An Approach for Prioritizing Natural Infrastructure Practices to Mitigate Flood and Nitrate Risks in the Mississippi-Atchafalaya River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. MARB Description
2.2. Assessing Runoff and NO3-N Risks in MARB
2.3. Selection of NI Practices
2.3.1. Upland Row Crop Conversion
2.3.2. WASCOBs
2.3.3. Depressional Wetlands
2.3.4. Nitrate-Removal Wetlands
2.3.5. Riparian Forest Buffers
2.3.6. Floodplain Levees
2.3.7. Floodplain Row Crop Conversion
2.4. GIS Analysis
3. Results
3.1. Flood and Nitrate Risk
3.2. NI Practice Locations
3.3. Linking NI Practices to Flood and Nitrate Risks
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
NI Practice | Key Assumptions | Input Datasets | GIS Processing Steps | Output |
---|---|---|---|---|
Row crop replacement on high slopes (7%+) | Land use change for flooding and nitrate reductions will be more acceptable to producers if focused exclusively on steeply sloping soils. | 10 m raster slope data from high-resolution NHD; Cropland data layer (CDL)—Cropscape—30 m raster; HUC4, HUC8, HUC12 polygons. |
| 10 m raster of row crops on high slopes. |
WASCOBs | WASCOBs will be installed in catchments of over 20 ha in size. | Row crop on high slopes raster from previous analysis; HUC4, HUC8, HUC12 polygons. |
| Polygons of potential WASCOB locations; Total number of potential WASCOBs sites per HUC12. |
Depressional wetlands | Depressional wetlands can be identified by topography and hydric soils. | Sinks raster from high-resolution NHD with 10 m resolution; SSURGO polygon data; HUC4, HUC8, HUC12 polygons. |
| 10 m raster of depressional wetland areas. |
Nitrate removal wetlands | Nitrate removal wetlands should be located to intercept tile drainage. Locations are determined by intersecting row croplands, tile drainage, and hydric soils. | Reclassed and resampled row crop from previous NI practice—10 m raster; Agricultural tile dataset reclassed and resampled to 10 m tiled and non-tiled cells; Hydric soils raster from depressional wetlands analysis—10 m raster; HUC4, HUC8, HUC12 polygons. |
| 10 m raster with cells satisfying the highest class from map algebra. |
Riparian buffers | Riparian buffers of perennial vegetation replace row crops that are present in the riparian corridor along streams. | NHDArea Polygons; NHD Flowline; HUC4, HUC8, HUC12 polygons. |
| Polygon features that were rasterized to 10 m cells. |
Leveed areas | Floodplain area behind river levees can be used for flood storage and N reductions. | CDL raster—resampled to 10 m, reclassed to 1 class consisting of all land uses; Corp of Engineers levee database—protected area polygons; HUC4, HUC8, HUC12 polygons. |
| 10 m raster of land area behind levees. |
Floodplain Row Crop Conversion | Converting row-cropped lands on floodplains to perennial vegetation allows these areas to store floodwater and reduce N export. | CDL raster—resampled to 10 m, reclassed to row crop and non-row crop; 100-year Floodplain raster from Samela et al. (2017); HUC4, HUC8, HUC12 polygons. |
| 10 m raster of row crops located on floodplains. |
References
- Flooding Could Worsen Impacts of COVID-19 and Other Infectious Diseases. Available online: https://www.wri.org/news/release-new-data-shows-millions-people-trillions-property-risk-flooding-infrastructure (accessed on 6 November 2022).
- Mateo-Sagasta, J.; Zadeh, S.M.; Turral, H. More People, More Food, Worse Water? A Global Review of Water Pollution from Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy; International Water Management Institute: Rome, Italy, 2018; ISBN 978-92-5-130729-8. [Google Scholar]
- Davenport, F.V.; Burke, M.; Diffenbaugh, N.S. Contribution of Historical Precipitation Change to US Flood Damages. Proc. Natl. Acad. Sci. USA 2021, 118, e2017524118. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.A.; Takbiri, Z.; Belmont, P.; Foufoula-Georgiou, E. Human Amplified Changes in Precipitation–Runoff Patterns in Large River Basins of the Midwestern United States. Hydrol. Earth Syst. Sci. 2017, 21, 5065–5088. [Google Scholar] [CrossRef] [Green Version]
- Committee to Review the New York City Watershed Protection Program; Water Science and Technology Board; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine. Review of the New York City Watershed Protection Program; National Academies Press: Washington, DC, USA, 2020; p. 25851. ISBN 978-0-309-67967-1. [Google Scholar]
- Barrett, J. As Mississippi River Flooding Gets Worse, 100 Mayors Try a New Fix. Available online: https://www.wsj.com/articles/as-mississippi-river-flooding-gets-worse-100-mayors-try-a-new-fix-11633512602 (accessed on 6 November 2022).
