Lava Flow Hazard and Its Implication in Geopark Development for the Active Harrat Khaybar Intracontinental Monogenetic Volcanic Field, Saudi Arabia
Abstract
:1. Introduction
2. Geological and Geoheritage Setting
3. Materials and Methods
4. Results
4.1. Terrain Analysis
4.2. Satellite Imagery
4.3. Lava Flow Surface Texture
4.4. Desert Kites and Human Occupation Sites Constraining Holocene Volcanism
4.5. Lava Flow Simulation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Németh, K.; Casadevall, T.; Moufti, M.R.; Marti, J. Volcanic Geoheritage. Geoheritage 2017, 9, 251–254. [Google Scholar] [CrossRef] [Green Version]
- Erfurt-Cooper, P. Geotourism in volcanic and geothermal environments: Playing with fire? Geoheritage 2011, 3, 187–193. [Google Scholar] [CrossRef]
- Peterson, D.W.; Tilling, R.I. Lava flow hazards. In Encyclopedia of Volcanoes; Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 957–971. [Google Scholar]
- Nakada, S. Hazards from pyroclastic flows and surges. In Encyclopedia of Volcanoes; Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 945–955. [Google Scholar]
- Gudmundsson, M.T. Chapter 56—Hazards from Lahars and Jökulhlaups. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Academic Press: Amsterdam, The Netherlands, 2015; pp. 971–984. [Google Scholar]
- Cashman, K.V.; Sparks, R.S.J. How volcanoes work: A 25 year perspective. Geol. Soc. Am. Bull. 2013, 125, 664–690. [Google Scholar] [CrossRef]
- Dibben, C.; Chester, D.K. Human vulnerability in volcanic environments: The case of Furnas, Sao Miguel, Azores. J. Volcanol. Geotherm. Res. 1999, 92, 133–150. [Google Scholar] [CrossRef]
- McGuire, W.J.; Kilburn, C.R.J. Forecasting volcanic events: Some contemporary issues. Geol. Rundsch. 1997, 86, 439–445. [Google Scholar] [CrossRef]
- Scarlett, J.P.; Riede, F. The Dark Geocultural Heritage of Volcanoes: Combining Cultural and Geoheritage Perspectives for Mutual Benefit. Geoheritage 2019, 11, 1705–1721. [Google Scholar] [CrossRef] [Green Version]
- Németh, K. Geoheritage and geodiversity aspects of catastrophic volcanic eruptions: Lessons from the 15th of January 2022 Hunga Tonga—Hunga Ha’apai eruption, SW Pacific. Int. J. Geoheritage Park. 2022, 10, 546–568. [Google Scholar] [CrossRef]
- Reynard, E.; Giusti, C. Chapter 8—The Landscape and the Cultural Value of Geoheritage. In Geoheritage; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 147–166. [Google Scholar]
- Szepesi, J.; Esik, Z.; Soos, I.; Németh, B.; Suto, L.; Novak, T.J.; Harangi, S.; Lukacs, R. Identification of Geoheritage Elements in a Cultural Landscape: A Case Study from Tokaj Mts, Hungary. Geoheritage 2020, 12, 89. [Google Scholar] [CrossRef]
- Németh, K.; Gravis, I. Geoheritage and geodiversity elements of the SW Pacific: A conceptual framework. Int. J. Geoheritage Park. 2022, 10, 523–545. [Google Scholar] [CrossRef]
- Dull, R.A.; Southon, J.R.; Sheets, P. Volcanism, ecology and culture: A reassessment of the Volcan Ilopango TBJ eruption in the southern Maya realm. Lat. Am. Antiq. 2001, 12, 25–44. [Google Scholar] [CrossRef]
- Ertekin, C.; Ekinci, Y.L.; Buyuksarac, A.; Ekinci, R. Geoheritage in a Mythical and Volcanic Terrain: An Inventory and Assessment Study for Geopark and Geotourism, Nemrut Volcano (Bitlis, Eastern Turkey). Geoheritage 2021, 13, 73. [Google Scholar] [CrossRef]
