What Makes Farmers Aware in Adopting Circular Bioeconomy Practices? Evidence from a Greek Rural Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Procedures and Measurements
- (1)
- Calculation of univariate statistics for all survey items before conducting any further statistical analysis.
- (2)
- Usage of one-way ANOVA to determine differences between five sociodemographic variables in relation to the 22 items measuring the opportunities arising from the bioeconomy in the agricultural sector.
- (3)
- A nonhierarchical cluster analysis, utilizing the k-means cluster algorithm, was performed on the 22 items measuring the perceived impacts.
3. Results
3.1. Respondents’ Profiles and General Data
3.2. Cluster Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment; European Commission: Brussels, Belgium, 2018; ISBN 9789279941450.
- Pascoli, D.U.; Aui, A.; Frank, J.; Therasme, O.; Dixon, K.; Gustafson, R.; Kelly, B.; Volk, T.A.; Wright, M.M. The US Bioeconomy at the Intersection of Technology, Policy, and Education. Biofuels Bioprod. Biorefining 2022, 16, 9–26. [Google Scholar] [CrossRef]
- Papadopoulou, C.-I.; Loizou, E.; Chatzitheodoridis, F. Priorities in Bioeconomy Strategies: A Systematic Literature Review. Energies 2022, 15, 7258. [Google Scholar] [CrossRef]
- Trigo, E.J.; Henry, G.; Sanders, J.; Schurr, U.; Ingelbrecht, I.; Revel, C.; Santana, C.; Rocha, P. Towards Bioeconomy Development in Latin America and the Caribbean. In Towards a Latin America and Caribbean Knowledge Based Bio-Economy in Partnership with Europe; Pontificia Universidad Javeriana: Bogotá, Colombia, 2013; pp. 1–15. [Google Scholar]
- Fava, F.; Gardossi, L.; Brigidi, P.; Morone, P.; Carosi, D.A.R.; Lenzi, A. The Bioeconomy in Italy and the New National Strategy for a More Competitive and Sustainable Country. N. Biotechnol. 2021, 61, 124–136. [Google Scholar] [CrossRef]
- Donner, M.; de Vries, H. How to Innovate Business Models for a Circular Bio-economy? Bus. Strateg. Environ. 2021, 30, 1932–1947. [Google Scholar] [CrossRef]
- Lazaridou, D.C.; Michailidis, A.; Trigkas, M. Exploring Environmental and Economic Costs and Benefits of a Forest-Based Circular Economy: A Literature Review. Forests 2021, 12, 436. [Google Scholar] [CrossRef]
- Kalogiannidis, S.; Kalfas, D.; Loizou, E.; Chatzitheodoridis, F. Forestry Bioeconomy Contribution on Socioeconomic Development: Evidence from Greece. Land 2022, 11, 2139. [Google Scholar] [CrossRef]
- Helliwell, R.; Burton, R.J.F. The Promised Land? Exploring the Future Visions and Narrative Silences of Cellular Agriculture in News and Industry Media. J. Rural Stud. 2021, 84, 180–191. [Google Scholar] [CrossRef]
- Jurga, P.; Loizou, E.; Rozakis, S. Comparing Bioeconomy Potential at National vs. Regional Level Employing Input-Output Modeling. Energies 2021, 14, 1714. [Google Scholar] [CrossRef]
- Papadopoulou, C.-I.; Loizou, E.; Melfou, K.; Chatzitheodoridis, F. The Knowledge Based Agricultural Bioeconomy: A Bibliometric Network Analysis. Energies 2021, 14, 6823. [Google Scholar] [CrossRef]
- Loizou, E.; Karelakis, C.; Galanopoulos, K.; Mattas, K. The Role of Agriculture as a Development Tool for a Regional Economy. Agric. Syst. 2019, 173, 482–490. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Hyoun Kim, S.; Wong, J.W.C. Sustainable Processing of Food Waste for Production of Bio-Based Products for Circular Bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef] [PubMed]
- Chel, A.; Kaushik, G. Renewable Energy for Sustainable Agriculture. Agron. Sustain. Dev. 2011, 31, 91–118. [Google Scholar] [CrossRef]
- Forouzani, M.; Karami, E. Agricultural Water Poverty Index and Sustainability. Agron. Sustain. Dev. 2011, 31, 415–431. [Google Scholar] [CrossRef] [Green Version]