- Flesher, J. Battered by Floods, U.S. River Communities Try New Remedies. Available online: https://apnews.com/article/tn-state-wire-nd-state-wire-mo-state-wire-michael-brown-ar-state-wire-aa5812a166b36687af3a4d0fc2a292b8 (accessed on 8 November 2022).
- Suttles, K.M.; Eagle, A.J.; McLellan, E.L. Upstream Solutions to Downstream Problems: Investing in Rural Natural Infrastructure for Water Quality Improvement and Flood Risk Mitigation. Water 2021, 13, 3579. [Google Scholar] [CrossRef]
- McLellan, E.L.; Schilling, K.E.; Wolter, C.F.; Tomer, M.D.; Porter, S.A.; Magner, J.A.; Smith, D.R.; Prokopy, L.S. Right Practice, Right Place: A Conservation Planning Toolbox for Meeting Water Quality Goals in the Corn Belt. J. Soil Water Conserv. 2018, 73, 29A–34A. [Google Scholar] [CrossRef] [Green Version]
- Schilling, K.E.; Gassman, P.W.; Kling, C.L.; Campbell, T.; Jha, M.K.; Wolter, C.F.; Arnold, J.G. The Potential for Agricultural Land Use Change to Reduce Flood Risk in a Large Watershed: Land Use Change and Flooding. Hydrol. Process. 2014, 28, 3314–3325. [Google Scholar] [CrossRef]
- Kousky, C.; Walls, M. Floodplain Conservation as a Flood Mitigation Strategy: Examining Costs and Benefits. Ecol. Econ. 2014, 104, 119–128. [Google Scholar] [CrossRef]
- Kousky, C.; Olmstead, S.M.; Walls, M.A.; Macauley, M. Strategically Placing Green Infrastructure: Cost-Effective Land Conservation in the Floodplain. Environ. Sci. Technol. 2013, 47, 3563–3570. [Google Scholar] [CrossRef]
- Liu, Y.; Engel, B.A.; Collingsworth, P.D.; Pijanowski, B.C. Optimal Implementation of Green Infrastructure Practices to Minimize Influences of Land Use Change and Climate Change on Hydrology and Water Quality: Case Study in Spy Run Creek Watershed, Indiana. Sci. Total Environ. 2017, 601–602, 1400–1411. [Google Scholar] [CrossRef]
- Liu, Y.; Theller, L.O.; Pijanowski, B.C.; Engel, B.A. Optimal Selection and Placement of Green Infrastructure to Reduce Impacts of Land Use Change and Climate Change on Hydrology and Water Quality: An Application to the Trail Creek Watershed, Indiana. Sci. Total Environ. 2016, 553, 149–163. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial Planning for Multifunctional Green Infrastructure: Growing Resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Sanchez, A.; Vojinovic, Z.; Kapelan, Z. Multi-Criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-Benefits. Water Resour. Manag. 2018, 32, 2505–2522. [Google Scholar] [CrossRef]
- Gourevitch, J.D.; Singh, N.K.; Minot, J.; Raub, K.B.; Rizzo, D.M.; Wemple, B.C.; Ricketts, T.H. Spatial Targeting of Floodplain Restoration to Equitably Mitigate Flood Risk. Glob. Environ. Chang. 2020, 61, 102050. [Google Scholar] [CrossRef]
- Babbar-Sebens, M.; Barr, R.C.; Tedesco, L.P.; Anderson, M. Spatial Identification and Optimization of Upland Wetlands in Agricultural Watersheds. Ecol. Eng. 2013, 52, 130–142. [Google Scholar] [CrossRef]
- Antolini, F.; Tate, E. Location Matters: A Framework to Investigate the Spatial Characteristics of Distributed Flood Attenuation. Water 2021, 13, 2706. [Google Scholar] [CrossRef]
- Tomer, M.D.; Porter, S.A.; Boomer, K.M.B.; James, D.E.; Kostel, J.A.; Helmers, M.J.; Isenhart, T.M.; McLellan, E. Agricultural Conservation Planning Framework: 1. Developing Multipractice Watershed Planning Scenarios and Assessing Nutrient Reduction Potential. J. Environ. Qual. 2015, 44, 754–767. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, E.K.; Tyndall, J.C.; Schulte, L.A. Using Spatially Targeted Conservation to Evaluate Nitrogen Reduction and Economic Opportunities for Best Management Practice Placement in Agricultural Landscapes. Environ. Manag. 2019, 64, 313–328. [Google Scholar] [CrossRef]