- Erturac, M.K.; Okur, H.; Ersoy, B. The cultural and geological heritage sites within the Golludag Volcanic Complex. Turk. Jeol. Bul. Geol. Bull. Turk. 2017, 60, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Moufti, M.R.; Németh, K. The intra-continental Al Madinah Volcanic Field, Western Saudi Arabia: A proposal to establish harrat Al Madinah as the first volcanic geopark in the Kingdom of Saudi Arabia. Geoheritage 2013, 5, 185–206. [Google Scholar] [CrossRef]
- Wilkie, B.; Cahir, F.; Clark, I.D. Volcanism in Aboriginal Australian oral traditions: Ethnographic evidence from the Newer Volcanics Province. J. Volcanol. Geotherm. Res. 2020, 403, 106999. [Google Scholar] [CrossRef]
- Riede, F.; Barnes, G.L.; Elson, M.D.; Oetelaar, G.A.; Holmberg, K.G.; Sheets, P. Prospects and pitfalls in integrating volcanology and archaeology: A review. J. Volcanol. Geotherm. Res. 2020, 401, 106977. [Google Scholar] [CrossRef]
- Németh, K. Volcanic Geoheritage in the Light of Volcano Geology. In El Hierro Island Global Geopark: Diversity of Volcanic Heritage for Geotourism; Dóniz-Páez, J., Pérez, N.M., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–24. [Google Scholar]
- Migon, P.; Pijet-Migon, E. Overlooked geomorphological component of volcanic geoheritage-diversity and perspectives for tourism industry, Pogrze Kaczawskie Region, SW Poland. Geoheritage 2016, 8, 333–350. [Google Scholar] [CrossRef]
- Szepesi, J.; Harangi, S.; Esik, Z.; Novak, T.J.; Lukacs, R.; Soos, I. Volcanic Geoheritage and Geotourism Perspectives in Hungary: A Case of an UNESCO World Heritage Site, Tokaj Wine Region Historic Cultural Landscape, Hungary. Geoheritage 2017, 9, 329–349. [Google Scholar] [CrossRef] [Green Version]
- Rapprich, V.; Lisec, M.; Fiferna, P.; Závada, P. Application of Modern Technologies in Popularization of the Czech Volcanic Geoheritage. Geoheritage 2017, 9, 413–420. [Google Scholar] [CrossRef]
- Migon, P.; Pijet-Migon, E. Bakony—Balaton Geopark in Hungary. Przeglad Geologiczny 2018, 66, 276–283. [Google Scholar]
- Pal, M.; Albert, G. Examining the Spatial Variability of Geosite Assessment and Its Relevance in Geosite Management. Geoheritage 2021, 13, 8. [Google Scholar] [CrossRef]
- Ruban, D.A.; Ermolaev, V.A.; van Loon, A.J. Better Understanding of Geoheritage Challenges within the Scope of Economic Geology: Toward a New Research Agenda. Heritage 2023, 6, 365–373. [Google Scholar] [CrossRef]
- Chakraborty, A.; Cooper, M.; Chakraborty, S. Geosystems as a Framework for Geoconservation: The Case of Japan’s Izu Peninsula Geopark. Geoheritage 2015, 7, 351–363. [Google Scholar] [CrossRef]
- van Ree, C.C.D.F.; van Beukering, P.J.H. Geosystem services: A concept in support of sustainable development of the subsurface. Ecosyst. Serv. 2016, 20, 30–36. [Google Scholar] [CrossRef]
- Brocx, M.; Semeniuk, V.; Casadevall, T.J.; Tormey, D. Volcanoes: Identifying and Evaluating Their Significant Geoheritage Features from the Large to Small Scale. In Updates in Volcanology—Transdisciplinary Nature of Volcano Science; Németh, K., Ed.; IntechOpen: Rijeka, Croatia, 2021; pp. 329–346. [Google Scholar] [CrossRef]
- Brocx, M.; Semeniuk, V. Using the Geoheritage Tool-Kit to Identify Inter-related Geological Features at Various Scales for Designating Geoparks: Case Studies from Western Australia. In From Geoheritage to Geoparks: Case Studies from Africa and Beyond; Geoheritage Geoparks and Geotourism; Errami, E., Brocx, M., Semeniuk, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 245–259. [Google Scholar]
- Németh, K.; Moufti, M.R. Geoheritage values of a mature monogenetic volcanic field in intra-continental settings: Harrat Khaybar, Kingdom of Saudi Arabia. Geoheritage 2017, 9, 311–328. [Google Scholar] [CrossRef]
