Side-Deep Fertilization Stabilizes Double-Cropping Rice Yield, Increases N and P Utilization, and Reduces N and P Losses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site
2.2. Materials
2.3. Experimental Design
2.4. Sampling and Measurement
2.4.1. Determination of NH3 Volatilization
2.4.2. Sampling and Analysis of Surface Water
2.4.3. Soil Sampling and Analysis
2.4.4. Sampling and Analysis of Plant Samples
2.5. Statistical Analysis
3. Results
3.1. Effects of Different Fertilization Depths on the Double-Cropping Rice Yield and Dry-Matter Accumulation
3.2. Effects of Different Fertilization Depths on the Double-Cropping Fertilizer-Use Efficiency
3.3. Effects of Fertilization Depth on NH3 Volatilization in Rice Fields
3.4. Effects of Fertilization Depth on the Concentrations of N and P in Surface Water
3.5. Changes in Soil Nutrients during the Harvest Period for Different Depth Treatments
4. Discussion
4.1. Yield and Fertilizer-Use Efficiency
4.2. NH3 Volatilization and Risk of N and P Losses
4.3. Soil Nutrients
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, C.; Kobayashi, K.; Loladze, I.; Zhu, J.; Jiang, Q.; Xu, X.; Liu, G.; Seneweera, S.; Ebi, K.L.; Drewnowski, A.; et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 2018, 4, eaaq1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crop. Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Peng, S.; Buresh, R.J.; Huang, J.; Zhong, X.; Zou, Y.; Yang, J.; Wang, G.; Liu, Y.; Hu, R.; Tang, Q.; et al. Improving nitrogen fertilization in rice by sitespecific N management. A review. Agron. Sustain. Dev. 2010, 30, 649–656. [Google Scholar] [CrossRef]
- Kumar, D.; Devakumar, C.; Kumar, R.; Das, A.; Panneerselvam, P.; Shivay, Y.S. Effect of neem-oil coated prilled urea with varying thickness of neem-oil coating and nitrogen rates on productivity and nitrogen-use efficiency of lowland irrigated rice under indo-gangetic plains. J. Plant Nutr. 2010, 33, 1939–1959. [Google Scholar] [CrossRef]
- Aleminew, A.; Alemayehu, G.; Adgo, E.; Tadesse, T. Influence of nitrogen on the growth and use efficiency of rainfed lowland rice in northwest Ethiopia. J. Plant Nutr. 2020, 43, 2243–2258. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 2013, 20, 8092–8131. [Google Scholar] [CrossRef]
- Gu, B.; Sutton, M.A.; Chang, S.X.; Ge, Y.; Chang, J. Agricultural ammonia emissions contribute to China’s urban air pollution. Front. Ecol. Environ. 2014, 12, 265–266. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Q.; Pang, Y.; Hu, K. Research on nutrient pollution load in Lake Taihu, China. Environ. Sci. Pollut. Res. 2017, 24, 17829–17838. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, S.; Jin, H.; Qi, W. Rural population change in China: Spatial differences, driving forces and policy implications. J. Rural. Stud. 2017, 51, 189–197. [Google Scholar] [CrossRef]
- Li, L.; Tian, H.; Zhang, M.; Fan, P.; Ashraf, U.; Liu, H.; Chen, X.; Duan, M.; Tang, X.; Wang, Z.; et al. Deep placement of nitrogen fertilizer increases rice yield and nitrogen use efficiency with fewer greenhouse gas emissions in a mechanical direct-seeded cropping system. Crop. J. 2021, 9, 1386–1396. [Google Scholar] [CrossRef]