- Kalcic, M.M.; Frankenberger, J.; Chaubey, I. Spatial Optimization of Six Conservation Practices Using Swat in Tile-Drained Agricultural Watersheds. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 956–972. [Google Scholar] [CrossRef] [Green Version]
- Gaddis, E.J.B.; Voinov, A.; Seppelt, R.; Rizzo, D.M. Spatial Optimization of Best Management Practices to Attain Water Quality Targets. Water Resour. Manag. 2014, 28, 1485–1499. [Google Scholar] [CrossRef]
- Roy, E.D.; Hammond Wagner, C.R.; Niles, M.T. Hot Spots of Opportunity for Improved Cropland Nitrogen Management across the United States. Environ. Res. Lett. 2021, 16, 035004. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.; Crumpton, W.; Jones, C.; Tian, H.; Villarini, G.; Schilling, K.; Green, D. Heavy Precipitation Impacts on Nitrogen Loading to the Gulf of Mexico in the 21st Century: Model Projections Under Future Climate Scenarios. Earths Future 2022, 10, e2021EF002141. [Google Scholar] [CrossRef]
- Pinter, N.; Jemberie, A.A.; Remo, J.W.; Heine, R.A.; Ickes, B.S. Flood trends and river engineering on the Mississippi River system. Geophys. Res. Lett. 2008, 35, 2008GL035987. [Google Scholar] [CrossRef]
- Cusick, D. Today’s Floods Occur along “a Very Different” Mississippi. Available online: https://www.eenews.net/stories/1060322715 (accessed on 6 November 2022).
- Crawford, J.T.; Stets, E.G.; Sprague, L.A. Network Controls on Mean and Variance of Nitrate Loads from the Mississippi River to the Gulf of Mexico. J. Environ. Qual. 2019, 48, 1789–1799. [Google Scholar] [CrossRef] [Green Version]
- Rabalais, N.N.; Turner, R.E.; Wiseman, W.J., Jr. Hypoxia in the Gulf of Mexico. J. Environ. Qual. 2001, 30, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Criss, R.E.; Shock, E.L. Flood enhancement through flood control. Geology 2001, 29, 875–878. [Google Scholar] [CrossRef]
- Walker, N.D.; Rouse, L.J.; Fargion, G.S.; Biggs, D.C. The Great Flood of Summer 1993: Mississippi River Discharge Studied. Eos Trans. Am. Geophys. Union 1994, 75, 409. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E. Gulf of Mexico Hypoxia: Past, Present, and Future. Limnol. Oceanogr. Bull. 2019, 28, 117–124. [Google Scholar] [CrossRef] [Green Version]
- McIsaac, G.F.; David, M.B.; Gertner, G.Z.; Goolsby, D.A. Nitrate flux in the Mississippi River. Nature 2001, 414, 166–167. [Google Scholar] [CrossRef]
- Justić, D.; Rabalais, N.N.; Turner, R.E. Modeling the Impacts of Decadal Changes in Riverine Nutrient Fluxes on Coastal Eutrophication near the Mississippi River Delta. Ecol. Model. 2002, 152, 33–46. [Google Scholar] [CrossRef]
- Kanwar, R.S.; Johnson, H.P.; Schult, D.; Fenton, T.E.; Hickman, R.D. Drainage Needs and Returns in North-Central Iowa. Trans. ASABE 1983, 26, 457–464. [Google Scholar] [CrossRef]
- Jaynes, D.B.; Colvin, T.S.; Karlen, D.L.; Cambardella, C.A.; Meek, D.W. Nitrate Loss in Subsurface Drainage as Affected by Nitrogen Fertilizer Rate. J. Environ. Qual. 2001, 30, 1305–1314. [Google Scholar] [CrossRef]
- David, M.B.; Gentry, L.E. Anthropogenic Inputs of Nitrogen and Phosphorus and Riverine Export for Illinois, USA. J. Environ. Qual. 2000, 29, 494–508. [Google Scholar] [CrossRef]
- Schilling, K.E.; Jones, C.S.; Seeman, A.; Bader, E.; Filipiak, J. Nitrate-Nitrogen Patterns in Engineered Catchments in the Upper Mississippi River Basin. Ecol. Eng. 2012, 42, 1–9. [Google Scholar] [CrossRef]
- Gonzalez, M.; Kuzma, S. Nature-Based Flood Mitigation Can Help Mississippi River Farmers; World Resources Institute: Washington, DC, USA, 2020; Available online: https://www.wri.org/insights/nature-based-flood-mitigation-can-help-mississippi-river-farmers (accessed on 6 November 2022).