- Naseem, S. The role of tourism in economic growth: Empirical evidence from Saudi Arabia. Economies 2021, 9, 117. [Google Scholar] [CrossRef]
- Ibrahim, A.O.; Baqawy, G.A.; Mohamed, M.A.S. Tourism attraction sites: Boasting the booming tourism of Saudi Arabia. Int. J. Adv. Appl. Sci. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Al Mohaya, J.; Elassal, M. Assessment of Geosites and Geotouristic Sites for Mapping Geotourism: A Case Study of Al-Soudah, Asir Region, Saudi Arabia. Geoheritage 2023, 15, 7. [Google Scholar] [CrossRef]
- Al-Hashim, M.H.; El-Asmar, H.M.; Hereher, M.E.; Alshehri, F. Sedimentomorphic geodiversity in response to depositional environments: Remote sensing application along the coastal plain between Ummlujj and Al-Wajh, Red Sea, Saudi Arabia. Arab. J. Geosci. 2021, 14, 1061. [Google Scholar] [CrossRef]
- Elassal, M. Geomorphological Heritage Attractions Proposed for Geotourism in Asir Mountains, Saudi Arabia. Geoheritage 2020, 12, 78. [Google Scholar] [CrossRef]
- Hassan, T.; Carvache-Franco, M.; Carvache-Franco, W.; Carvache-Franco, O. Segmentation of Religious Tourism by Motivations: A Study of the Pilgrimage to the City of Mecca. Sustainability 2022, 14, 7861. [Google Scholar] [CrossRef]
- Wided, R. Achieving sustainable tourism with dynamic capabilities and resilience factors: A post disaster perspective case of the tourism industry in Saudi Arabia. Cogent Soc. Sci. 2022, 8, 2060539. [Google Scholar] [CrossRef]
- Supriadi, U.; Islamy, M.R.F.; Rakhman, M.A.; Fuadin, A. Tourism and Crisis: Comparing the Impacts of COVID-19 and Natural Disasters on The Hajj and Umrah Industry. Int. J. Relig. Tour. Pilgr. 2022, 10, 2. [Google Scholar] [CrossRef]
- Alkhawaldeh, A.M. Religious Tourism Post-COVID-19 In The Context Of Muslim Countries: Destination Image, Perceived Value, Intention To Revisit Makkah And Health Risk As Moderator. Geoj. Tour. Geosites 2022, 43, 858–865. [Google Scholar] [CrossRef]
- Yehia, E.F.; Alzahrani, H.J.M.; Reid, D.M.; Ali, M.A. Tourism, national identity, and the images on postage stamps: The case of Saudi Arabia. J. Tour. Hist. 2022, 14, 70–102. [Google Scholar] [CrossRef]
- Elbelkasy, M.I.; Mustafa, M.M.I. Investment of Heritage Villages in Saudi Arabia—Case Study of Al-Khubara Village in Qassim. Adv. Sci. Technol. Innov. 2022, 345–356. [Google Scholar] [CrossRef]
- Rehman, A.U.; Alnuzhah, A.S. Identifying Travel Motivations Of Saudi Domestic Tourists: Case of Hail Province in Saudi Arabia. Geoj. Tour. Geosites 2022, 43, 1118–1128. [Google Scholar] [CrossRef]
- Mazzetto, S. Sustainable Heritage Preservation to Improve the Tourism Offer in Saudi Arabia. Urban Planning 2022, 7, 195–207. [Google Scholar] [CrossRef]
- Bay, M.A.; Alnaim, M.M.; Albaqawy, G.A.; Noaime, E. The Heritage Jewel of Saudi Arabia: A Descriptive Analysis of the Heritage Management and Development Activities in the At-Turaif District in Ad-Dir’iyah, a World Heritage Site (WHS). Sustainability 2022, 14, 10718. [Google Scholar] [CrossRef]
- Madani, R. The new image of Saudi cultural shift; MDL Beast music festival; Saudi Vision 2030. Cogent Arts Humanit. 2022, 9, 2105511. [Google Scholar] [CrossRef]
- Hind, K. Saudi Vision 2030: Applying a Sustainable Smart Techno-cultural Assessment method to Evaluate Museums’ performance post-COVID-19. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022. [Google Scholar]
- Greco, C. Food Heritage, Memory and Cultural Identity in Saudi Arabia: The Case of Jeddah. Numanities Arts Humanit. Prog. 2022, 19, 55–74. [Google Scholar] [CrossRef]