- Huda, A.; Gaihre, Y.K.; Islam, M.R.; Singh, U.; Islam, R.; Sanabria, J.; Satter, M.A.; Afroz, H.; Halder, A.; Jahiruddin, M. Floodwater ammonium, nitrogen use efficiency and rice yields with fertilizer deep placement and alternate wetting and drying under triple rice cropping systems. Nutr. Cycl. Agroecosyst. 2016, 104, 53–66. [Google Scholar] [CrossRef]
- Huijsmans, J.; Hol, J.; Vermeulen, G. Effect of application method, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land. Atmos. Environ. 2003, 37, 3669–3680. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, H.-Q.; Liu, P.; Dong, S.-T.; Zhang, J.-W.; Zhao, B.; Ren, B.-Z. Nitrogen placement at sowing affects root growth, grain yield formation, N use efficiency in maize. Plant Soil 2020, 457, 355–373. [Google Scholar] [CrossRef]
- Zhong, X.M.; Huang, T.P.; Peng, J.W.; Lu, W.L.; Kang, X.R.; Sun, M.F.; Song, S.M.; Tang, Q.Y.; Chen, Y.X.; Zhan, D.Z.; et al. Effects of machine-transplanting synchronized with one-time precision fertilization on nutrient uptake and use efficiency of double cropping rice. Chin. J. Rice Sci. 2019, 33, 436–446, (In Chinese with English abstract). [Google Scholar]
- Yang, Z.P.; Turner, D.A.; Zhang, J.J.; Wang, Y.L.; Chen, M.C.; Zhang, Q.; Denmead, O.T.; Chen, D.; Freney, J.R. Loss of nitrogen by ammonia volatilisation and denitrification after application of urea to maize in Shanxi Province, China. Soil Res. 2011, 49, 462–469. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, M.; Tian, Y.; Zhao, M.; Zhang, B.; Zhao, M.; Zeng, K.; Yin, B. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. Field Crop. Res. 2018, 218, 254–266. [Google Scholar] [CrossRef]
- Maroušek, J.; Maroušková, A.; Zoubek, T.; Bartoš, P. Economic impacts of soil fertility degradation by traces of iron from drinking water treatment. Environ. Dev. Sustain. 2022, 24, 4835–4844. [Google Scholar] [CrossRef]
- Chen, X.; Liu, P.; Zhao, B.; Zhang, J.; Ren, B.; Li, Z.; Wang, Z. Root physiological adaptations that enhance the grain yield and nutrient use efficiency of maize (Zea mays L) and their dependency on phosphorus placement depth. Field Crop. Res. 2021, 276, 108378. [Google Scholar] [CrossRef]
- Vejchasarn, P.; Lynch, J.P.; Brown, K.M. Genetic Variability in Phosphorus Responses of Rice Root Phenotypes. Rice 2016, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Ma, N.; Dong, L.; Lü, W.; Lü, J.; Meng, Q.; Liu, P. Transcriptome analysis of maize seedling roots in response to nitrogen-, phosphorus-, and potassium deficiency. Plant Soil 2020, 447, 637–658. [Google Scholar] [CrossRef]
- Khalil, M.I.; Buegger, F.; Schraml, M.; Gutser, R.; Richards, K.; Schmidhalter, U. Gaseous Nitrogen Losses from a Cambisol Cropped to Spring Wheat with Urea Sizes and Placement Depths. Soil Sci. Soc. Am. J. 2009, 73, 1335–1344. [Google Scholar] [CrossRef]
- Hou, K.; Huang, Y.; Rong, X.; Peng, J.; Tian, C.; Han, Y. The effects of the depth of fertilization on losses of nitrogen and phosphorus and soil fertility in the red paddy soil of China. PeerJ 2021, 9, e11347. [Google Scholar] [CrossRef] [PubMed]
