Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation
Abstract
1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Research Methods
3.1. Land Consolidation and Ecological-Economic Values
3.2. Ecological-Economic Value Calculation
3.2.1. Ecological Value Calculation
3.2.2. Economic Value Calculation
3.3. Bivariate Spatial Autocorrelation
3.4. Standard Deviation Ellipse
3.5. Trends in Ecological-Economic Values
4. Results
4.1. Temporal Changes in Ecological-Economic Values
4.2. Spatial Distribution of Eco-Economic Values
4.3. Bivariate Spatial Autocorrelation of Ecological-Economic Values
4.4. Standard Deviation Ellipse Analysis of Ecological-Economic Values
4.5. Trends in Ecological-Economic Values before and after Land Consolidation
5. Discussion
5.1. Impact of Land Use Change on eco-Economic Value before and after Land Consolidation
5.2. Optimization of Land Consolidation Zoning under Ecological-Economic Value Matching
5.3. Summary of the Effects of Land Use Change and Landform Type on Eco-Economic Values
5.4. Limitations and Future Development
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, L.D.; Hong, Y.X.; Chen, X.H. Can Green Economy and Ecological Welfare Achieve Synergistic Development? The Perspective of the “Two Mountains” Theory. Int. J. Environ. Res. Public Health 2022, 19, 6460. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, J.L. Implications of “Two Mountains” Theory on China’s Green Development. Chin. J. Urban Environ. Stud. 2019, 7, 1975008. [Google Scholar] [CrossRef]
- Li, L.L.; Zeng, Y.W.; He, Y.M.; Qin, Q.X.; Wang, J.H.; Fu, C.L. Developing village-based green economy in an endogenous way: A case study from China. Int. J. Environ. Res. Public Health 2022, 19, 7580. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.J.; Li, X.C. Exploration and Analysis on the way of building green lifestyle. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 012037. [Google Scholar]
- Hao, Z.Y.; Wamg, C.X.; Bai, M.G.; Deng, X.G.; Dou, W.G.; Yu, S.k. ‘Two Mountains’ theory: Chinese practice and promotion of the theories about human-environment relationship. China Popul. Resour. Environ. 2022, 32, 136–144. [Google Scholar]
- Wang, H.; Jiang, X.M.; Chen, J.C.; Song, W.M. A Theoretical Explanation for the Relationships between “Green Hills” and “Golden Hills”. Chin. Rural Econ. 2017, 4, 2–12. [Google Scholar]
- Zheng, R.B.; Huang, Y.J.; Chen, M.Z.; Ma, X.N.; Chen, J.; Tang, X.L. Research progress of land consolidation in China. Resour. Sci. 2022, 44, 1785–1798. [Google Scholar] [CrossRef]
- Du, X.D.; Zhang, X.K.; Jin, X.B. Assessing the effectiveness of land consolidation for improving agricultural productivity in China. Land Use Policy 2018, 70, 360–367. [Google Scholar] [CrossRef]
- Qu, Y.B.; Jiang, G.H.; Li, Z.T.; Tian, Y.T.; Wei, S.W. Understanding rural land use transition and regional consolidation implications in China. Land Use Policy 2019, 82, 742–753. [Google Scholar] [CrossRef]
- Basista, I.; Balawejder, M. Assessment of selected land consolidation in south-eastern Poland. Land Use Policy 2020, 99, 105033. [Google Scholar] [CrossRef]
- Cienciała, A.; Sobura, S.; Sobolewska-Mikulska, K. Optimising Land Consolidation by Implementing UAV Technology. Sustainability 2022, 14, 4412. [Google Scholar] [CrossRef]