- Aliraqi, A.M. Heritage-based Entertainment: Empirical Evidence from Diriyah, Saudi Arabia. World J. Entrep. Manag. Sustain. Dev. 2022, 18, 467–480. [Google Scholar] [CrossRef]
- Hassan, T.H.; Salem, A.E.; Abdelmoaty, M.A.; Saleh, M.I. Renewing The Ecotourism Investments’ Strategies In The Kingdom of Saudi Arabia: Social Exchange Theory Prospects. Geoj. Tour. Geosites 2022, 45, 1661–1673. [Google Scholar] [CrossRef]
- Hassan, T.H.; Salem, A.E.; Abdelmoaty, M.A. Impact of Rural Tourism Development on Residents’ Satisfaction with the Local Environment, Socio-Economy and Quality of Life in Al-Ahsa Region, Saudi Arabia. Int. J. Environ. Res. Public Health 2022, 19, 4410. [Google Scholar] [CrossRef]
- Faraj, T.K.; Tarawneh, Q.Y.; Oroud, I.M. The applicability of the tourism climate index in a hot arid environment: Saudi Arabia as a case study. Int. J. Environ. Sci. Technol. 2022, 20, 3849–3860. [Google Scholar] [CrossRef]
- Fagehi, H.; Hadidi, H.M. Toward buildings with lower power demand in the smart city of NEOM-incorporating phase change material into building envelopes. Sustain. Energy Technol. Assess. 2022, 53, 102494. [Google Scholar] [CrossRef]
- Fu, H.; Fu, B.; Shi, P.; Zheng, Y. International geological significance of the potential Al-Medina volcanic UNESCO Global Geopark Project in Saudi Arabia revealed from multi-satellite remote sensing data. Herit. Sci. 2021, 9, 149. [Google Scholar] [CrossRef]
- Moufti, M.R.; Németh, K. Geoheritage of Volcanic Harrats in Saudi Arabia; Springer: Heidelberg, Germany, 2016; pp. 1–194. [Google Scholar]
- Németh, K.; Kereszturi, G. Monogenetic volcanism: Personal views and discussion. Int. J. Earth Sci. 2015, 104, 2131–2146. [Google Scholar] [CrossRef]
- Camp, V.E.; Roobol, M.J.; Hooper, P.R. The Arabian Continental Alkali Basalt Province 2. Evolution of Harrats Khaybar, Ithnayn, and Kura, Kingdom of Saudi-Arabia. Geol. Soc. Am. Bull. 1991, 103, 363–391. [Google Scholar] [CrossRef]
- Németh, K.; Moufti, M.R. The historic scoria cone of Jabal Quidr, Saudi Arabia. In The First 100 UGS Geological Heritage Sites; Hilario, A., Asrat, A., van Wyk de Vries, B., Mogk, D., Lozano, G., Zhang, J., Brilha, J., Vegas, J., Lemon, K., Carcavilla, L., et al., Eds.; International Union of Geological Sciences: Zumaia, Spain, 2022; pp. 150–151. [Google Scholar]
- Stelten, M.E.; Downs, D.T.; Champion, D.E.; Dietterich, H.R.; Calvert, A.T.; Sisson, T.W.; Mahood, G.A.; Zahran, H. The timing and compositional evolution of volcanism within northern Harrat Rahat, Kingdom of Saudi Arabia. Bull. Geol. Soc. Am. 2020, 132, 1381–1403. [Google Scholar] [CrossRef]
- Downs, D.T.; Stelten, M.E.; Champion, D.E.; Dietterich, H.R.; Nawab, Z.; Zahran, H.; Hassan, K.; Shawali, J. Volcanic history of the northernmost part of the Harrat Rahat volcanic field, Saudi Arabia. Geosphere 2018, 14, 1253–1282. [Google Scholar] [CrossRef] [Green Version]
- Moufti, M.R.; Moghazi, A.M.; Ali, K.A. 40Ar/39Ar geochronology of the Neogene-Quaternary Harrat Al-Madinah intercontinental volcanic field, Saudi Arabia: Implications for duration and migration of volcanic activity. J. Asian Earth Sci. 2013, 62, 253–268. [Google Scholar] [CrossRef]
- Downs, D.T.; Robinson, J.E.; Stelten, M.E.; Champion, D.E.; Dietterich, H.R.; Sisson, T.W.; Zahran, H.; Hassan, K.; Shawali, J. Geologic Map of the Northern Harrat Rahat Volcanic Field, Kingdom of Saudi Arabia; 3428; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2019; p. 62.