- Van der Stelt, B.; Temminghoff, E.J.M.; Van Vliet, P.C.J.; Van Riemsdijk, W.H. Volatilization of ammonia from manure as affected by manure additives, temperature and mixing. Bioresour. Technol. 2007, 98, 3449–3455. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Fan, D.; Zhang, X.; Chen, J.; Li, C.; Cao, C. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crop. Res. 2015, 184, 80–90. [Google Scholar] [CrossRef]
- He, S.; Li, Y.; Yang, W.; Huang, J.; Hou, K.; Zhang, L.; Song, H.; Yang, L.; Tian, C.; Rong, X.; et al. A comparison of the mechanisms and performances of Acorus calamus, Pontederia cordata and Alisma plantagoaquatica in removing nitrogen from farmland wastewater. Bioresour. Technol. 2021, 332, 125105. [Google Scholar] [CrossRef]
- Qi, D.; Yan, J.; Zhu, J. Effect of a reduced fertilizer rate on the water quality of paddy fields and rice yields under fishpond effluent irrigation. Agric. Water Manag. 2020, 231, 105999. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agro-Chemistry Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Marouek, J.; Kolá, L.; Struneck, O.; Kopeck, M.; Vrbka, J. Modified biochars present an economic challenge to phosphate management in wastewater treatment plants. J. Clean. Prod. 2020, 272, 123015. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, P.; Mo, Z.; Kong, L.; Tian, H.; Duan, M.; Li, L.; Wu, L.; Wang, Z.; Tang, X.; et al. Deep Placement of Nitrogen Fertilizer Affects Grain Yield, Nitrogen Recovery Efficiency, and Root Characteristics in Direct-Seeded Rice in South China. J. Plant Growth Regul. 2020, 40, 379–387. [Google Scholar] [CrossRef]
- Khalofah, A.; Khan, M.I.; Arif, M.; Hussain, A.; Ullah, R.; Irfan, M.; Mahpara, S.; Shah, R.U.; Ansari, M.J.; Kintl, A.; et al. Deep placement of nitrogen fertilizer improves yield, nitrogen use efficiency and economic returns of transplanted fine rice. PLoS ONE 2021, 16, e0247529. [Google Scholar] [CrossRef]
- Wu, M.; Li, G.; Li, W.; Liu, J.; Liu, M.; Jiang, C.; Li, Z. Nitrogen Fertilizer Deep Placement for Increased Grain Yield and Nitrogen Recovery Efficiency in Rice Grown in Subtropical China. Front. Plant Sci. 2017, 8, 1227. [Google Scholar] [CrossRef]
- Weng, F.; Zhang, W.; Wu, X.; Xu, X.; Ding, Y.; Li, G.; Liu, Z.; Wang, S. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice. Sci. Rep. 2017, 7, 46596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Zhang, Y.; Xiang, J.; Uphoff, N.T.; Pan, X.; Zhu, D. Effects of Low Temperature Stress on Spikelet-Related Parameters during Anthesis in Indica–Japonica Hybrid Rice. Front. Plant Sci. 2017, 8, 1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Tao, L.; Liu, T.; Zhang, X.; Wang, W.; Song, J.; Yu, C.; Peng, X. Nitrogen application after low-temperature exposure alleviates tiller decrease in rice. Environ. Exp. Bot. 2018, 158, 205–214. [Google Scholar] [CrossRef]
- Akinbile, C.O.; Ogunmola, O.O.; Abolude, A.T.; Akande, S.O. Trends and spatial analysis of temperature and rainfall patterns on rice yields in Nigeria. Atmos. Sci. Lett. 2020, 21, e944. [Google Scholar] [CrossRef]
