr. 9436. [Google Scholar]
- Hitte. Available online: https://klimaat.vmm.be/themas/hitte (accessed on 13 April 2023).
- Neerslagextremen (1892–2021/2022). Available online: https://www.vmm.be/klimaat/neerslagextremen (accessed on 13 April 2023).
- Jaargemiddelde Temperatuur. Available online: https://www.vlaanderen.be/statistiek-vlaanderen/milieu-en-natuur/jaargemiddelde-temperatuur (accessed on 13 April 2023).
- Vlaamse Regering. Vlaamse Klimaatstrategie 2050; Vlaamse overheid: Brussels, Belgium, 2019. [Google Scholar]
- Carmen, R.; Jacobs, S.; Leone, M.; Palliwoda, J.; Pinto, L.; Misiune, I.; Priess, J.A.; Pereira, P.; Wanner, S.; Ferreira, C.S.; et al. Keep It Real: Selecting Realistic Sets of Urban Green Space Indicators. Environ. Res. Lett. 2020, 15, 095001. [Google Scholar] [CrossRef]
- Jacobs, S.; Zafra-Calvo, N.; Gonzalez-Jimenez, D.; Guibrunet, L.; Benessaiah, K.; Berghöfer, A.; Chaves-Chaparro, J.; Díaz, S.; Gomez-Baggethun, E.; Lele, S.; et al. Use Your Power for Good: Plural Valuation of Nature—The Oaxaca Statement. Glob. Sustain. 2020, 3, e8. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.; Dendoncker, N.; Martín-López, B.; Barton, D.N.; Gomez-Baggethun, E.; Boeraeve, F.; McGrath, F.L.; Vierikko, K.; Geneletti, D.; Sevecke, K.J.; et al. A New Valuation School: Integrating Diverse Values of Nature in Resource and Land Use Decisions. Ecosyst. Serv. 2016, 22, 213–220. [Google Scholar] [CrossRef]
- IPBES. Methodological Assessment Report on the Diverse Values and Valuation of Nature of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Balvanera, P., Pascual, U., Christie, M., Baptiste, B., González-Jiménez, D., Eds.; IPBES Secretariat: Bonn, Germany, 2022. [Google Scholar]
- Chan, K.M.A.; Balvanera, P.; Benessaiah, K.; Chapman, M.; Díaz, S.; Gómez-Baggethun, E.; Gould, R.; Hannahs, N.; Jax, K.; Klain, S.; et al. Why Protect Nature? Rethinking Values and the Environment. PNAS 2016, 113, 1462–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Departement Omgeving van de Vlaamse Overheid. Ruimtelijk Structuurplan Vlaanderen; Department Omgeving: Brussel, Belgium, 1997.
- Van Der Haegen, H.; Pattyn, M. De Belgische Stadsgewesten. Stat. Tijdschr. 1979, 59, 235–249. [Google Scholar]
- Cloud Application for Managing, Analyzing, and Presenting Qualitative and Mixed Method Research Data; Dedoose Version 9.0.46; SocioCultural Research Consultants, LLC: Los Angeles, CA, USA, 2022; Available online: www.dedoose.com (accessed on 26 October 2022).
- Provincies in Cijfers. Available online: https://provincies.incijfers.be/databank (accessed on 6 January 2023).
- Jacobs, S.; Spanhove, T.; Thoonen, M.; De Smet, L.; Boerema, A.; Van der Biest, K.; Landuyt, D. Hoofdstuk 9—Interacties tussen aanbod, gebruik en vraag van ecosysteemdiensten in Vlaanderen. In Natuurrapport—Toestand en Trend van Ecosystemen en Ecosysteemdiensten in Vlaanderen. Technisch Rapport; Stevens, M., Demolder, H., Jacobs, S., Michels, H., Schneiders, A., Simoens, I., Spanhove, T., Van Gossum, P., Van Reeth, W., Peymen, J., Eds.; (INBO.R. 2014.6160569). INBO.M.2014.1988582; Mededelingen van het Instituut voor Natuur- en Bosonderzoek: Brussels, Belgium, 2014. [Google Scholar]
- Verachtert, E.; Poelmans, L. Groentypologieën, Toestand 2019 Technische Beschrijving Eindrapport; Vlaams Planbureau voor Omgeving: Brussels, Belgium, 2022. [Google Scholar]
- Edelenbos, J.; Teisman, G.R.; Reuding, M. Interactieve Beleidsvorming Als Sturingsopgave; Innovatie Netwerk Groene Ruimte en Agrocluster: Den Haag, The Netherlands, 2001. [Google Scholar]
- Arnstein, S.R. A Ladder of Citizen Participation. J. Am. Inst. Plann. 1969, 35, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Hölting, L.; Jacobs, S.; Felipe-Lucia, M.R.; Maes, J.; Norström, A.V.; Plieninger, T.; Cord, A.F. Measuring Ecosystem Multifunctionality across Scales. Environ. Res. Lett. 2019, 14, 124083. [Google Scholar] [CrossRef] [Green Version]
- Brym, Z.T.; Gilbert, K.J. Cooccur: Probabilistic Species Co-Occurrence Analysis in R. R Package Version 1.3.1. 2021. Available online: https://CRAN.R-project.org/package=cooccur (accessed on 24 April 2023).