- Spies, M.; Zuberi, M.; Mählis, M.; Zakirova, A.; Alff, H.; Raab, C. Towards a Participatory Systems Approach to Managing Complex Bioeconomy Interventions in the Agrarian Sector. Sustain. Prod. Consum. 2022, 31, 557–568. [Google Scholar] [CrossRef]
- Bournaris, T.; Correia, M.; Guadagni, A.; Karouta, J.; Krus, A.; Lombardo, S.; Lazaridou, D.; Loizou, E.; Marques da Silva, J.R.; Martínez-Guanter, J.; et al. Current Skills of Students and Their Expected Future Training Needs on Precision Agriculture: Evidence from Euro-Mediterranean Higher Education Institutes. Agronomy 2022, 12, 269. [Google Scholar] [CrossRef]
- Paltaki, A.; Michailidis, A. Students’ Training Needs towards Precision Agriculture. Int. J. Sustain. Agric. Manag. Informatics 2020, 6, 202. [Google Scholar] [CrossRef]
- Leal Filho, W.; Tripathi, S.K.; Andrade Guerra, J.B.S.O.D.; Giné-Garriga, R.; Orlovic Lovren, V.; Willats, J. Using the Sustainable Development Goals towards a Better Understanding of Sustainability Challenges. Int. J. Sustain. Dev. World Ecol. 2019, 26, 179–190. [Google Scholar] [CrossRef]
- Schneider, F.; Kläy, A.; Zimmermann, A.B.; Buser, T.; Ingalls, M.; Messerli, P. How Can Science Support the 2030 Agenda for Sustainable Development? Four Tasks to Tackle the Normative Dimension of Sustainability. Sustain. Sci. 2019, 14, 1593–1604. [Google Scholar] [CrossRef] [Green Version]
- Karasmanaki, E.; Ioannou, K.; Katsaounis, K.; Tsantopoulos, G. The Attitude of the Local Community towards Investments in Lignite before Transitioning to the Post-Lignite Era: The Case of Western Macedonia, Greece. Resour. Policy 2020, 68, 101781. [Google Scholar] [CrossRef]
- Tranoulidis, A.; Sotiropoulou, R.-E.P.; Bithas, K.; Tagaris, E. Decarbonization and Transition to the Post-Lignite Era: Analysis for a Sustainable Transition in the Region of Western Macedonia. Sustainability 2022, 14, 10173. [Google Scholar] [CrossRef]
- Grossauer, F.; Stoeglehner, G. Bioeconomy—A Systematic Literature Review on Spatial Aspects and a Call for a New Research Agenda. Land 2023, 12, 234. [Google Scholar] [CrossRef]
- Ryś-Jurek, R. Interdependence between Energy Cost and Financial Situation of the EU Agricultural Farms—Towards the Implementation of the Bioeconomy. Energies 2022, 15, 8853. [Google Scholar] [CrossRef]
- Reiff, M.; Ivanicova, Z.; Surmanova, K. Cluster Analysis of Selected World Development Indicators in the Fields of Agriculture and the Food Industry in European Union Countries. Agric. Econ. 2018, 64, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, K.J.; Allen, J.C.; Helmers, G.A. Using Cluster Analysis to Classify Farms for Conventional/Alternative Systems Research. Appl. Econ. Perspect. Policy 1996, 18, 599–611. [Google Scholar] [CrossRef]
- Western Macedonia Region Regional Development Programme of Western Macedonia 2021–2025. Available online: https://www.pdm.gov.gr/erga-ke-drasis/perifereiako-programma-anaptyxis-dytikis-makedonias-2021-2025/ (accessed on 3 February 2023).
- Koukouzas, N.; Tyrologou, P.; Karapanos, D.; Carneiro, J.; Pereira, P.; de Mesquita Lobo Veloso, F.; Koutsovitis, P.; Karkalis, C.; Manoukian, E.; Karametou, R. Carbon Capture, Utilisation and Storage as a Defense Tool against Climate Change: Current Developments in West Macedonia (Greece). Energies 2021, 14, 3321. [Google Scholar] [CrossRef]
- Belke, A.; Christodoulakis, N.; Gros, D. Lessons from the Strukturwandel in the Ruhrgebiet: Turning Northern Greece into an Industrial Champion? Int. Econ. Econ. Policy 2019, 16, 535–562. [Google Scholar] [CrossRef] [Green Version]
- Louloudis, G.; Roumpos, C.; Louloudis, E.; Mertiri, E.; Kasfikis, G. Repurposing of a Closed Surface Coal Mine with Respect to Pit Lake Development. Water 2022, 14, 3558. [Google Scholar] [CrossRef]