- Newman, J.; Rigdon, R.; McGroarty, P.; Paige, T. The World’s Appetite Is Threatening the Mississippi River: Pollutants from Booming Farms Combined with Record Wet Weather Are Contaminating the Nation’s Mightiest Waterway. In Wall Street Journal; Dow Jones & Company, Inc.: New York, NY, USA, 2019; Available online: http://graphics.wsj.com/mississippi/ (accessed on 13 January 2023).
- Mcdonald, M. River at Risk: The Mississippi. Environment Program; Walton Family Foundation: Bentonville, AR, USA, 2017; Available online: https://www.waltonfamilyfoundation.org/stories/k-12-education/river-at-risk-the-mississippi (accessed on 6 November 2022).
- Changnon, S. The Historical struggle with floods on the Mississippi River Basin: Impacts of recent floods and lessons for future flood management and policy. Water Int. 1998, 23, 263–271. [Google Scholar] [CrossRef]
- Rogers, J.D. Development of the New Orleans flood protection system prior to Hurricane Katrina. J. Geotech. Geoenv. Eng. 2008, 134, 602–617. [Google Scholar] [CrossRef]
- Criss, R.E.; Luo, M. Increasing risk and uncertainty of flooding in the Mississippi River Basin. Hydrol. Process. 2017, 31, 1283–1292. [Google Scholar] [CrossRef]
- Noble, C.C. The Mississippi River Flood of 1973. In Geomorphology and Engineering: Binghamton Geomorphology Symposium 7; Coates, D.R., Ed.; Taylor & Francis Group: London, UK, 1976. [Google Scholar] [CrossRef]
- Barry, J.M. Rising Tide: The Great Mississippi Flood of 1927 and How It Changed America; Simon & Schuster: New York, NY, USA, 1997; p. 524. [Google Scholar]
- Pitlick, J. A regional perspective of the hydrology of the 1993 Mississippi River Basin Floods. Ann. Assoc. Am. Geog. 1997, 87, 135–151. [Google Scholar] [CrossRef]
- Alexander, J.S.; Wilson, R.C.; Green, W.R. A Brief History and Summary of the Effects of River Engineering and Dams on the Mississippi River System and Delta; Circular 1375; U.S. Geological Survey: Reston, VA, USA; U.S. Department of the Interior: Washington, DC, USA, 2012. Available online: https://pubs.usgs.gov/circ/1375/ (accessed on 6 November 2022).
- Almukhtar, S.; Migliozzi, B.; Schwartz, J.; Williams, J. The Great Flood of 2019: A Complete Picture of a Slow-Motion Disaster; The New York Times: New York, NY, USA, 2019; Available online: https://www.nytimes.com/interactive/2019/09/11/us/midwest-flooding.html (accessed on 6 November 2022).
- Renfro, A. 5 Reasons Why 2019’s Mississippi River Flood Is the Most Unprecedented of Our Time; Delta Dispatches, Restore the Mississippi River Delta: New Orleans, LA, USA, 2019; Available online: https://mississippiriverdelta.org/5-reasons-why-2019s-mississippi-river-flood-is-the-most-unprecedented-of-our-time/ (accessed on 6 November 2022).
- Munoz, S.E.; Giosan, L.; Therrell, M.D.; Remo, J.W.F.; Shen, Z.; Sullivan, R.M.; Wiman, C.; O’Donnell, M.; Donnelly, J.P. Climatic control of Mississippi River flood hazard amplified by river engineering. Nature 2018, 556, 95–98. [Google Scholar] [CrossRef]
- NRC. Mississippi River Water Quality and the Clean Water Act: Progress, Challenges, and Opportunities; Committee on the Mississippi River and the Clean Water Act, National Research Council (NRC): Washington, DC, USA, 2008; p. 252. Available online: www.nap.edu/catalog/12051/mississippi-river-water-quality-and-the-clean-water-act-progress (accessed on 6 November 2022).