- Ertunç, E.; Muchová, Z.; Tomi´c, H.; Janus, J. Legal, Proceduraland Social Aspects of Land Valuation in Land Consolidation: A Comparative Study for Selected Central and Eastern Europe Countries and Turkey. Land 2022, 11, 636. [Google Scholar] [CrossRef]
- Bonadonna, A.; Rostagno, A.; Beltramo, R. Improving the landscape and tourism in marginal areas: The case of land consolidation associations in the North-West of Italy. Land 2020, 9, 175. [Google Scholar] [CrossRef]
- Thapa, G.B.; Niroula, G.S. Alternative options of land consolidation in the mountains of Nepal: An analysis based on stakeholders’ opinions. Land Use Policy 2008, 25, 338–350. [Google Scholar] [CrossRef]
- Erisman, J.W.; Eekeren, N.V.; Wit, J.D.; Koopmans, C.; Cuijpers, W.; Oerlemans, N.; Koks, B.J. Agriculture and biodiversity: A better balance benefits both. AIMS Agric. Food 2016, 1, 157–174. [Google Scholar] [CrossRef]
- Miura, K.; Izumi, H.; Saito, Y.; Asato, K.; Negishi, J.N.; Ito, K.; Oomori, A. Assessment of a unionid freshwater mussel (Pronodularia japanensis) population in an agricultural channel during the 4 years following reintroduction. Landsc. Ecol. Eng. 2018, 14, 157–164. [Google Scholar] [CrossRef]
- Podhrázská, J.; Kučera, J.; Doubrava, D.; Doležal, P. Functions of windbreaks in the landscape ecological network and methods of their evaluation. Forests 2021, 12, 67. [Google Scholar] [CrossRef]
- Farley, J. Ecosystem services: The economics debate. Ecosyst. Serv. 2012, 1, 40–49. [Google Scholar] [CrossRef]
- Häyhä, T.; Franzese, P.P. Ecosystem services assessment: A review under an ecological-economic and systems perspective. Ecol. Modell. 2014, 289, 124–132. [Google Scholar] [CrossRef]
- Fang, Y.P.; Zhu, R. Economic Geographical Philosophy of Transformation from “Lucid Water and LushMountains” to “Invaluable Assets”: Logical Framework and Southwestern Demonstration. Econ. Geogr. 2021, 10, 192–199. [Google Scholar]
- Shan, W.; Jin, X.B.; Ren, J.; Wang, Y.C.; Xu, Z.G.; Fan, Y.T.; Gu, Z.M.; Hong, C.Q.; Lin, J.H.; Zhou, Y.K. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [Google Scholar] [CrossRef]
- Styles, D.; Börjesson, P.; D’Hertefeldt, T.; Birkhofer, K.; Dauber, J.; Adams, P.; Patil, S.; Pagella, T.; Pettersson, L.B.; Peck, P.; et al. Climate regulation, energy provisioning and water purification: Quantifying ecosystem service delivery of bioenergy willow grown on riparian buffer zones using life cycle assessment. Ambio 2016, 45, 872–884. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yan, S.C.; Guo, Y.Q.; Li, J.R.; Sun, G.Q. The effects of land consolidation on the ecological connectivity based on ecosystem service value: A case study of Da’an land consolidation project in Jilin province. J. Geog. Sci. 2015, 25, 603–616. [Google Scholar] [CrossRef]
- Sklenicka, P. Applying evaluation criteria for the land consolidation effect to three contrasting study areas in the Czech Republic. Land Use Policy 2006, 23, 502–510. [Google Scholar] [CrossRef]
- Liu, G.Y.; Yang, Q.; Huang, X.X.; Liu, C.; Chen, Y.; Zhang, W. Value Measurement and Dynamic Analysis of China’s “Two Mountains” from 2000 to 2020. J. Beijing Norm. Univ. Nat. Sci. 2022, 58, 241–252. [Google Scholar]