- Siddik, M.A.; Zhang, J.; Chen, J.; Qian, H.; Jiang, Y.; Kareem Raheem, A.; Deng, A.; Song, Z.; Zheng, C.; Zhang, W. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. Eur. J. Agron. 2019, 106, 30–38. [Google Scholar] [CrossRef]
- De Datta, S.K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. In Nitrogen Economy of Flooded Rice Soils; Nijhoff: Dordrecht, The Netherlands, 1986; Volume 9, pp. 171–186. [Google Scholar] [CrossRef]
- Qiao, J.; Yang, L.; Yan, T.; Xue, F.; Zhao, D. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. Agric. Ecosyst. Environ. 2012, 146, 103–112. [Google Scholar] [CrossRef]
- Li, J.; Sang, C.; Yang, J.; Qu, L.; Xia, Z.; Sun, H.; Jiang, P.; Wang, X.; He, H.; Wang, C. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biol. Biochem. 2021, 156, 108207. [Google Scholar] [CrossRef]
- Soares, J.R.; Cantarella, H.; Menegale, M.L.D.C. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biol. Biochem. 2012, 52, 82–89. [Google Scholar] [CrossRef]
- Liang, X.-Q.; Chen, Y.-X.; Li, H.; Tian, G.-M.; Zhang, Z.-J.; NI, W.-Z.; He, M.-M. Nitrogen interception in floodwater of rice field in Taihu region of China. J. Environ. Sci. 2007, 19, 1474–1481. [Google Scholar] [CrossRef]
- Min, J.; Sun, H.; Wang, Y.; Pan, Y.; Kronzucker, H.J.; Zhao, D.; Shi, W. Mechanical side-deep fertilization mitigates ammonia volatilization and nitrogen runoff and increases profitability in rice production independent of fertilizer type and split ratio. J. Clean. Prod. 2021, 316, 128370. [Google Scholar] [CrossRef]
- Zhang, J.S.; Zhang, F.P.; Yang, J.H.; Wang, J.P.; Cai, M.L.; Li, C.F.; Cao, C.G. Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China. Agric. Ecosyst. Environ. 2011, 140, 164–173. [Google Scholar]
- Xu, J.Z.; Peng, S.Z.; Yang, S.H.; Wang, W.G. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen man-agements. Agric. Water Manag. 2012, 104, 184–192. [Google Scholar] [CrossRef]
- Zhong, X.; Zhou, X.; Fei, J.; Huang, Y.; Wang, G.; Kang, X.; Hu, W.; Zhang, H.; Rong, X.; Peng, J. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agric. Ecosyst. Environ. 2020, 306, 107183. [Google Scholar] [CrossRef]
- Cao, Y.; Tian, Y.; Yin, B.; Zhu, Z. Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crop. Res. 2013, 147, 23–31. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, M.; Tian, Y.; Zhao, M.; Zhang, B.; Zeng, K.; Zhao, M.; Yin, B. Urea deep placement in combination with Azolla for reducing nitrogen loss and improving fertilizer nitrogen recovery in rice field. Field Crop. Res. 2018, 218, 141–149. [Google Scholar] [CrossRef]
- Mikkelsen, D.S.; Jayaweera, G.R.; Rolston, D.E. Nitrogen fertilization practices of lowland rice culture. In Nitrogen Fertilization and the Environment; Marcel Dekker, Inc.: New York, NY, USA, 1995; pp. 171–223. [Google Scholar]
- Peng, W.; Fu, L.; Hui, L.; Tcab, C.; Peng, Z.; Zjab, C. Suitable fertilizer application depth can increase nitrogen use efficiency and maize yield by reducing gaseous nitrogen losses. Sci. Total Environ. 2021, 781, 146787. [Google Scholar]
- Yuan, M.; Fernández, F.G.; Pittelkow, C.M.; Greer, K.D.; Schaefer, D. Tillage and Fertilizer Management Effects on Phosphorus Runoff from Minimal Slope Fields. J. Environ. Qual. 2018, 47, 462–470. [Google Scholar] [CrossRef]