- Sprague, L.A.; Hirsch, R.M.; Aulenbach, B.T. Nitrate in the Mississippi River and Its Tributaries, 1980 to 2008: Are We Making Progress? Environ. Sci. Technol. 2011, 45, 7209–7216. [Google Scholar] [CrossRef]
- Jones, C.S.; Nielsen, J.K.; Schilling, K.E.; Weber, L.J. Iowa stream nitrate and the Gulf of Mexico. PLoS ONE 2018, 13, e0195930. [Google Scholar] [CrossRef] [PubMed]
- Schilling, K.E.; Streeter, M.T.; Seeman, A.; Jones, C.S.; Wolter, C.F. Total phosphorus export from Iowa agricultural watersheds: Quantifying the scope and scale of a regional condition. J. Hydrol. 2020, 581, 124397. [Google Scholar] [CrossRef]
- David, M.B.; Drinkwater, L.E.; McIsaac, G.F. Sources of nitrate yields in the Mississippi River Basin. J. Environ. Qual. 2010, 39, 1657–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, H.; Xu, R.; Pan, S.; Yao, Y.; Bian, Z.; Cai, W.-J.; Hopkinson, C.S.; Justic, D.; Lohrenz, S.; Lu, C.; et al. Long-term trajectory of nitrogen loading and delivery from Mississippi River Basin to the Gulf of Mexico. Glob. Biogeo. Cyc. 2020, 34, e2019GB006475. [Google Scholar] [CrossRef]
- Donner, S.; Scavia, D. How climate controls the flux of nitrogen by the Mississippi River and the development of hypoxia in the Gulf of Mexico. Limnol. Ocean. 2007, 52, 856–861. [Google Scholar] [CrossRef] [Green Version]
- Rabotyagov, S.S.; Campbell, T.D.; White, M.; Arnold, J.G.; Atwood, J.; Norfleet, M.L.; Kling, C.L.; Gassman, P.W.; Valcu, A.; Richardson, J.; et al. Cost-effective targeting of conservation investments to reduce the northern Gulf of Mexico hypoxic zone. Proc. Natl. Acad. Sci. USA 2014, 111, 18530–18535. [Google Scholar] [CrossRef] [Green Version]
- Rabalais, N.N.; Turner, R.E.; Sen Gupta, B.K.; Boesch, D.F.; Chapman, P.; Murrell, M.C. Hypoxia in the northern Gulf of Mexico: Does the science support the plan to reduce, mitigate, and control hypoxia? Estuar. Coast. 2007, 30, 753–772. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Williams, J.R.; Arnold, J.G.; Kiniry, J.R.; Gassman, P.W.; Green, C.H. History of Model Development at Temple, Texas. Hydrol. Sci. J. 2008, 53, 948–960. [Google Scholar] [CrossRef] [Green Version]
- Bieger, K.; Arnold, J.G.; Rathjens, H.; White, M.J.; Bosch, D.D.; Allen, P.M.; Volk, M.; Srinivasan, R. Introduction to SWAT+, A Completely Restructured Version of the Soil and Water Assessment Tool. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 115–130. [Google Scholar] [CrossRef]
- Gassman, P.W.; Yingkuan, W. IJABE SWAT Special Issue: Innovative Modeling Solutions for Water Resource Problems. Int. J. Agric. Biol. Eng. 2015, 8, 1–8. [Google Scholar] [CrossRef]
- CARD SWAT Literature Database for Peer-Reviewed Journal Articles. Available online: https://www.card.iastate.edu/swat_articles/ (accessed on 22 November 2022).
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gassman, P.W.; Jeong, J.; Boulange, J.; Narasimhan, B.; Kato, T.; Somura, H.; Watanabe, H.; Eguchi, S.; Cui, Y.; Sakaguchi, A.; et al. Simulation of Rice Paddy Systems in SWAT: A Review of Previous Applications and Proposed SWAT+ Rice Paddy Module. Int. J. Agric. Biol. Eng. 2022, 15, 1–24. [Google Scholar] [CrossRef]
- Bressiani, D.d.A.; Gassman, P.W.; Fernandes, J.G.; Garbossa, L.H.P.; Srinivasan, R.; Bonumá, N.B.; Mendiondo, E.M. Review of Soil and Water Assessment Tool (SWAT) Applications in Brazil: Challenges and Prospects. Int. J. Agric. Biol. Eng. 2015, 8, 9–35. [Google Scholar] [CrossRef]