- Walker, M.; Head, M.J.; Lowe, J.; Berkelhammer, M.; BjÖrck, S.; Cheng, H.; Cwynar, L.C.; Fisher, D.; Gkinis, V.; Long, A.; et al. Subdividing the Holocene Series/Epoch: Formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. J. Quat. Sci. 2019, 34, 173–186. [Google Scholar] [CrossRef]
- Camp, V.E.; Hooper, P.R.; Roobol, M.J.; White, D.L. The Madinah eruption, Saudi Arabia: Magma mixing and simultaneous extrusion of three basaltic chemical types. Bull. Volcanol. 1987, 49, 489–508. [Google Scholar] [CrossRef]
- Moufti, M.R.; Németh, K. The White Mountains of Harrat Khaybar, Kingdom of Saudi Arabia. Int. J. Earth Sci. 2014, 103, 1641–1643. [Google Scholar] [CrossRef]
- Moufti, M.R.; Németh, K.; El-Masry, N.; Qaddah, A. Geoheritage values of one of the largest maar craters in the Arabian Peninsula: The Al Wahbah Crater and other volcanoes (Harrat Kishb, Saudi Arabia). Cent. Eur. J. Geosci. 2013, 5, 254–271. [Google Scholar] [CrossRef]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Kim, D.-E.; Seong, Y.B.; Sohn, H.; Choi, K. Landform Classification using Geomorphons. J. Korean Geomorphol. Assoc. 2012, 19, 139–155. [Google Scholar]
- Kempe, S.; Al-Malabeh, A. Desert kites in Jordan and Saudi Arabia: Structure, statistics and function, a Google Earth study. Quat. Int. 2013, 297, 126–146. [Google Scholar] [CrossRef]
- Barge, O.; Brochier, J.E.; Regagnon, E.; Chambrade, M.-L.; Crassard, R. Unity and diversity of the kite phenomenon: A comparative study between Jordan, Armenia and Kazakhstan. Arab. Archaeol. Epigr. 2015, 26, 144–161. [Google Scholar] [CrossRef]
- Repper, R.; Kennedy, M.; McMahon, J.; Boyer, D.; Dalton, M.; Thomas, H.; Kennedy, D. Kites of AlUla County and the Ḥarrat ʿUwayriḍ, Saudi Arabia. Arab. Archaeol. Epigr. 2022, 33, 3–22. [Google Scholar] [CrossRef]
- Bouzid, S.; Barge, O. Towards a typology of desert kites combining quantitative and spatial approaches. Archaeol. Anthropol. Sci. 2022, 14, 91. [Google Scholar] [CrossRef]
- Fradley, M.; Simi, F.; Guagnin, M. Following the herds? A new distribution of hunting kites in Southwest Asia. Holocene 2022, 32, 1160–1172. [Google Scholar] [CrossRef]
- Crassard, R.; Abu-Azizeh, W.; Barge, O.; Brochier, J.É.; Chahoud, J.; Régagnon, E. The Use of Desert Kites as Hunting Mega-Traps: Functional Evidence and Potential Impacts on Socioeconomic and Ecological Spheres. J. World Prehistory 2022, 35, 1–44. [Google Scholar] [CrossRef]
- Barge, O.; Balaresque, L.; Baudoin, J.L.; Boelke, M.; Derrien, L. Hunting in the desert: Assessing the form and use of kite-like structures in the western Sahara. Antiquity 2022, 96, 719–726. [Google Scholar] [CrossRef]
- Barge, O.; Albukaai, D.; Boelke, M.; Guadagnini, K.; Régagnon, E.; Crassard, R. New Arabian desert kites and potential proto-kites extend the global distribution of hunting mega-traps. J. Archaeol. Sci. Rep. 2022, 42, 103403. [Google Scholar] [CrossRef]
- Groucutt, H.S.; Carleton, W.C. Mass-kill hunting and Late Quaternary ecology: New insights into the ‘desert kite’ phenomenon in Arabia. J. Archaeol. Sci. Rep. 2021, 37, 102995. [Google Scholar] [CrossRef]
- Lombard, M.; Badenhorst, S. A Case for Springbok Hunting with Kite-Like Structures in the Northwest Nama Karoo Bioregion of South Africa. Afr. Archaeol. Rev. 2019, 36, 383–396. [Google Scholar] [CrossRef]
- Giannelli, G.; Maestrucci, F. Desert kites in the Tripolitania region: New evidence from satellite imagery. Antiquity 2019, 93, e26. [Google Scholar] [CrossRef] [Green Version]