- Zeng, F.; Zuo, Z.; Mo, J.; Chen, C.; Yang, X.; Wang, J.; Wang, Y.; Zhao, Z.; Chen, T.; Li, Y.; et al. Runoff Losses in Nitrogen and Phosphorus from Paddy and Maize Cropping Systems: A Field Study in Dongjiang Basin, South China. Front. Plant Sci. 2021, 12, 675121. [Google Scholar] [CrossRef]
- Cao, D.; Cao, W.; Fang, J.; Cai, L. Nitrogen and phosphorus losses from agricultural systems in China: A meta-analysis. Mar. Pollut. Bull. 2014, 85, 727–732. [Google Scholar] [CrossRef]
- Arisanty, D.; Jędrasiak, K.; Rajiani, I.; Grabara, J. The Destructive Impact of Burned Peatlands to Physical and Chemical Properties of Soil. Acta Montan. Slovaca 2020, 25, 213–223. [Google Scholar]
- Zelenakova, M.; Repel, A.; Elkhier, Z.; Kaposztasova, D.; Abd-Elhamid, H.F. Impact of land use changes on surface runoff in urban areas—Case study of Myslavsky Creek Basin in Slovakia. Acta Montan. Slovaca 2019, 24, 129–139. [Google Scholar]
- Meyer, G.; Bell, M.J.; Kopittke, P.M.; Lombi, E.; Doolette, C.L.; Brunetti, G.; Klysubun, W.; Janke, C.K. Mobility and lability of phosphorus from highly concentrated fertiliser bands. Geoderma 2023, 429, 116248. [Google Scholar] [CrossRef]
- Djodjic, F.; Börling, K.; Bergström, L. Phosphorus leaching in relation to soil type and soil phosphorus content. J. Environ. Qual. 2004, 33, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Xing, X.; Li, G.; Ding, Y.; Dou, F.; Wang, S.; Liu, Z.; Tang, S.; Ding, C.; Chen, L. Effects of different controlled-release nitrogen fertilisers on ammonia volatilisation, nitrogen use efficiency and yield of blanket-seedling machine-transplanted rice. Field Crop. Res. 2017, 205, 147–156. [Google Scholar] [CrossRef]
- Ke, J.; He, R.; Hou, P.; Ding, C.; Ding, Y.; Wang, S.; Liu, Z.; Tang, S.; Ding, C.; Chen, L.; et al. Combined controlled-released nitrogen fertilizers and deep placement effects of N leaching, rice yield and N recovery in machine-transplanted rice. Agric. Ecosyst. Environ. 2018, 265, 402–412. [Google Scholar] [CrossRef]
- Zhang, M.; Yao, Y.; Zhao, M.; Zhang, B.; Tian, Y.; Yin, B.; Zhu, Z. Integration of urea deep placement and organic addition for improving yield and soil properties and decreasing N loss in paddy field. Agric. Ecosyst. Environ. 2017, 247, 236–245. [Google Scholar] [CrossRef]
- Liu, T.; Li, S.; Guo, L.; Cao, C.; Li, C.; Zhai, Z.; Zhou, J.; Mei, Y.; Ke, H. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields. J. Clean. Prod. 2020, 263, 121322. [Google Scholar] [CrossRef]
- Rychel, K.; Meurer, K.H.E.; Börjesson, G.; Strömgren, M.; Getahun, G.T.; Kirchmann, H.; Kätterer, T. Deep N fertilizer placement mitigated N2O emissions in a Swedish field trial with cereals. Nutr. Cycl. Agroecosyst. 2020, 118, 133–148. [Google Scholar] [CrossRef]
- Wang, L.; Gao, F.; Reddy, G.V.P.; Zhao, Z. Optimization of Nitrogen Fertilizer Application Enhances Biocontrol Function and Net Income. J. Econ. Èntomol. 2020, 113, 2035–2038. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Mukhtar, Z.; Saeed, N.A. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef]