- Krysanova, V.; White, M. Advances in Water Resources Assessment with SWAT—An Overview. Hydrol. Sci. J. 2015, 60, 771–783. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Gassman, P.W.; Srinivasan, R.; Arnold, J.G.; Yang, X. A Review of SWAT Studies in Southeast Asia: Applications, Challenges and Future Directions. Water 2019, 11, 914. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Gassman, P.W.; Liang, J.; Haywood, J.M. A Review of Alternative Climate Products for SWAT Modelling: Sources, Assessment and Future Directions. Sci. Total Environ. 2021, 795, 148915. [Google Scholar] [CrossRef]
- Brighenti, T.M.; Bonumá, N.B.; Srinivasan, R.; Chaffe, P.L.B. Simulating Sub-Daily Hydrological Process with SWAT: A Review. Hydrol. Sci. J. 2019, 64, 1415–1423. [Google Scholar] [CrossRef]
- Wang, R.; Yuan, Y.; Yen, H.; Grieneisen, M.; Arnold, J.; Wang, D.; Wang, C.; Zhang, M. A Review of Pesticide Fate and Transport Simulation at Watershed Level Using SWAT: Current Status and Research Concerns. Sci. Total Environ. 2019, 669, 512–526. [Google Scholar] [CrossRef]
- Akoko, G.; Le, T.H.; Gomi, T.; Kato, T. A Review of SWAT Model Application in Africa. Water 2021, 13, 1313. [Google Scholar] [CrossRef]
- Rosenberg, N.J.; Epstein, D.J.; Wang, D.; Vail, L.; Srinivasan, R.; Arnold, J.G. Possible Impacts of Global Warming on the Hydrology of the Ogallala Aquifer Region. Clim. Chang. 1999, 42, 677–692. [Google Scholar] [CrossRef]
- Mehta, V.M.; Mendoza, K.; Daggupati, P.; Srinivasan, R.; Rosenberg, N.J.; Deb, D. High-Resolution Simulations of Decadal Climate Variability Impacts on Water Yield in the Missouri River Basin with the Soil and Water Assessment Tool (SWAT). J. Hydrometeorol. 2016, 17, 2455–2476. [Google Scholar] [CrossRef]
- Mehta, V.M.; Rosenberg, N.J.; Mendoza, K. Simulated Impacts of Three Decadal Climate Variability Phenomena on Water Yields in the Missouri River Basin1: Simulated Impacts of Three Decadal Climate Variability Phenomena on Water Yields in the Missouri River Basin. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 126–135. [Google Scholar] [CrossRef]
- Daggupati, P.; Deb, D.; Srinivasan, R.; Yeganantham, D.; Mehta, V.M.; Rosenberg, N.J. Large-Scale Fine-Resolution Hydrological Modeling Using Parameter Regionalization in the Missouri River Basin. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 648–666. [Google Scholar] [CrossRef]
- Chen, P.; Yuan, Y.; Li, W.; LeDuc, S.D.; Lark, T.J.; Zhang, X.; Clark, C. Assessing the Impacts of Recent Crop Expansion on Water Quality in the Missouri River Basin Using the Soil and Water Assessment Tool. J. Adv. Model. Earth Syst. 2021, 13, 002284. [Google Scholar] [CrossRef]
- Santhi, C.; Kannan, N.; Arnold, J.G.; Di Luzio, M. Spatial Calibration and Temporal Validation of Flow for Regional Scale Hydrologic Modeling 1. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 829–846. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Gassman, P.W.; Arritt, R.W.; Herzmann, D.E.; Campbell, T.D.; Valcu, A.; Arnold, J.G. Impacts of Climate Change on Hydrology, Water Quality and Crop Productivity in the Ohio-Tennessee River Basin. Int. J. Agric. Biol. Eng. 2015, 8, 36–53. [Google Scholar] [CrossRef]
- Demissie, Y.; Yan, E.; Wu, M. Hydrologic and Water Quality Impacts of Biofuel Feedstock Production in the Ohio River Basin. GCB Bioenergy 2017, 9, 1736–1750. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Rajib, A.; Merwade, V. Large Scale Spatially Explicit Modeling of Blue and Green Water Dynamics in a Temperate Mid-Latitude Basin. J. Hydrol. 2018, 562, 84–102. [Google Scholar] [CrossRef]
- Rajib, A.; Liu, Z.; Merwade, V.; Tavakoly, A.A.; Follum, M.L. Towards a Large-Scale Locally Relevant Flood Inundation Modeling Framework Using SWAT and LISFLOOD-FP. J. Hydrol. 2020, 581, 124406. [Google Scholar] [CrossRef]