- Larsson, J. Eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. R Package Version 6.1.1. 2021. Available online: https://CRAN.R-project.org/package=eulerr (accessed on 27 April 2023).
- Klain, S.C.; Olmsted, P.; Chan, K.M.A.; Satterfield, T. Relational Values Resonate Broadly and Differently than Intrinsic or Instrumental Values, or the New Ecological Paradigm. PLoS ONE 2017, 12, e0183962. [Google Scholar] [CrossRef] [Green Version]
- Himes, A.; Muraca, B. Relational Values: The Key to Pluralistic Valuation of Ecosystem Services. Curr. Opin. Environ. Sustain. 2018, 35, 1–7. [Google Scholar] [CrossRef]
- Ives, C. A Values-Based Approach to Urban Nature Research and Practice. Available online: https://www.thenatureofcities.com/2014/04/30/a-values-based-approach-to-urban-nature-research-and-practice/ (accessed on 22 April 2023).
- Arias-Arévalo, P.; Martín-López, B.; Gómez-Baggethun, E. Exploring Intrinsic, Instrumental, and Relational Values for Sustainable Management of Social-Ecological Systems. Ecol. Soc. 2017, 22, 43. [Google Scholar] [CrossRef] [Green Version]
- Ode Sang, Å.; Knez, I.; Gunnarsson, B.; Hedblom, M. The Effects of Naturalness, Gender, and Age on How Urban Green Space Is Perceived and Used. Urban Urban Green. 2016, 18, 268–276. [Google Scholar] [CrossRef]
- Salm, J.A.P.; Bočkarjova, M.; Botzen, W.J.W.; Runhaar, H.A.C. Citizens’ Preferences and Valuation of Urban Nature: Insights from Two Choice Experiments. Ecol. Econ. 2023, 208, 107797. [Google Scholar] [CrossRef]
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Ursino, N.; Masi, F.; van Hullebusch, E.D.; Kazak, J.K.; Exposito, A.; Cipolletta, G.; Andersen, T.R.; et al. A Review of Nature-Based Solutions for Urban Water Management in European Circular Cities: A Critical Assessment Based on Case Studies and Literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Tian, Z.; Ke, Q.; Liu, J.; Irannezhad, M.; Fan, D.; Hou, M.; Sun, L. Nature-Based Solutions for Urban Pluvial Flood Risk Management. Wiley Interdiscip. Rev. Water 2020, 7, e1421. [Google Scholar] [CrossRef]
- Kiss, B.; Sekulova, F.; Hörschelmann, K.; Salk, C.F.; Takahashi, W.; Wamsler, C. Citizen Participation in the Governance of Nature-Based Solutions. Environ. Policy Gov. 2022, 32, 247–272. [Google Scholar] [CrossRef]
- Wamsler, C.; Alkan-Olsson, J.; Björn, H.; Falck, H.; Hanson, H.; Oskarsson, T.; Simonsson, E.; Zelmerlow, F. Beyond Participation: When Citizen Engagement Leads to Undesirable Outcomes for Nature-Based Solutions and Climate Change Adaptation. Clim. Chang. 2020, 158, 235–254. [Google Scholar] [CrossRef] [Green Version]
- Remme, D.; Haarstad, H. From Instrumentalization to Commoning: A Critical Review of Participation in Urban Nature-Based Solutions. Front. Sustain. Cities 2022, 4, 917607. [Google Scholar] [CrossRef]
Repositories | “Openbaar Groen” | “Vlaanderen Breekt Uit” | “Blauwgroen Vlaanderen” |
---|---|---|---|
Organization | “VLAM”: Flemish center for agriculture and fishery marketing “VVOG”: Flemish association formed around public green spaces | Flemish department of the Environment | “VLARIO”: Water management knowledge center “Aquafin”: Flemish water agency |
Goal and Audience | Inspiring the public and local policymakers with exemplary green space projects | Inspiring citizens and local governments to start their own desealing projects | Inspiring public space planners to design climate- and nature-friendly projects |