- Lin, L.; Zheng, Z.; Hua, T.; Ashraf, U.; Hamoud, Y.A.; Alaa, A.A.; Xiangru, T.; Meiyang, D.; Zaiman, W.; Shenggang, P. Nitrogen Deep Placement Combined with Straw Mulch Cultivation Enhances Physiological Traits, Grain Yield and Nitrogen Use Efficiency in Mechanical Pot-Seedling Transplanting Rice. Rice Sci. 2022, 29, 89–100. [Google Scholar] [CrossRef]
- Gealy, D.R.; Rohila, J.S.; Boykin, D.L. Genetic potential of rice under alternate-wetting-and-drying irrigation management for barnyardgrass (Echinochloa crus-galli) suppression and grain yield production. Weed Sci. 2019, 67, 453–462. [Google Scholar] [CrossRef]
- Gealy, D.R. Deep phosphorus fertiliser placement and reduced irrigation methods for rice (Oryza sativa L.) combine to knock-out competition from its nemesis, barnyard grass (Echinochloa crus-galli (L.) P. Beauv). Plant Soil 2015, 391, 427–431. [Google Scholar] [CrossRef]
pH | OM/g kg−1 | TN/g kg−1 | TP/g kg−1 | TK/g kg−1 | AN/ mg kg−1 | AP/ mg kg−1 | AK/ mg kg−1 |
---|---|---|---|---|---|---|---|
4.61 | 30.03 | 2.40 | 0.20 | 15.35 | 205.9 | 10.4 | 205 |
Season | Treatment | TNs (g kg−1) | TPs (g kg−1) | AN (mg kg−1) | AP (mg kg−1) |
---|---|---|---|---|---|
Early rice | CK | 2.425 ± 0.03 b | 0.193 ± 0.02 ab | 185.733 ± 0.933 d | 9.394 ± 0.038 a |
D0 | 2.455 ± 0.023 b | 0.192 ± 0.03 ab | 193.2 ± 1.617 c | 9.081 ± 0.135 a | |
D5 | 2.635 ± 0.024 a | 0.20 ± 0.09 a | 215.6 ± 3.233 a | 9.172 ± 0.049 a | |
D7.5 | 2.572 ± 0.018 a | 0.192 ± 0.01 ab | 208.133 ± 0.933 b | 10.404 ± 1.374 a | |
D10 | 2.47 ± 0.029 b | 0.184 ± 0.02 b | 191.333 ± 2.469 cd | 10.15 ± 0.03 a | |
Late rice | CK | 2.376 ± 0.014 c | 0.18 ± 0.02 a | 209.4 ± 13.4 a | 10.447 ± 0.332 a |
D0 | 2.476 ± 0.038 b | 0.188 ± 0.01 a | 201.6 ± 6.466 a | 9.922 ± 0.064 a | |
D5 | 2.438 ± 0.06 bc | 0.191 ± 0.03 a | 208.133 ± 3.733 a | 10.134 ± 0.165 a | |
D7.5 | 2.451 ± 0.028 b | 0.185 ± 0.01 a | 206.267 ± 3.365 a | 10.106 ± 0.125 a | |
D10 | 2.62 ± 0.015 a | 0.194 ± 0.06 a | 218.4 ± 3.233 a | 10.01 ± 0.165 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, K.; Zhang, L.; Liu, P.; He, S.; Rong, X.; Peng, J.; Zhang, Y.; Tian, C.; Han, Y. Side-Deep Fertilization Stabilizes Double-Cropping Rice Yield, Increases N and P Utilization, and Reduces N and P Losses. Land 2023, 12, 724. https://doi.org/10.3390/land12030724
Hou K, Zhang L, Liu P, He S, Rong X, Peng J, Zhang Y, Tian C, Han Y. Side-Deep Fertilization Stabilizes Double-Cropping Rice Yield, Increases N and P Utilization, and Reduces N and P Losses. Land. 2023; 12(3):724. https://doi.org/10.3390/land12030724
Chicago/Turabian StyleHou, Kun, Lian Zhang, Ping Liu, Shifu He, Xiangmin Rong, Jianwei Peng, Yuping Zhang, Chang Tian, and Yongliang Han. 2023. "Side-Deep Fertilization Stabilizes Double-Cropping Rice Yield, Increases N and P Utilization, and Reduces N and P Losses" Land 12, no. 3: 724. https://doi.org/10.3390/land12030724
APA StyleHou, K., Zhang, L., Liu, P., He, S., Rong, X., Peng, J., Zhang, Y., Tian, C., & Han, Y. (2023). Side-Deep Fertilization Stabilizes Double-Cropping Rice Yield, Increases N and P Utilization, and Reduces N and P Losses. Land, 12(3), 724. https://doi.org/10.3390/land12030724