- Kling, C.L.; Panagopoulos, Y.; Rabotyagov, S.S.; Valcu, A.M.; Gassman, P.W.; Campbell, T.; White, M.J.; Arnold, J.G.; Srinivasan, R.; Jha, M.K.; et al. LUMINATE: Linking Agricultural Land Use, Local Water Quality and Gulf of Mexico Hypoxia. Eur. Rev. Agric. Econ. 2014, 41, 431–459. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Gassman, P.W.; Jha, M.K.; Kling, C.L.; Campbell, T.; Srinivasan, R.; White, M.; Arnold, J.G. A Refined Regional Modeling Approach for the Corn Belt—Experiences and Recommendations for Large-Scale Integrated Modeling. J. Hydrol. 2015, 524, 348–366. [Google Scholar] [CrossRef] [Green Version]
- Panagopoulos, Y.; Gassman, P.W.; Kling, C.L.; Cibin, R.; Chaubey, I. Water Quality Assessment of Large-Scale Bioenergy Cropping Scenarios for the Upper Mississippi and Ohio-Tennessee River Basins. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 1355–1367. [Google Scholar] [CrossRef]
- Baskaran, L.; Jager, H.I.; Schweizer, P.E.; Srinivasan, R. Progress toward Evaluating the Sustainability of Switchgrass as a Bioenergy Crop Using the SWAT Model. Trans. ASABE 2010, 53, 1547–1556. [Google Scholar] [CrossRef] [Green Version]
- Jager, H.I.; Baskaran, L.M.; Schweizer, P.E.; Turhollow, A.F.; Brandt, C.C.; Srinivasan, R. Forecasting Changes in Water Quality in Rivers Associated with Growing Biofuels in the Arkansas-White-Red River Drainage, USA. GCB Bioenergy 2015, 7, 774–784. [Google Scholar] [CrossRef]
- Ha, M.; Zhang, Z.; Wu, M. Biomass Production in the Lower Mississippi River Basin: Mitigating Associated Nutrient and Sediment Discharge to the Gulf of Mexico. Sci. Total Environ. 2018, 635, 1585–1599. [Google Scholar] [CrossRef]
- Xu, H.; Wu, M.; Ha, M. Recognizing Economic Value in Multifunctional Buffers in the Lower Mississippi River Basin. Biofuels Bioprod. Biorefining 2019, 13, 55–73. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Gassman, P.W.; Srinivasan, R.; Cui, Y.; Arritt, R. Analysis of Alternative Climate Datasets and Evapotranspiration Methods for the Upper Mississippi River Basin Using SWAT within HAWQS. Sci. Total Environ. 2020, 720, 137562. [Google Scholar] [CrossRef]
- Arnold, J.G.; White, M.J.; Allen, P.M.; Gassman, P.W.; Bieger, K. Conceptual Framework of Connectivity for a National Agroecosystem Model Based on Transport Processes and Management Practices. JAWRA J. Am. Water Resour. Assoc. 2021, 57, 154–169. [Google Scholar] [CrossRef]
- Jones, K.A.; Niknami, L.S.; Buto, S.G.; Decker, D. Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD). In U.S. Geological Survey Techniques and Methods 11-A3; U.S. Geological Survey: Reston, VA, USA, 2022; ISBN 2328-7055. (Online). [Google Scholar]
- U.S. Department of the Interior. U.S. Geological Survey National Hydrography Dataset: NHDPlus High Resolution. Available online: https://www.usgs.gov/national-hydrography/nhdplus-high-resolution (accessed on 2 November 2022).
- U.S. Department of the Interior. U.S. Geological Survey Hydrologic Unit Maps: What Are Hydrologic Units? Available online: https://water.usgs.gov/GIS/huc.html (accessed on 2 November 2022).
- Martins, V.S.; Kaleita, A.L.; Gelder, B.K. Digital Mapping of Structural Conservation Practices in the Midwest U.S. Croplands: Implementation and Preliminary Analysis. Sci. Total Environ. 2021, 772, 145191. [Google Scholar] [CrossRef]
- Valayamkunnath, P.; Barlage, M.; Chen, F.; Gochis, D.J.; Franz, K.J. Mapping of 30-Meter Resolution Tile-Drained Croplands Using a Geospatial Modeling Approach. Sci. Data 2020, 7, 257. [Google Scholar] [CrossRef] [PubMed]
- Cerkasova, N.; Bieger, K.; White, M.; Gao, J.; Arnold, J.; Allen, P.; Kiniry, J. Field Scale, National Scope SWAT+ Modeling of Corn and Soybean Yields for the Contiguous US. In Proceedings of the ASA, CSSA, SSSA International Annual Meeting, Salt Lake City, UT, USA, 7–10 November 2021; Available online: https://scisoc.confex.com/scisoc/2021am/meetingapp.cgi/Paper/135068 (accessed on 13 January 2023).