- Ziouzios, D.; Karlopoulos, E.; Fragkos, P.; Vrontisi, Z. Challenges and Opportunities of Coal Phase-Out in Western Macedonia. Climate 2021, 9, 115. [Google Scholar] [CrossRef]
- Nikoloski, D.; Pechijareski, L. Research and Development in Post-Transition: A Case Study of Western Balkans Countries. SEER 2015, 18, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Kalogiannidis, S.; Loizou, E.; Kalfas, D.; Chatzitheodoridis, F. Local and Regional Management Approaches for the Redesign of Local Development: A Case Study of Greece. Adm. Sci. 2022, 12, 69. [Google Scholar] [CrossRef]
- Christiaensen, L.; Ferré, C. Just Coal Transition in Western Macedonia, Greece—Insights from the Labor Market; World Bank: Washington, DC, USA, 2020; p. 41. [Google Scholar]
- Kalfas, D.G.; Zagkas, D.T.; Dragozi, E.I.; Zagkas, T.D. Estimating Value of the Ecosystem Services in the Urban and Peri-Urban Green of a Town Florina-Greece, Using the CVM. Int. J. Sustain. Dev. World Ecol. 2020, 27, 310–321. [Google Scholar] [CrossRef]
- Marinakis, V.; Flamos, A.; Stamtsis, G.; Georgizas, I.; Maniatis, Y.; Doukas, H. The Efforts towards and Challenges of Greece’s Post-Lignite Era: The Case of Megalopolis. Sustainability 2020, 12, 10575. [Google Scholar] [CrossRef]
- Anastasios, M.; Koutsouris, A.; Konstadinos, M. Information and Communication Technologies as Agricultural Extension Tools: A Survey among Farmers in West Macedonia, Greece. J. Agric. Educ. Ext. 2010, 16, 249–263. [Google Scholar] [CrossRef]
- Michailidis, A.; Papadaki-Klavdianou, A.; Apostolidou, I.; Lorite, I.J.; Pereira, F.A.; Mirko, H.; Buhagiar, J.; Shilev, S.; Michaelidis, E.; Loizou, E.; et al. Exploring Treated Wastewater Issues Related to Agriculture in Europe, Employing a Quantitative SWOT Analysis. Procedia Econ. Financ. 2015, 33, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Martinidis, G.; Adamseged, M.E.; Dyjakon, A.; Fallas, Y.; Foutri, A.; Grundmann, P.; Hamann, K.; Minta, S.; Ntavos, N.; Råberg, T.; et al. How Clusters Create Shared Value in Rural Areas: An Examination of Six Case Studies. Sustainability 2021, 13, 4578. [Google Scholar] [CrossRef]
- Bournaris, T.; Moulogianni, C.; Vlontzos, G.; Georgilas, I. Methodologies Used to Assess the Impacts of Climate Change in Agricultural Economics: A Rapid Review. Int. J. Sustain. Agric. Manag. Informatics 2021, 7, 253. [Google Scholar] [CrossRef]
- Cismaș, L.M.; Bălan, E.M. Agriculture’s Contribution to the Growth of Romanian Bioeconomy: A Regional Approach. East. Europ. Econ. 2022, 1–17. [Google Scholar] [CrossRef]
- Ghisellini, P.; Setti, M.; Ulgiati, S. Energy and Land Use in Worldwide Agriculture: An Application of Life Cycle Energy and Cluster Analysis. Environ. Dev. Sustain. 2016, 18, 799–837. [Google Scholar] [CrossRef]
- Jain, A.K. Data Clustering: 50 Years beyond K-Means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Vareiro, L.M.d.C.; Remoaldo, P.C.; Cadima Ribeiro, J.A. Residents’ Perceptions of Tourism Impacts in Guimarães (Portugal): A Cluster Analysis. Curr. Issues Tour. 2013, 16, 535–551. [Google Scholar] [CrossRef]
- Zikmund, W.G.; Babin, B.J.; Carr, J.C.; Griffin, M. Business Research Methods, 9th ed.; Cengage Learning: Boston, MA, USA, 2013. [Google Scholar]
- Dalmaijer, E.S.; Nord, C.L.; Astle, D.E. Statistical Power for Cluster Analysis. BMC Bioinform. 2022, 23, 205. [Google Scholar] [CrossRef]
- Chen, H.; Hailey, D.; Wang, N.; Yu, P. A Review of Data Quality Assessment Methods for Public Health Information Systems. Int. J. Environ. Res. Public Health 2014, 11, 5170–5207. [Google Scholar] [CrossRef]
- MacKenzie, S.B.; Podsakoff, P.M. Common Method Bias in Marketing: Causes, Mechanisms, and Procedural Remedies. J. Retail. 2012, 88, 542–555. [Google Scholar] [CrossRef]