- Chen, M.; Ji, R.T.; Liu, X.; Liu, C.W.; Su, L.H.; Zhang, L.J. Gross ecosystem product accounting for ‘Two Mountains’ Bases and transformation analysis: Thecase study of Ninghai County. Acta Ecol. Sin. 2021, 41, 5899–5907. [Google Scholar]
- Kong, F.B.; Cheng, W.J.; Xu, C.Y.; Lu, Y.; Shen, Y.Q. Economic Conversion Efficiency of Forest Ecological Capital in National Pilot Area of China and Its Influencing Factors. Sci. Silvae Sin. 2023, 59, 1–11. [Google Scholar]
- Cheng, W.J.; Kong, F.B.; Xu, C.Y. Study on the Conversion Efficiency of Forest Regulating Ecological Products Value in the National Pilot Areas. Issues For. Econ. 2022, 42, 354–362. [Google Scholar]
- Zhang, L.; Hu, B.; Zhang, Z.; Liang, G.D. Research on the spatiotemporal evolution and mechanism of ecosystem service value in the mountain-river-sea transition zone based on “production-living-ecological space”—Taking the Karst-Beibu Gulf in Southwest Guangxi, China as an example. Ecol. Indic. 2023, 148, 109889. [Google Scholar] [CrossRef]
- Demetriou, D. The assessment of land valuation in land consolidation schemes: The need for a new land valuation framework. Land Use Policy 2016, 54, 487–498. [Google Scholar] [CrossRef]
- Janus, J.; Markuszewska, I. Land consolidation—A great need to improve effectiveness. A case study from Poland. Land Use Policy 2017, 65, 143–153. [Google Scholar] [CrossRef]
- Luo, W.B.; Timothy, D.J. An assessment of farmers’ satisfaction with land consolidation performance in China. Land Use Policy 2017, 61, 501–510. [Google Scholar] [CrossRef]
- Zhong, L.N.; Wang, J.; Zhang, X.; Ying, L.X. Effects of agricultural land consolidation on ecosystem services: Trade-offs and synergies. J. Clean. Prod. 2020, 264, 121412. [Google Scholar] [CrossRef]
- Zhang, B.B.; Niu, W.H.; Ma, L.Y.; Zuo, X.Y.; Kong, X.B.; Chen, H.B.; Zhang, Y.F.; Chen, W.; Zhao, M.J.; Xia, X.L. A company-dominated pattern of land consolidation to solve land fragmentation problem and its effectiveness evaluation: A case study in a hilly region of Guangxi Autonomous Region, Southwest China. Land Use Policy 2019, 88, 104115. [Google Scholar] [CrossRef]
- Angel, H.Z.; Stovall, J.P.; Williams, H.M.; Farrish, K.W.; Oswald, B.P.; Young, J.L. Surface and subsurface tillage effects on mine soil properties and vegetative response. Soil Sci. Soc. Am. J. 2018, 82, 475–482. [Google Scholar] [CrossRef]
- Justyna, W.L.; Przemyslaw, L.; Katarzyna, S.M. The proposed algorithm for identifying agricultural problem areas for the needs of their reasonable management under land consolidation works. Comput. Electron. Agric. 2019, 152, 333–339. [Google Scholar]
- Vicenç, C.; Ortiz, O.; Alcañiz, J.M. Sewage sludge as an organic amendment for quarry restoration: Effects on soil and vegetation. Land Degrad. Dev. 2018, 29, 2568–2574. [Google Scholar]
- Feng, W.L.; Li, Y.R. Measuring the ecological safety effects of land use transitions promoted by land consolidation projects: The case of Yan’an City on the Loess Plateau of China. Land 2021, 10, 783. [Google Scholar] [CrossRef]
- Lyu, R.F.; Clarke, K.C.; Zhang, J.M.; Feng, J.L.; Jia, X.H.; Li, J.J. Dynamics of spatial relationships among ecosystem services and their determinants: Implications for land use system reform in Northwestern China. Land Use Policy 2021, 102, 105231. [Google Scholar] [CrossRef]