- Brunner, U. Desert kites—Old structures, new research. Arab. Archaeol. Epigr. 2015, 26, 70–73. [Google Scholar] [CrossRef]
- Kennedy, D. Kites—New discoveries and a new type. Arab. Archaeol. Epigr. 2012, 23, 145–155. [Google Scholar] [CrossRef]
- Felpeto, A.; Araña, V.; Ortiz, R.; Astiz, M.; García, A. Assessment and modelling of lava flow hazard on Lanzarote (Canary Islands). Nat. Hazards 2001, 23, 247–257. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Rowland, S.K. FLOWGO: A kinematic thermo-rheological model for lava flowing in a channel. Bull. Volcanol. 2001, 63, 20–44. [Google Scholar] [CrossRef]
- Dille, A.; Poppe, S.; Mossoux, S.; Soule, H.; Kervyn, M. Modeling Lahars on a Poorly Eroded Basaltic Shield: Karthala Volcano, Grande Comore Island. Front. Earth Sci. 2020, 8. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalez, A.; Aulinas, M.; Mossoux, S.; Perez-Torrado, F.J.; Fernandez-Turiel, J.L.; Cabrera, M.; Prieto-Torrell, C. Comparison of real and simulated lava flows in the Holocene volcanism of Gran Canaria (Canary Islands, Spain) with Q-LavHA: Contribution to volcanic hazard management. Nat. Hazards 2021, 107, 1785–1819. [Google Scholar] [CrossRef]
- Vilches, M.; Ureta, G.; Grosse, P.; Nemeth, K.; Aguilera, F.; Aguilera, M. Effusion rate estimation based on solidified lava flows: Implications for volcanic hazard assessment in the Negros de Aras monogenetic volcanic field, northern Chile. J. Volcanol. Geotherm. Res. 2022, 422, 107454. [Google Scholar] [CrossRef]
- Becerril, L.; Larrea, P.; Salinas, S.; Mossoux, S.; Ferres, D.; Widom, E.; Siebe, C.; Marti, J. The historical case of Paricutin volcano (Michoacan, Mexico): Challenges of simulating lava flows on a gentle slope during a long-lasting eruption. Nat. Hazards 2021, 107, 809–829. [Google Scholar] [CrossRef]
- Diniega, S.; Németh, K. Tumulus. In Encyclopedia of Planetary Landforms; Hargitai, H., Kereszturi, Á., Eds.; Springer New York: New York, NY, USA, 2015; pp. 2210–2214. [Google Scholar]
- Fodor, E.; Németh, K. Spatter Cone. In Encyclopedia of Planetary Landforms; Hargitai, H., Kereszturi, Á., Eds.; Springer New York: New York, NY, USA, 2015; pp. 2028–2034. [Google Scholar]
- Pedersen, G.B.M.; Hoskuldsson, A.; Durig, T.; Thordarson, T.; Jonsdottir, I.; Riishuus, M.S.; Oskarsson, B.V.; Dumont, S.; Magnusson, E.; Gudmundsson, M.T.; et al. Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J. Volcanol. Geotherm. Res. 2017, 340, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Murcia, H.; Németh, K.; Moufti, M.R.; Lindsay, J.M.; El-Masry, N.; Cronin, S.J.; Qaddah, A.; Smith, I.E.M. Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: Implications for the description of continental lava fields. J. Asian Earth Sci. 2014, 84, 131–145. [Google Scholar] [CrossRef]
- Pint, J.J. Umm Jirsan: Arabia’s longest lava tube system. In Proceedings of the International Congress of Speleology; National Speleological Society: Kerrville, TX, USA, 2009; Volume 2, pp. 714–717. [Google Scholar]
- Pint, J.J. The lava caves of Khaybar, Saudi Arabia. In Proceedings of the International Congress of Speleology; National Speleological Society: Kerrville, TX, USA, 2009; Volume 3, pp. 1873–1878. [Google Scholar]
- Nicholson, S.L.; Pike, A.W.G.; Hosfield, R.; Roberts, N.; Sahy, D.; Woodhead, J.; Cheng, H.; Edwards, R.L.; Affolter, S.; Leuenberger, M.; et al. Pluvial periods in Southern Arabia over the last 1.1 million-years. Quat. Sci. Rev. 2020, 229, 106112. [Google Scholar] [CrossRef]