- Elias, N.; Sreejesh, K. A Study to Evaluate the Effectiveness of Structured Teaching Programme on Knowledge Regarding Heatstroke and Its Prevention among Farmers. Indian J. Community Med. 2022, 47, 626–627. [Google Scholar] [CrossRef]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D. Likert Scale: Explored and Explained. Br. J. Appl. Sci. Technol. 2015, 7, 396–403. [Google Scholar] [CrossRef]
- Stern, T.; Ploll, U.; Spies, R.; Schwarzbauer, P.; Hesser, F.; Ranacher, L. Understanding Perceptions of the Bioeconomy in Austria—An Explorative Case Study. Sustainability 2018, 10, 4142. [Google Scholar] [CrossRef] [Green Version]
- Wensing, J.; Carraresi, L.; Bröring, S. Do Pro-Environmental Values, Beliefs and Norms Drive Farmers’ Interest in Novel Practices Fostering the Bioeconomy? J. Environ. Manag. 2019, 232, 858–867. [Google Scholar] [CrossRef]
- Biber-Freudenberger, L.; Ergeneman, C.; Förster, J.J.; Dietz, T.; Börner, J. Bioeconomy Futures: Expectation Patterns of Scientists and Practitioners on the Sustainability of Bio-based Transformation. Sustain. Dev. 2020, 28, 1220–1235. [Google Scholar] [CrossRef]
- Soubry, B.; Sherren, K.; Thornton, T.F. Are We Taking Farmers Seriously? A Review of the Literature on Farmer Perceptions and Climate Change, 2007–2018. J. Rural Stud. 2020, 74, 210–222. [Google Scholar] [CrossRef]
- Donner, M.; Erraach, Y.; López-i-Gelats, F.; Manuel-i-Martin, J.; Yatribi, T.; Radić, I.; El Hadad-Gauthier, F. Circular Bioeconomy for Olive Oil Waste and By-Product Valorisation: Actors’ Strategies and Conditions in the Mediterranean Area. J. Environ. Manag. 2022, 321, 115836. [Google Scholar] [CrossRef]
- Petersen, E.H.; Phuong, T.H. Tropical Spiny Lobster (Panulirus Ornatus) Farming in Vietnam—Bioeconomics and Perceived Constraints to Development. Aquac. Res. 2010, 41, e634–e642. [Google Scholar] [CrossRef]
- Tyndall, J.C.; Berg, E.J.; Colletti, J.P. Corn Stover as a Biofuel Feedstock in Iowa’s Bio-Economy: An Iowa Farmer Survey. Biomass Bioenergy 2011, 35, 1485–1495. [Google Scholar] [CrossRef]
- Poku, A.-G.; Birner, R.; Gupta, S. Making Contract Farming Arrangements Work in Africa’s Bioeconomy: Evidence from Cassava Outgrower Schemes in Ghana. Sustainability 2018, 10, 1604. [Google Scholar] [CrossRef] [Green Version]
- Case, S.D.C.; Oelofse, M.; Hou, Y.; Oenema, O.; Jensen, L.S. Farmer Perceptions and Use of Organic Waste Products as Fertilisers—A Survey Study of Potential Benefits and Barriers. Agric. Syst. 2017, 151, 84–95. [Google Scholar] [CrossRef]
- Violán, C.; Roso-Llorach, A.; Foguet-Boreu, Q.; Guisado-Clavero, M.; Pons-Vigués, M.; Pujol-Ribera, E.; Valderas, J.M. Multimorbidity Patterns with K-Means Nonhierarchical Cluster Analysis. BMC Fam. Pract. 2018, 19, 108. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.T.; Grubesic, T.H. Exploring Spatial Patterns of Crime Using Non-Hierarchical Cluster Analysis. In Crime Modeling and Mapping Using Geospatial Technologies; Springer: Dordrecht, The Netherlands, 2013; pp. 105–124. [Google Scholar]
- Nagari, S.S.; Inayati, L. Implementation of Clustering Using K-Means Method to Determine Nutritional Status. J. Biom. Dan Kependud 2020, 9, 62. [Google Scholar] [CrossRef]
- Aldino, A.A.; Darwis, D.; Prastowo, A.T.; Sujana, C. Implementation of K-Means Algorithm for Clustering Corn Planting Feasibility Area in South Lampung Regency. J. Phys. Conf. Ser. 2021, 1751, 012038. [Google Scholar] [CrossRef]
- Guevara-Viejó, F.; Valenzuela-Cobos, J.D.; Vicente-Galindo, P.; Galindo-Villardón, P. Application of K-Means Clustering Algorithm to Commercial Parameters of Pleurotus spp. Cultivated on Representative Agricultural Wastes from Province of Guayas. J. Fungi 2021, 7, 537. [Google Scholar] [CrossRef]