- Lu, X.H.; Jiang, B.; Liu, M.Q.; Li, Y.Y.; Chen, D.L. A Study on the Gains and Losses of the Ecosystem Service Value of the Land Consolidation Projects of Different Properties in Hubei Province: An Empirical Comparison Based on Plains, Mountains and Hills. Land 2021, 11, 1015. [Google Scholar] [CrossRef]
- Zhou, Z.K.; Liu, D.F.; Sun, Y.Y.; He, J.H. Predicting joint effects of multiple land consolidation strategies on ecosystem service interactions. Environ. Sci. Pollut. Res. 2022, 29, 37234–37247. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Zhao, W.; Gu, X.K. Changes resulting from a land consolidation project (LCP) and its resource–environment effects: A case study in Tianmen City of Hubei Province, China. Land Use Policy 2022, 40, 74–82. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, T. Land consolidation design based on an evaluation of ecological sensitivity. Sustainability 2018, 10, 3736. [Google Scholar] [CrossRef]
- Xiao, P.N.; Zhao, C.; Zhou, Y.; Feng, H.Y.; Li, X.G.; Jiang, J.H. Study on land consolidation zoning in hubei province based on the coupling of neural network and cluster analysis. Land 2021, 10, 756. [Google Scholar] [CrossRef]
- Janus, J.; Markuszewska, I. Forty years later: Assessment of the long-lasting effectiveness of land consolidation projects. Land Use Policy 2019, 83, 22–31. [Google Scholar] [CrossRef]
- Jin, X.B.; Xu, X.X.; Xiang, X.M.; Bai, Q.; Zhou, Y.K. System-dynamic analysis on socio-economic impacts of land consolidation in China. Habitat Int. 2016, 56, 166–175. [Google Scholar] [CrossRef]
- Crecente, R.; Alvarez, C.; Fra, U. Economic, social and environmental impact of land consolidation in Galicia. Land Use Policy 2002, 19, 135–147. [Google Scholar] [CrossRef]
- Wang, L.; Wu, X.Q.; Guo, J.B.; Zhou, J.X.; He, L. Spatial-temporal pattern of vegetation carbon sequestration and its response to rocky desertification control measures in a karst area, in Guangxi Province, China. Land Degrad. Dev. 2023, 34, 665–681. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Wang, K.L.; Liu, H.Y.; Zhang, C.H.; Yue, Y.M.; Qi, X.K. Effect of ecological engineering projects on ecosystem services in a karst region: A case study of northwest Guangxi, China. J. Clean. Prod. 2018, 183, 831–842. [Google Scholar] [CrossRef]
- Spangenberg, J.H.; Görg, C.; Truong, D.T.; Tekken, V.; Bustamante, J.V.; Settele, J. Provision of ecosystem services is determined by human agency, not ecosystem functions. Four case studies. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 40–53. [Google Scholar] [CrossRef]
- Ulgiati, S.; Zucaro, A.; Franzese, P.P. Shared wealth or nobody’s land? The worth of natural capital and ecosystem services. Ecol. Econ. 2011, 70, 778–787. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Yi, J.L.; Guo, J.; Lin, J.; Ou, M.H. Territorial spatial equilibrium under the concept of ecologicalcivilization: An analytical framework based on two kinds of wealth. Geograpjical Res. 2022, 41, 945–959. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, C.S.; Xiao, Y.; Lu, C.X. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhen, L.; Zhang, L.M. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Han, J.Z.; Hu, Z.Q.; Wang, P.J.; Yan, Z.G.; Li, G.S.; Zhang, Y.H.; Zhou, T. Spatio-temporal evolution and optimization analysis of ecosystem service value-A case study of coal resource-based city group in Shandong, China. J. Clean. Prod. 2022, 363, 132602. [Google Scholar] [CrossRef]