Information Gathering | Submission of dossiers for the selection of an annual award | Project and funding solicitations, (initiatives for desealing pilot schemes, …) | Application form for stakeholders who want to highlight projects |
Number of cases on website | 174 | 57 | 84 |
Number of cases selected 1 | 64 | 15 | 29 |
URL | https://www.openbaargroen.be/projecten (accessed on 12 November 2022) | https://omgeving.vlaanderen.be/nl/realisaties (accessed on 12 November 2022) | https://blauwgroenvlaanderen.be/professionals/projecten/ (accessed on 12 November 2022) |
Descriptor | Description |
---|---|
Population density | Number of inhabitants per square km |
Percentage of inhabitants with non-Belgian heritage | Percentage of inhabitants in the neighborhood with at least one parent born abroad |
Green area | Percentage of green space in the neighborhood |
Interquartile coefficient | Ratio of the income difference between the third and first quartiles, adjusted for inflation by dividing by the median income, indicating income inequality |
Interquartile asymmetric | Measure of income distribution asymmetry, with a higher number indicating greater concentration of high incomes above the median |
Average net taxable income | Average net taxable income of the neighborhood |
completely natural, Park Ten Rozen, Aalst | |
dominant natural with technical presence, Florent Cootsmanplein, Antwerp | |
equal measures, Pop-up Tuin, Genk | |
Alfons Smetsplein, Leuven | |
completely technical, Parking kerkplein, Hulshout. |
Dimension | Category | Subcategory |
---|---|---|
Nature | Biodiversity | |
Ecological connectivity | ||
Biophysical processes | ||
Individual organisms | ||
Nature itself (green space) | ||
NCP | Material contributions | Energy, food and feed, materials, medicinal, biochemical, and genetic resources |
Regulatory contributions | Regulation of air quality | |
Regulation of local climate | ||
Regulation of global climate | ||
Regulation of hazards and extreme events | ||
Regulation of freshwater quality, flow, and timing | ||
Habitat creation and maintenance | ||
Pollinators and dispersal of seeds | ||
Formation, permeability, and decontamination of soils | ||
Non-material contributions | Physical and psychological experiences | |
People | Cultural | Heritage values |
Identity, sense of place | ||
Stewardship | ||
Economy | City attractiveness | |
Cost-efficiency and robustness | ||
Jobs | ||
Profits for business | ||
Property values | ||
Governance and justice | Distributional justice | |
Procedural justice | ||
Health and wellbeing | Education and knowledge | |
Physical and mental health | ||
Safety and security | ||
Social relations | ||
Mobility | Reachability | |
Connectivity of paths and roads | ||
Accessibility |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastiaensen, T.; Van Wambeke, E.; El Bakkali, C.; Desair, J.; Noël, C.; Kenis, K.; Vincke, L.; Jacobs, S. Beyond Biodiversity: Eliciting Diverse Values of Urban Green Spaces in Flanders. Land 2023, 12, 1186. https://doi.org/10.3390/land12061186
Bastiaensen T, Van Wambeke E, El Bakkali C, Desair J, Noël C, Kenis K, Vincke L, Jacobs S. Beyond Biodiversity: Eliciting Diverse Values of Urban Green Spaces in Flanders. Land. 2023; 12(6):1186. https://doi.org/10.3390/land12061186
Chicago/Turabian StyleBastiaensen, Thomas, Ewaut Van Wambeke, Camelia El Bakkali, Jomme Desair, Charlotte Noël, Kaat Kenis, Lukas Vincke, and Sander Jacobs. 2023. "Beyond Biodiversity: Eliciting Diverse Values of Urban Green Spaces in Flanders" Land 12, no. 6: 1186. https://doi.org/10.3390/land12061186