- Niu, G.; Ji, Y.; Zhang, Z.; Wang, W.; Chen, J.; Yu, P. Clustering Analysis of Typical Scenarios of Island Power Supply System by Using Cohesive Hierarchical Clustering Based K-Means Clustering Method. Energy Rep. 2021, 7, 250–256. [Google Scholar] [CrossRef]
- Michailidis, A.; Partalidou, M.; Nastis, S.A.; Papadaki-Klavdianou, A.; Charatsari, C. Who Goes Online? Evidence of Internet Use Patterns from Rural Greece. Telecomm. Policy 2011, 35, 333–343. [Google Scholar] [CrossRef]
- Loizou, E.; Michailidis, A.; Chatzitheodoridis, F. Investigating the Drivers That Influence the Adoption of Differentiated Food Products. Br. Food J. 2013, 115, 917–935. [Google Scholar] [CrossRef]
- Lokhorst, A.M.; Staats, H.; van Dijk, J.; van Dijk, E.; de Snoo, G. What’s in It for Me? Motivational Differences between Farmers’ Subsidised and Non-Subsidised Conservation Practices. Appl. Psychol. 2011, 60, 337–353. [Google Scholar] [CrossRef]
- Hyland, J.J.; Heanue, K.; McKillop, J.; Micha, E. Factors Underlying Farmers’ Intentions to Adopt Best Practices: The Case of Paddock Based Grazing Systems. Agric. Syst. 2018, 162, 97–106. [Google Scholar] [CrossRef]
- Ullmann, J.; Grimm, D. Algae and Their Potential for a Future Bioeconomy, Landless Food Production, and the Socio-Economic Impact of an Algae Industry. Org. Agric. 2021, 11, 261–267. [Google Scholar] [CrossRef]
- Popp, J.; Kovács, S.; Oláh, J.; Divéki, Z.; Balázs, E. Bioeconomy: Biomass and Biomass-Based Energy Supply and Demand. N. Biotechnol. 2021, 60, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Harrahill, K.; Macken-Walsh, Á.; O’Neill, E.; Lennon, M. An Analysis of Irish Dairy Farmers’ Participation in the Bioeconomy: Exploring Power and Knowledge Dynamics in a Multi-Actor EIP-AGRI Operational Group. Sustainability 2022, 14, 12098. [Google Scholar] [CrossRef]
- Hien, B.T.; Chi, N.T.K. Green Innovation in Agriculture Development: The Impact of Environment Awareness, Technology Spillover, and Social Networks. Int. J. Sustain. Agric. Manag. Informatics 2023, 9, 56. [Google Scholar] [CrossRef]
- Staffas, L.; Gustavsson, M.; McCormick, K. Strategies and Policies for the Bioeconomy and Bio-Based Economy: An Analysis of Official National Approaches. Sustainability 2013, 5, 2751–2769. [Google Scholar] [CrossRef] [Green Version]
- Cristóbal, J.; Matos, C.T.; Aurambout, J.-P.; Manfredi, S.; Kavalov, B. Environmental Sustainability Assessment of Bioeconomy Value Chains. Biomass Bioenergy 2016, 89, 159–171. [Google Scholar] [CrossRef]
- Sharma, R.; Malaviya, P. Ecosystem Services and Climate Action from a Circular Bioeconomy Perspective. Renew. Sustain. Energy Rev. 2023, 175, 113164. [Google Scholar] [CrossRef]
- De Besi, M.; McCormick, K. Towards a Bioeconomy in Europe: National, Regional and Industrial Strategies. Sustainability 2015, 7, 10461–10478. [Google Scholar] [CrossRef] [Green Version]
- Lazaridou, D.; Michailidis, A. Assessment of Farmers’ Attitudes Toward Pest Control Services Provided by Birds. KnE Soc. Sci. 2023, 138–147. [Google Scholar] [CrossRef]
- Refsgaard, K.; Kull, M.; Slätmo, E.; Meijer, M.W. Bioeconomy—A Driver for Regional Development in the Nordic Countries. N. Biotechnol. 2021, 60, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Brandão, A.S.; Santos, J.M.R.C.A. Rural Regions as Key Locations for the Circular Bioeconomy: Insights from the Northern Interior of Portugal. Bioresour. Technol. Rep. 2022, 17, 100955. [Google Scholar] [CrossRef]
- Das, S.K.; Mondal, B.; Sarkar, U.K.; Das, B.K.; Borah, S. Understanding and Approaches towards Circular Bio-economy of Wastewater Reuse in Fisheries and Aquaculture in India: An Overview. Rev. Aquac. 2022. [Google Scholar] [CrossRef]
- Pliakoura, A.P.; Beligiannis, G.N.; Chatzitheodoridis, F.; Kontogeorgos, A. The Impact of Locus of Control and Motivations in Predicting Entrepreneurial Intentions among Farmers: A Field Research. J. Agribus. Dev. Emerg. Econ. 2022, 12, 183–203. [Google Scholar] [CrossRef]