- Wang, A.Y.; Liao, X.Y.; Tong, Z.J.; Du, W.L.; Zhang, J.Q.; Liu, X.P.; Liu, M.S. Spatial-temporal dynamic evaluation of the ecosystem service value from the perspective of “production-living-ecological” spaces: A case study in Dongliao River Basin, China. J. Clean. Prod. 2022, 333, 130218. [Google Scholar] [CrossRef]
- Yu, H.C.; Chen, F.; Yin, D.Y.; Han, X.T.; Mu, S.G.; Lei, S.G.; Bian, Z.F. Effects of mining activities and climate change on land ecosystem in Gobi mining area: A case study of Zhundong Coal Base. J. China Coal Soc. 2021, 46, 2650–2663. [Google Scholar]
- Qiu, H.H.; Hu, B.Q.; Zhang, Z. Impacts of land use change on ecosystem service value based on SDGs report—Taking Guangxi as an example. Ecol. Indic. 2021, 133, 108366. [Google Scholar] [CrossRef]
- Li, W.Q.; Wang, W.L.; Chen, J.H.; Zhang, Z.M. Assessing effects of the Returning Farmland to Forest Program on vegetation cover changes at multiple spatial scales: The case of northwest Yunnan, China. J. Environ. Manag. 2022, 304, 114303. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, W.; Qianzeng, X.U.; Zhu, X. Monitoring and evaluation of benefits of project of returning farmland to forests in henan province. Asian Agric. Res. 2022, 14, 4. [Google Scholar]
- Wang, M.H.; Bai, Z.K.; Dong, X.N. Land consolidation zoning in Shaanxi province based on the supply and demandof ecosystem services. China Land Sci. 2018, 32, 73–80. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Xie, P.; Liu, Y.X. Zoning for the construction of green space ecological networks in Guangdongprovince based on the supply and demand of ecosystem services. Acta Ecol. Sin. 2017, 37, 4562–4572. [Google Scholar]
- Gu, K.K.; Yang, Q.Q.; Cheng, F.; Chu, J.L.; Chen, X.H. Spatial differentiation of Anhui province based on the relationship be-tween supply and demand of ecosystem services. J. Ecol. Rural Environ. 2018, 34, 577–583. [Google Scholar]
- Xie, Y.C.; Zhang, S.X.; Lin, B.; Zhao, Y.J.; Hu, B.Q. Spatial zoning for land ecological consolidation in Guangxibased on the ecosystem services supply and demand. J. Nat. Resour. 2020, 35, 217–229. [Google Scholar]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Daily, G.C. Using gross ecosystem product (gep) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 201911439. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, S.G.; Hong, W.K.; Dong, X.; Dong, P.D. The development path of rural village industry revitalization by the comprehensive land consolidation: A case study of Puhe Village. J. Northwest Univ. Nat. Sci. Ed. 2022, 52, 15. [Google Scholar]
- Hao, C.Z.; Wu, S.Y.; Zhang, W.T.; Chen, Y.Q.; Ren, Y.F.; Chen, X.; Wang, H.; Zhang, L.B. A critical review of Gross ecosystem product accounting in China: Status quo, problems and future directions. J. Environ. Manag. 2022, 322, 115995. [Google Scholar] [CrossRef]
- Aronson, J.; Goodwin, N.; Orlando, L.; Eisenberg, C.; Cross, A.T. A world of possibilities: Six restoration strategies to support the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 2020, 28, 730–736. [Google Scholar] [CrossRef]