- Preston, G.W.; Parker, A.G. Understanding the evolution of the Holocene Pluvial Phase and its impact on Neolithic populations in south-east Arabia. Arab. Archaeol. Epigr. 2013, 24, 87–94. [Google Scholar] [CrossRef]
- Guilbaud, M.N.; Blake, S.; Thordarson, T.; Self, S. Role of syn-eruptive cooling and degassing on textures of lavas from the AD 1783-1784 Laki eruption, south Iceland. J. Petrol. 2007, 48, 1265–1294. [Google Scholar] [CrossRef] [Green Version]
- Woo, K.S.; Kim, L.; Ji, H.; Jeon, Y.; Ryu, C.G.; Wood, C. Geological Heritage Values of the Yongcheon Cave (Lava Tube Cave), Jeju Island, Korea. Geoheritage 2019, 11, 615–628. [Google Scholar] [CrossRef]
- Hare, A.G.; Cas, R.A.F. Volcanology and evolution of the Werribee Plains intraplate, basaltic lava flow-field, Newer Volcanics Province, southeast Australia. Aust. J. Earth Sci. 2005, 52, 59–78. [Google Scholar] [CrossRef]
- Joyce, E. Australia’s Geoheritage: History of Study, A New Inventory of Geosites and Applications to Geotourism and Geoparks. Geoheritage 2010, 2, 39–56. [Google Scholar] [CrossRef]
- Megerle, H.E. Geoheritage and geotourism in regions with extinct volcanism in germany; case study Southwest Germany with UNESCO global Geopark Swabian Alb. Geosciences 2020, 10, 445. [Google Scholar] [CrossRef]
- Bitschene, P.R. Edutainment with basalt and volcanoes—The rockeskyller kopf example in the westeifel volcanic field/vulkaneifel european geopark, Germany. Z. Der Dtsch. Ges. Fur Geowiss. 2015, 166, 187–193. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Late Palaeozoic Volcanism in Central Europe—Geoheritage Significance and Use in Geotourism. Geoheritage 2020, 12, 43. [Google Scholar] [CrossRef]
- Harangi, S. Volcanic heritage of the carpathian-pannonian region in eastern-central Europe. In Volcanic Tourist Destinations; Springer Science & Business Media: Berlin, Germany, 2014; pp. 103–123. [Google Scholar]
- Migoń, P. Geoparks and geoturism in Taiwan. Prz. Geol. 2012, 60, 315–318. [Google Scholar]
- Sheth, H.; Samant, H.; Patel, V.; D’Souza, J. The Volcanic Geoheritage of the Elephanta Caves, Deccan Traps, Western India. Geoheritage 2017, 9, 359–372. [Google Scholar] [CrossRef]
- Németh, K.; Wu, J.; Sun, C.; Liu, J. Update on the Volcanic Geoheritage Values of the Pliocene to Quaternary Arxan–Chaihe Volcanic Field, Inner Mongolia, China. Geoheritage 2017, 9, 279–297. [Google Scholar] [CrossRef]
- Dóniz-Páez, J.; Beltrán-Yanes, E.; Becerra-Ramírez, R.; Pérez, N.M.; Hernández, P.A.; Hernández, W. Diversity of volcanic geoheritage in the canary islands, Spain. Geosciences 2020, 10, 390. [Google Scholar] [CrossRef]
- Dóniz Páez, J.; Becerra-Ramírez, R.; Beltrán Yanes, E. Geomorphosites of El Hierro global Unesco geopark (Canary Islands, Spain) to promote the volcanic geoturism. Rev. De Geogr. Norte Gd. 2021, 2021, 165–186. [Google Scholar] [CrossRef]
- Martí-Molist, J.; Dorado-García, O.; López-Saavedra, M. The Volcanic Geoheritage of El Teide National Park (Tenerife, Canary Islands, Spain). Geoheritage 2022, 14, 65. [Google Scholar] [CrossRef]