- Pliakoura, A.P.; Beligiannis, G.; Kontogeorgos, A. Significant Barriers to the Adoption of the Agricultural Cooperative Model of Entrepreneurship: A Literature Review. Int. J. Soc. Econ. 2022, 49, 1–20. [Google Scholar] [CrossRef]
Variable | Value | Frequency | Percentage |
---|---|---|---|
Sex | Male | 364 | 88.3% |
Female | 48 | 11.7% | |
Age | 18–25 | 14 | 3.4% |
26–35 | 36 | 8.7% | |
36–45 | 106 | 25.7% | |
46–55 | 158 | 38.3% | |
56–65 | 79 | 19.2% | |
66+ | 19 | 4.6% | |
Education | Primary school | 48 | 11.7% |
Secondary school | 111 | 26.9% | |
High school | 208 | 50.5% | |
University | 44 | 10.7% | |
Master’s degree | 1 | 0.2% | |
Regional unit of residence | Grevena | 90 | 21.8% |
Kastoria | 104 | 25.2% | |
Kozani | 137 | 33.3% | |
Florina | 81 | 19.7% | |
Annual household income | <EUR 10,000 | 37 | 9% |
EUR 10,001–20,000 | 97 | 23.5% | |
EUR 20,001–30,000 | 104 | 25.2% | |
EUR 30,001–40,000 | 64 | 15.5% | |
>EUR 40,000 | 60 | 14.6% | |
No answer | 50 | 12.1% |
Likert Scale | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | M | SD | ||
General questions | Are you familiar with the concept of the bioeconomy? | 6.07 | 2.67 | 15.29 | 18.45 | 57.52 | 4.19 | 1.162 |
Bioeconomy information and training benefits farmers and their holdings | 5.34 | 2.43 | 15.05 | 20.39 | 56.80 | 4.14 | 1.138 | |
Opportunities | Environmental protection | 1.46 | 2.18 | 5.10 | 25.97 | 65.29 | 4.51 | 0.812 |
Sufficient biomass quantity | 1.21 | 4.37 | 8.74 | 22.82 | 62.86 | 4.42 | 0.910 | |
Existence of policy | 3.16 | 5.34 | 9.47 | 26.21 | 55.83 | 4.26 | 1.041 | |
Technology development | 1.70 | 6.80 | 12.38 | 50.49 | 28.64 | 3.98 | 0.915 | |
Waste reduction | 1.21 | 5.83 | 19.66 | 28.88 | 44.42 | 4.09 | 0.988 | |
Saving water resources | 0.73 | 7.52 | 11.89 | 42.96 | 36.89 | 4.08 | 0.922 | |
Production increase | 22.82 | 7.52 | 13.83 | 16.99 | 38.83 | 3.42 | 1.595 | |
Energy production | 17.48 | 9.47 | 15.05 | 20.39 | 37.62 | 3.51 | 1.499 | |
Improving health | 2.18 | 17.48 | 14.08 | 28.16 | 38.11 | 3.83 | 1.179 | |
Increasing consumption | 17.96 | 6.55 | 18.69 | 18.45 | 38.35 | 3.53 | 1.493 | |
Food and feed production | 2.43 | 5.34 | 16.50 | 31.80 | 43.93 | 4.09 | 1.015 | |
Land use change | 2.43 | 13.35 | 14.56 | 19.90 | 49.76 | 4.01 | 1.183 | |
Financial resources for investments | 1.70 | 5.34 | 12.38 | 24.51 | 56.07 | 4.28 | 0.988 | |
Research and innovation for new products and processes | 2.18 | 11.65 | 9.47 | 20.87 | 55.83 | 4.17 | 1.136 | |
Exploiting renewable resources | 4.61 | 10.19 | 22.57 | 25.49 | 37.14 | 3.80 | 1.177 | |
Climate change mitigation | 1.46 | 10.92 | 23.06 | 27.43 | 37.14 | 3.88 | 1.076 | |
Pollution reduction | 3.64 | 10.19 | 7.52 | 35.92 | 42.72 | 4.04 | 1.113 | |
Training | Training programs at local level | 58.50 | 8.50 | 4.61 | 9.71 | 18.69 | 2.22 | 1.631 |
Training programs at local level (subsidized) | 13.83 | 3.88 | 6.31 | 10.44 | 65.53 | 4.10 | 1.454 | |
Training in a regional center (subsidized) | 46.36 | 9.47 | 8.98 | 9.71 | 25.49 | 2.58 | 1.703 | |
Information in the form of leaflets | 86.89 | 2.91 | 2.91 | 3.64 | 3.64 | 1.34 | 0.970 | |
Theoretical online courses | 82.52 | 4.37 | 4.85 | 2.67 | 5.58 | 1.44 | 1.085 |
Impact of Bioeconomy in Agriculture | 18–25 (n = 14) | 26–35 (n = 36) | 36–45 (n = 106) | 46–55 (n = 158) | 56–65 (n = 79) | +66 (n = 19) | F | p-Value |
---|---|---|---|---|---|---|---|---|
Environmental protection | 4.43 | 4.06 | 4.54 | 4.59 | 4.61 | 4.32 | 3.127 | 0.009 |
Sufficient biomass quantity | 4.86 | 3.89 | 4.58 | 4.45 | 4.48 | 3.63 | 7.269 | 0.000 |
Existence of policy | 4.71 | 3.75 | 4.32 | 4.35 | 4.38 | 3.37 | 5.882 | 0.000 |
Technology development | 3.86 | 4.17 | 3.78 | 4.02 | 4.16 | 3.63 | 2.636 | 0.023 |