- Wei, F.; Yang, Y.; Zhao, Y.; Di, B.; Ma, C. The implementation effects of a nationwide sloping farmland soil erosion control project in china. J. Resour. Ecol. 2017, 8, 341–351. [Google Scholar] [CrossRef]
- Wang, R.Y.; Tan, R. Efficiency and distribution of rural construction land marketization in contemporary China. China Econ. Rev. 2020, 60, 101223. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, L.Y.; Liu, Y.S. Land consolidation boosting poverty alleviation in China: Theory and practice. Land Use Policy 2019, 82, 339–348. [Google Scholar] [CrossRef]
- Wei, B. Using “three-dimensional space resources” for fenlong technology to improve grain ecology and expand human living spaces. Asian Agric. Res. 2020, 12, 7. [Google Scholar]
- Zhao, S.; Wu, X.; Zhou, J.; Pereira, P. Spatiotemporal tradeoffs and synergies in vegetation vitality and poverty transition in rocky desertification area. Sci. Total Environ. 2020, 752, 141770. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Yu, L.; Zhang, D. Multidimensional poverty alleviation effect of different rural land consolidation models: A case study of Hubei and Guizhou, China. Land Use Policy 2022, 123, 106399. [Google Scholar] [CrossRef]
- Ling, Z.Y.; Li, Y.S.; Jiang, W.G.; Liao, C.M.; Ling, Y.R. Dynamic change characteristics of “production-living-ecological spaces” of urban agglomeration interlaced with mountains, rivers and sea: A case study of the Beibu Gulf Urban Agglomeration in Guangxi. Econ. Geogr. 2022, 42, 18. [Google Scholar]
- Gu, X.K. Ecological effect of different types land consolidation in Hubei Province of China. Chin. J. Appl. 2012, 23, 2263–2269. [Google Scholar]
- Guo, L.X.; Zhao, W.; Wang, L.N.; Zhang, L.L. Study on regional ecological sService value change based on the pattern of land consolidation: A case of Hubei Province. Areal Res. Dev. 2012, 31, 145–150. [Google Scholar]
- Jiang, B.; Lu, X.H. Regional ecological service value gains and losses of different types of land consolidation projects: An empirical comparison based on project, county and municipal scales. Hubei Soc. Sci. 2018, 6, 42–50. [Google Scholar]
- Zhang, Z.F. Estimation of gains and losses of ecosystem services value with land consolidation. Trans. Chin. Soc. Agric. Eng. 2008, 24, 69–72. [Google Scholar]
- Yu, Q.; Wang, Z.Q.; Yang, J. Study of ecological service value gain and loss in land consolidation projects: An empirical comparison based on plains, hills and mountains. Sci. Technol. Manag. Land Resour. 2014, 31, 5–21. [Google Scholar]
- Pašakarnis, G.; Maliene, V. Towards sustainable rural development in Central and Eastern Europe: Applying land consolidation. Land Use Policy 2010, 27, 545–549. [Google Scholar] [CrossRef]
- Lisec, A.; Primožič, T.; Ferlan, M.; Šumrada, R.; Drobne, S. Land owners’ perception of land consolidation and their satisfaction with the results-Slovenian experiences. Land Use Policy 2014, 38, 550–563. [Google Scholar] [CrossRef]
- Demetriou, D.; Stillwell, J.; See, L. Land consolidation in cyprus: Why is an integrated planning and decision support system required? Land Use Policy 2012, 29, 131–142. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.S. Rural land engineering and poverty alleviation: Lessons from typical regions in China. J. Geogr. Sci. 2019, 29, 643–657. [Google Scholar] [CrossRef]