- Kelley, D.; Salazar, R. Geosites in the Galápagos Islands Used for Geology Education Programs. Geoheritage 2017, 9, 351–358. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Pérez-Umaña, D. State of the art of geodiversity, geoconservation, and geotourism in Costa Rica. Geosciences 2020, 10, 211. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Torres-Bernhard, L.; Ruiz-álvarez, M.A.; Rodríguez-Maradiaga, M.; Velázquez-Espinoza, G.; Espinosa-Vega, C.; Toral, J.; Rodríguez-Bolaños, H. Geodiversity, Geoconservation, and Geotourism in Central America. Land 2022, 11, 48. [Google Scholar] [CrossRef]
- Erfurt, P. Volcano Tourism and Visitor Safety: Still Playing with Fire? A 10-Year Update. Geoheritage 2022, 14, 56. [Google Scholar] [CrossRef]
- Kilgour, G.; Kennedy, B.; Scott, B.; Christenson, B.; Jolly, A.; Asher, C.; Rosenberg, M.; Saunders, K. Whakaari/White Island: A review of New Zealand’s most active volcano. New Zealand J. Geol. Geophys. 2021, 64, 273–295. [Google Scholar] [CrossRef]
- Burton, M.; Hayer, C.; Miller, C.; Christenson, B. Insights into the 9 December 2019 eruption of Whakaari/White Island from analysis of TROPOMI SO2 imagery. Sci. Adv. 2021, 7. [Google Scholar] [CrossRef]
- Guilbaud, M.-N.; Ortega-Larrocea, M.d.P.; Cram, S.; van Wyk de Vries, B. Xitle Volcano Geoheritage, Mexico City: Raising Awareness of Natural Hazards and Environmental Sustainability in Active Volcanic Areas. Geoheritage 2021, 13, 6. [Google Scholar] [CrossRef]
- Planagumà, L.; Martí, J. Identification, cataloguing and preservation of outcrops of geological interest in monogenetic volcanic fields: The case of La Garrotxa Volcanic Zone Natural Park. Geoheritage 2020, 12, 84. [Google Scholar] [CrossRef]
- Planagumà-Guàrdia, L.; Martí-Molist, J.; Vila-Subirós, J. Conservation of the Geological Heritage of Volcanic Fields: La Garrotxa Volcanic Zone Natural Park, Spain. Geoheritage 2022, 14, 39. [Google Scholar] [CrossRef]
- Alberico, I.; Alessio, G.; Fagnano, M.; Petrosino, P. The Effectiveness of Geotrails to Support Sustainable Development in the Campi Flegrei Active Volcanic Area. Geoheritage 2022, 15, 15. [Google Scholar] [CrossRef]
- Gravis, I.; Németh, K.; Twemlow, C.; Németh, B. The Case for Community-Led Geoheritage and Geoconservation Ventures in Mangere, South Auckland, and Central Otago, New Zealand. Geoheritage 2020, 12, 19. [Google Scholar] [CrossRef]
- Németh, B.; Németh, K.; Procter, J.N. Visitation rate analysis of geoheritage features from earth science education perspective using automated landform classification and crowdsourcing: A geoeducation capacity map of the Auckland Volcanic Field, New Zealand. Geosciences 2021, 11, 480. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Németh, K.; Moufti, M.R. Lava Flow Hazard and Its Implication in Geopark Development for the Active Harrat Khaybar Intracontinental Monogenetic Volcanic Field, Saudi Arabia. Land 2023, 12, 705. https://doi.org/10.3390/land12030705
Németh K, Moufti MR. Lava Flow Hazard and Its Implication in Geopark Development for the Active Harrat Khaybar Intracontinental Monogenetic Volcanic Field, Saudi Arabia. Land. 2023; 12(3):705. https://doi.org/10.3390/land12030705
Chicago/Turabian StyleNémeth, Károly, and Mohammed Rashad Moufti. 2023. "Lava Flow Hazard and Its Implication in Geopark Development for the Active Harrat Khaybar Intracontinental Monogenetic Volcanic Field, Saudi Arabia" Land 12, no. 3: 705. https://doi.org/10.3390/land12030705
APA StyleNémeth, K., & Moufti, M. R. (2023). Lava Flow Hazard and Its Implication in Geopark Development for the Active Harrat Khaybar Intracontinental Monogenetic Volcanic Field, Saudi Arabia. Land, 12(3), 705. https://doi.org/10.3390/land12030705