Production increase | 4.26 | 3.28 | 3.27 | 3.25 | 3.87 | 3.26 | 2.777 | 0.018 |
Energy production | 4.29 | 3.61 | 3.38 | 3.28 | 3.99 | 3.42 | 3.374 | 0.005 |
Improving health | 4.50 | 3.92 | 4.05 | 3.55 | 3.90 | 3.89 | 3.611 | 0.003 |
Increasing consumption | 3.79 | 3.56 | 3.90 | 3.20 | 3.75 | 3.00 | 3.816 | 0.002 |
Food and feed production | 4.36 | 3.69 | 4.17 | 4.08 | 4.27 | 3.63 | 2.725 | 0.020 |
Research and innovation for new products and processes | 4.43 | 3.78 | 3.75 | 4.32 | 4.47 | 4.42 | 6.025 | 0.000 |
Exploiting renewable resources | 4.14 | 3.69 | 3.60 | 3.93 | 3.65 | 4.47 | 2.853 | 0.015 |
Climate change mitigation | 4.57 | 3.72 | 3.55 | 4.04 | 3.90 | 4.11 | 4.362 | 0.001 |
Pollution reduction | 4.64 | 3.72 | 3.56 | 4.26 | 4.25 | 4.16 | 7.861 | 0.000 |
Training programs at local level | 3.00 | 3.36 | 1.92 | 2.25 | 2.05 | 1.53 | 6.078 | 0.000 |
Training in a regional center (subsidized) | 2.93 | 4.00 | 2.54 | 2.39 | 2.43 | 2.21 | 6.217 | 0.000 |
Theoretical online courses | 1.00 | 2.56 | 1.41 | 1.35 | 1.33 | 1.11 | 9.757 | 0.000 |
Impact of Bioeconomy in Agriculture | Primary School (n = 48) | Secondary School (n = 111) | High School (n = 208) | University (n = 44) | Master’s Degree (n = 1) | F | p-Value |
---|---|---|---|---|---|---|---|
Environmental protection | 4.33 | 4.70 | 4.44 | 4.66 | 2.00 | 5.538 | 0.000 |
Sufficient biomass quantity | 4.06 | 4.56 | 4.42 | 4.48 | 2.00 | 4.454 | 0.002 |
Existence of policy | 3.98 | 4.42 | 4.31 | 3.98 | 2.00 | 3.776 | 0.005 |
Technology development | 4.15 | 3.85 | 3.97 | 4.18 | 2.00 | 2.738 | 0.028 |
Saving water resources | 4.04 | 3.95 | 4.11 | 4.32 | 2.00 | 2.634 | 0.034 |
Production increase | 4.40 | 2.86 | 3.40 | 3.84 | 2.00 | 9.683 | 0.000 |
Energy production | 4.29 | 2.91 | 3.55 | 4.00 | 3.00 | 9.724 | 0.000 |
Improving health | 4.21 | 3.62 | 3.78 | 4.14 | 3.00 | 3.110 | 0.015 |
Food and feed production | 3.81 | 4.33 | 4.11 | 3.80 | 2.00 | 4.649 | 0.001 |
Exploiting renewable resources | 4.23 | 3.60 | 3.75 | 4.11 | 3.00 | 3.439 | 0.009 |
Training programs at local level | 2.40 | 1.62 | 2.25 | 3.32 | 3.00 | 9.694 | 0.000 |
Training in a regional center (subsidized) | 3.67 | 1.90 | 2.57 | 3.25 | 1.00 | 12.470 | 0.000 |
Information in the form of leaflets | 1.56 | 1.13 | 1.31 | 1.82 | 1.00 | 4.922 | 0.001 |
Theoretical online courses | 1.31 | 1.24 | 1.37 | 2.48 | 1.00 | 12.723 | 0.000 |
Number of Groups | ||||
---|---|---|---|---|
Clusters | 2 | 3 | 4 | 5 |
1 | 81% | 56% | 22% | 21% |
2 | 19% | 21% | 44% | 9% |
3 | - | 23% | 25% | 22% |
4 | - | - | 9% | 32% |
5 | - | - | - | 17% |
Cluster 1, n = 229 (56%) | Cluster 2, n = 87 (21%) | Cluster 3, n = 96 (23%) | ||||||
---|---|---|---|---|---|---|---|---|
Agree (%) | Average Scores | Agree (%) | Average Scores | Agree (%) | Average Scores | F-Ratio | p-Value | |
Opportunities | ||||||||
Environmental protection | 90.4 | 4.54 | 57.5 | 3.51 | 100.0 | 4.96 | 72.581 | 0.000 |
Sufficient biomass quantity | 96.5 | 4.62 | 67.8 | 3.76 | 100.0 | 4.96 | 89.645 | 0.000 |
Existence of policy | 86.9 | 4.35 | 49.4 | 3.32 | 100.0 | 4.91 | 74.058 | 0.000 |
Technology development | 91.7 | 4.36 | 47.1 | 3.09 | 78.1 | 3.86 | 87.023 | 0.000 |
Waste reduction | 74.2 | 4.21 | 41.4 | 3.09 | 100.0 | 4.72 | 95.909 | 0.000 |
Saving water resources | 90.8 | 4.33 | 33.3 | 3.02 | 95.8 | 4.44 | 111.742 | 0.000 |
Production increase | 94.8 | 4.63 | 13.8 | 2.75 | 1.0 | 1.13 | 1081.135 | 0.000 |
Energy production | 94.8 | 4.62 | 25.3 | 2.93 | 0.0 | 1.40 | 829.742 | 0.000 |
Improving health | 96.9 | 4.50 | 21.8 | 2.83 | 33.3 | 3.13 | 145.195 | 0.000 |
Increasing consumption | 89.5 | 4.46 | 9.2 | 2.68 | 21.9 | 2.06 | 214.374 | 0.000 |
Food and feed production | 86.0 | 4.30 | 24.1 | 2.95 | 97.9 | 4.64 | 113.449 | 0.000 |