- Guo, Y.Z.; Zhou, Y.; Liu, Y.S. Targeted poverty alleviation and its practices in rural China: A case study of Fuping county, Hebei Province. J. Rural Stud. 2022, 93, 430–440. [Google Scholar] [CrossRef]
Primary Type | Secondary Type | Farmland | Forestland | Grassland | Water Area | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
Supply services | Food supply | 1995.96 | 658.67 | 858.26 | 888.20 | 0.00 | 39.92 |
Raw material supply | 778.42 | 5947.96 | 718.55 | 588.81 | 0.00 | 79.84 | |
Regulating services | Gas regulation | 1437.09 | 8622.55 | 2993.94 | 2914.10 | 0.00 | 119.76 |
Climate regulation | 1936.08 | 8123.56 | 3113.70 | 15,578.46 | −958.06 | 259.47 | |
Water Harvesting | 1536.89 | 8163.47 | 3033.86 | 32,144.93 | −2175.60 | 139.72 | |
Waste care | 2774.38 | 3433.05 | 2634.67 | 29,190.91 | 0.00 | 518.95 | |
Support services | Soil conservation | 2934.06 | 8023.76 | 4470.95 | 2395.15 | 0.00 | 339.31 |
Maintaining biodiversity | 2035.88 | 9001.78 | 3732.44 | 7105.62 | 0.00 | 798.38 | |
Cultural services | Provide aesthetic value | 339.31 | 4151.60 | 1736.48 | 9111.56 | 0.00 | 479.03 |
Total | 1995.96 | 658.67 | 858.26 | 888.20 | 0.00 | 39.92 |
Efficiency Factor | Farmland | Forestland | Grassland | Water Area | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Economic efficiency coefficient | 643.43 | 28.19 | 690.04 | 1375.63 | 30,317.5 | 0 |
Eco-efficiency coefficient | 157.68 | 561.26 | 232.93 | 999.18 | −31.34 | 27.74 |
2010→2020 | 2010 | 2020 | Profit and Loss | Contribution Margin (%) |
---|---|---|---|---|
Grassland→Farmland | 56,516.88 | 38,258.62 | −18,258.25 | 0.65% |
Grassland→Construction land | 35,322.37 | −4752.51 | −40,074.88 | 1.43% |
Grassland→Forestland | 135,254.44 | 325,904.37 | 190,649.94 | 6.82% |
Grassland→Water area | 11,026.28 | 47,298.48 | 36,272.21 | 1.30% |
Grassland→Unused land | 106.50 | 12.68 | −93.81 | 0.00% |
Farmland→Grassland | 34,844.50 | 51,473.43 | 16,628.93 | 0.59% |
Farmland→Construction land | 165,096.16 | −32,814.01 | −197,910.18 | 7.08% |
Farmland→Forestland | 226,076.18 | 804,715.34 | 578,639.16 | 20.69% |
Farmland→Water area | 25,953.86 | 164,463.33 | 138,509.47 | 4.95% |
Farmland→Unused land | 336.05 | 59.12 | −276.93 | 0.01% |
construction land→Grassland | −537.63 | 3995.89 | 4533.53 | 0.16% |
construction land→Farmland | −8805.38 | 44,302.23 | 53,107.61 | 1.90% |
construction land→Forestland | −1680.37 | 30,093.36 | 31,773.73 | 1.14% |
construction land→Water area | −805.11 | 25,668.53 | 26,473.65 | 0.95% |
construction land→Unused land | −10.49 | 9.29 | 19.78 | 0.00% |
Forestland→Grassland | 423,986.24 | 175,959.65 | −248,026.59 | 8.87% |
Forestland→Farmland | 829,509.33 | 233,041.78 | −596,467.55 | 21.33% |
Forestland→Construction land | 288,817.94 | −16,127.20 | −304,945.15 | 10.90% |
Forestland→Water area | 100,600.47 | 179,093.42 | 78,492.96 | 2.81% |
Forestland→Unused land | 2482.73 | 122.71 | −2360.03 | 0.08% |
Water area→Grassland | 27,391.52 | 6385.54 | −21,005.98 | 0.75% |
Water area→Farmland | 122,243.88 | 19,291.23 | −102,952.64 | 3.68% |
Water area→Construction land | 53,566.34 | −1680.15 | −55,246.49 | 1.98% |
Water area→Forestland | 107,956.40 | 60,641.34 | −47,315.07 | 1.69% |
Water area→Unused land | 2682.50 | 74.47 | −2608.02 | 0.09% |
Unused land→Grassland | 71.70 | 602.08 | 530.38 | 0.02% |
Unused land→Farmland | 14.01 | 79.61 | 65.61 | 0.00% |
Unused land→Construction land | 186.80 | −211.04 | −397.83 | 0.01% |
Unused land→Forestland | 36.92 | 747.09 | 710.17 | 0.03% |
Unused land→Water area | 61.59 | 2218.48 | 2156.89 | 0.08% |
Total | 2,638,302.60 | 2,158,927.18 | −479,375.41 | 100.00% |
2010→2020 | 2010 | 2020 | Profit and Loss | Contribution Margin (%) |
---|---|---|---|---|
Grassland→Farmland | 167,427.41 | 156,118.78 | −11,308.63 | 0.02% |
Grassland→Construction land | 104,640.11 | 4,597,457.77 | 4,492,817.66 | 6.66% |
Grassland→Forestland | 400,682.09 | 16,369.27 | −384,312.82 | 0.57% |
Grassland→Water area | 32,664.60 | 65,118.84 | 32,454.24 | 0.05% |
Grassland→Unused land | 315.49 | 0.00 | −315.49 | 0.00% |
Farmland→Grassland | 142,187.07 | 152,486.54 | 10,299.47 | 0.02% |
Farmland→Construction land | 673,694.17 | 31,743,422.29 | 31,069,728.12 | 46.04% |
Farmland→Forestland | 922,530.23 | 40,418.62 | −882,111.62 | 1.31% |
Farmland→Water area | 105,907.76 | 226,427.17 | 120,519.41 | 0.18% |
Farmland→Unused land | 1371.28 | 0.00 | −1371.28 | 0.00% |
construction land→Grassland | 520,093.67 | 11,837.56 | −508,256.11 | 0.75% |
construction land→Farmland | 8,518,092.54 | 180,780.42 | −8,337,312.11 | 12.35% |
construction land→Forestland | 1,625,548.52 | 1511.51 | −1,624,037.02 | 2.41% |
construction land→Water area | 778,844.43 | 35,339.51 | −743,504.92 | 1.10% |
construction land→Unused land | 10,150.30 | 0.00 | −10,150.30 | 0.02% |
Forestland→Grassland | 21,295.65 | 521,268.53 | 499,972.88 | 0.74% |
Forestland→Farmland | 41,663.95 | 950,954.21 | 909,290.26 | 1.35% |
Forestland→Construction land | 14,506.52 | 15,601,036.51 | 15,586,529.99 | 23.10% |
Forestland→Water area | 5052.88 | 246,569.35 | 241,516.47 | 0.36% |
Forestland→Unused land | 124.70 | 0.00 | −124.70 | 0.00% |
Water area→Grassland | 37,711.66 | 18,916.74 | −18,794.92 | 0.03% |
Water area→Farmland | 168,300.95 | 78,720.13 | −89,580.82 | 0.13% |
Water area→Construction land | 73,748.20 | 1,625,330.23 | 1,551,582.04 | 2.30% |
Water area→Forestland | 148,630.47 | 3045.85 | −145,584.63 | 0.22% |
Water area→Unused land | 3693.17 | 0.00 | −3693.17 | 0.01% |
Unused land→Grassland | 0.00 | 1783.61 | 1783.61 | 0.00% |
Unused land→Farmland | 0.00 | 324.87 | 324.87 | 0.00% |
Unused land→Construction land | 0.00 | 204,151.98 | 204,151.98 | 0.30% |
Unused land→Forestland | 0.00 | 37.52 | 37.52 | 0.00% |
Unused land→Water area | 0.00 | 3054.32 | 3054.32 | 0.00% |
Total | 14,518,877.82 | 56,482,482.13 | 41,963,604.31 | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Hu, B.; Zhang, Z.; Liang, G.; Huang, S. Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation. Land 2023, 12, 759. https://doi.org/10.3390/land12040759
Zhang L, Hu B, Zhang Z, Liang G, Huang S. Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation. Land. 2023; 12(4):759. https://doi.org/10.3390/land12040759
Chicago/Turabian StyleZhang, Lili, Baoqing Hu, Ze Zhang, Gaodou Liang, and Simin Huang. 2023. "Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation" Land 12, no. 4: 759. https://doi.org/10.3390/land12040759
APA StyleZhang, L., Hu, B., Zhang, Z., Liang, G., & Huang, S. (2023). Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation. Land, 12(4), 759. https://doi.org/10.3390/land12040759