Land use change | 74.7 | 4.12 | 42.5 | 3.09 | 82.3 | 4.58 | 47.173 | 0.000 |
Financial resources for investments | 90.8 | 4.48 | 32.2 | 3.03 | 100.0 | 4.94 | 175.691 | 0.000 |
Research and innovation for new products and processes | 92.6 | 4.59 | 33,3 | 2,93 | 78.1 | 4.28 | 99.901 | 0.000 |
Exploiting renewable resources | 72.1 | 3.94 | 24,1 | 2,95 | 75.0 | 4.24 | 36.161 | 0.000 |
Climate change mitigation | 78.6 | 4.19 | 31,0 | 2,98 | 61.5 | 3.95 | 50.126 | 0.000 |
Pollution reduction | 93.4 | 4.42 | 42.5 | 3.00 | 76.0 | 4.07 | 68.016 | 0.000 |
Training | ||||||||
Training programs at local level | 37.1 | 2.54 | 34.5 | 2.45 | 2.1 | 1.23 | 25.779 | 0.000 |
Training programs at local level (subsidized) | 79.5 | 4.22 | 46.0 | 2.98 | 94.8 | 4.82 | 47.339 | 0.000 |
Training in a regional center (subsidized) | 38.4 | 2.77 | 58.6 | 3.45 | 6.3 | 1.35 | 45.862 | 0.000 |
Information in the form of leaflets | 7.4 | 1.36 | 14.9 | 1.68 | 0.0 | 1.00 | 11.812 | 0.000 |
Theoretical online courses | 8.7 | 1.50 | 13.8 | 1.69 | 2.1 | 1.08 | 8.138 | 0.000 |
Cluster 1 | Cluster 2 | Cluster 3 | Chi-Squared Value | p-Value | ||||
---|---|---|---|---|---|---|---|---|
N = 229 | 56% | N = 87 | 21% | N = 96 | 23% | |||
Sex | 10.489 | 0.05 | ||||||
Male | 202 | 88.2% | 70 | 80.5% | 96 | 95.8% | ||
Female | 27 | 11.8% | 17 | 19.5% | 4 | 4.2% | ||
Age | 18.345 | 0.049 | ||||||
18–25 | 11 | 4.8% | 3 | 3.4% | 0 | 0.0% | ||
26–35 | 17 | 7.4% | 13 | 14.9% | 6 | 6.3% | ||
36–45 | 55 | 24.0% | 20 | 23.0% | 31 | 32.3% | ||
46–55 | 82 | 35.8% | 34 | 39.1% | 42 | 43.8% | ||
56–65 | 54 | 23.6% | 12 | 13.8% | 13 | 13.5% | ||
66+ | 10 | 4.4% | 5 | 5.7% | 4 | 4.2% | ||
Education | 32.944 | 0.000 | ||||||
Primary school | 36 | 15.7% | 12 | 13.8% | 0 | 0.0% | ||
Secondary school | 48 | 21.0% | 22 | 25.3% | 41 | 42.7% | ||
High school | 117 | 51.1% | 42 | 48.3% | 49 | 51.0% | ||
University | 28 | 12.2% | 10 | 11.5% | 6 | 6.3% | ||
Master’s degree | 0 | 0.0% | 1 | 1.1% | 0 | 0.0% | ||
Regional unit of residence | 185.821 | 0.000 | ||||||
Grevena | 20 | 8.7% | 5 | 5.7% | 65 | 67.7% | ||
Kastoria | 82 | 35.8% | 16 | 18.4% | 6 | 6.3% | ||
Kozani | 81 | 35.4% | 31 | 35.6% | 25 | 26.0% | ||
Florina | 46 | 20.1% | 35 | 40.2% | 0 | 0.0% | ||
Income | 160.167 | 0.000 | ||||||
<EUR 10,000 | 26 | 11.4% | 11 | 12.6% | 0 | 0.0% | ||
EUR 10,001–20,000 | 68 | 29.7% | 23 | 26.4% | 6 | 6.3% | ||
EUR 20,001–30,000 | 75 | 32.8% | 26 | 29.9% | 3 | 3.1% | ||
EUR 30,001–40,000 | 16 | 7.0% | 11 | 12.6% | 37 | 38.5% | ||
>EUR 40,000 | 13 | 5.7% | 7 | 8.0% | 40 | 41.7% | ||
No answer | 31 | 13.5% | 9 | 10.3% | 10 | 10.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulou, C.-I.; Loizou, E.; Chatzitheodoridis, F.; Michailidis, A.; Karelakis, C.; Fallas, Y.; Paltaki, A. What Makes Farmers Aware in Adopting Circular Bioeconomy Practices? Evidence from a Greek Rural Region. Land 2023, 12, 809. https://doi.org/10.3390/land12040809
Papadopoulou C-I, Loizou E, Chatzitheodoridis F, Michailidis A, Karelakis C, Fallas Y, Paltaki A. What Makes Farmers Aware in Adopting Circular Bioeconomy Practices? Evidence from a Greek Rural Region. Land. 2023; 12(4):809. https://doi.org/10.3390/land12040809
Chicago/Turabian StylePapadopoulou, Christina-Ioanna, Efstratios Loizou, Fotios Chatzitheodoridis, Anastasios Michailidis, Christos Karelakis, Yannis Fallas, and Aikaterini Paltaki. 2023. "What Makes Farmers Aware in Adopting Circular Bioeconomy Practices? Evidence from a Greek Rural Region" Land 12, no. 4: 809. https://doi.org/10.3390/land12040809
APA StylePapadopoulou, C.-I., Loizou, E., Chatzitheodoridis, F., Michailidis, A., Karelakis, C., Fallas, Y., & Paltaki, A. (2023). What Makes Farmers Aware in Adopting Circular Bioeconomy Practices? Evidence from a Greek Rural Region. Land, 12(4), 809. https://doi.org/10.3390/land12040809