- Schilling, K.E.; Gassman, P.W.; Arenas-Amado, A.; Jones, C.S.; Arnold, J. Quantifying the Contribution of Tile Drainage to Basin-Scale Water Yield Using Analytical and Numerical Models. Sci. Total Environ. 2019, 657, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Schilling, K.E.; Jones, C.S.; Zhang, Y.-K. Temporal Scaling of Long-Term Co-Occurring Agricultural Contaminants and the Implications for Conservation Planning. Environ. Res. Lett. 2021, 16, 094015. [Google Scholar] [CrossRef]
- Schipper, L.A.; Robertson, W.D.; Gold, A.J.; Jaynes, D.B.; Cameron, S.C. Denitrifying Bioreactors—An Approach for Reducing Nitrate Loads to Receiving Waters. Ecol. Eng. 2010, 36, 1532–1543. [Google Scholar] [CrossRef]
- Jaynes, D.B.; Isenhart, T.M. Performance of Saturated Riparian Buffers in Iowa, USA. J. Environ. Qual. 2019, 48, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Tollan, A. Land-Use Change and Floods: What Do We Need Most, Research or Management? Water Sci. Technol. 2002, 45, 183–190. [Google Scholar] [CrossRef]
- O’Connell, P.E.; Ewen, J.; O’Donnell, G.; Quinn, P. Is There a Link between Agricultural Land-Use Management and Flooding? Hydrol. Earth Syst. Sci. 2007, 11, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Palamuleni, L.G.; Ndomba, P.M.; Annegarn, H.J. Evaluating Land Cover Change and Its Impact on Hydrological Regime in Upper Shire River Catchment, Malawi. Reg. Environ. Chang. 2011, 11, 845–855. [Google Scholar] [CrossRef]
- McIntyre, N.; Marshall, M. Identification of Rural Land Management Signals in Runoff Response. Hydrol. Process. 2010, 24, 3521–3534. [Google Scholar] [CrossRef]
- Hess, T.M.; Holman, I.P.; Rose, S.C.; Rosolova, Z.; Parrott, A. Estimating the Impact of Rural Land Management Changes on Catchment Runoff Generation in England and Wales. Hydrol. Process. 2010, 24, 1357–1368. [Google Scholar] [CrossRef]
- Schilling, K.E.; Libra, R.D. The Relationship of Nitrate Concentrations in Streams to Row Crop Land Use in Iowa. J. Environ. Qual. 2000, 29, 1846–1851. [Google Scholar] [CrossRef]
- Hatfield, J.L.; McMullen, L.D.; Jones, C.S. Nitrate-Nitrogen Patterns in the Raccoon River Basin Related to Agricultural Practices. J. Soil Water Conserv. 2009, 64, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Mielke, L.N. Performance of Water and Sediment Control Basins in Northeastern Nebraska. J. Soil Water Conserv. 1985, 40, 524. [Google Scholar]
- Iowa Department of Agriculture and Land Stewardship; Iowa Department of Natural Resources; Iowa State University College of Agriculture and Life Sciences. Iowa Nutrient Reduction Strategy: A Science and Technology-Based Framework to Assess and Reduce Nutrients to Iowa Waters and the Gulf of Mexico 2017. Available online: https://www.nutrientstrategy.iastate.edu/sites/default/files/documents/2017%20INRS%20Complete_Revised%202017_12_11.pdf (accessed on 20 November 2022).
- Schilling, K.E.; Tomer, M.D.; Zhang, Y.-K.; Weisbrod, T.; Jacobson, P.; Cambardella, C.A. Hydrogeologic Controls on Nitrate Transport in a Small Agricultural Catchment, Iowa. J. Geophys. Res. Biogeosciences 2007, 112, 2007JG000405. [Google Scholar] [CrossRef]
- Miller, B.A.; Crumpton, W.G.; Valk, A.G. Spatial Distribution of Historical Wetland Classes on the Des Moines Lobe, Iowa. Wetlands 2009, 29, 1146–1152. [Google Scholar] [CrossRef]
- Van der Valk, A.G. The Prairie Potholes of North America. In The World’s Largest Wetlands; Fraser, L.H., Keddy, P.A., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 393–423. ISBN 978-0-511-54209-1. [Google Scholar]
- Golden, H.E.; Rajib, A.; Lane, C.R.; Christensen, J.R.; Wu, Q.; Mengistu, S. Non-Floodplain Wetlands Affect Watershed Nutrient Dynamics: A Critical Review. Environ. Sci. Technol. 2019, 53, 7203–7214. [Google Scholar] [CrossRef]
- Javaheri, A.; Babbar-Sebens, M. On Comparison of Peak Flow Reductions, Flood Inundation Maps, and Velocity Maps in Evaluating Effects of Restored Wetlands on Channel Flooding. Ecol. Eng. 2014, 73, 132–145. [Google Scholar] [CrossRef]
- Ameli, A.A.; Creed, I.F. Does Wetland Location Matter When Managing Wetlands for Watershed-Scale Flood and Drought Resilience? JAWRA J. Am. Water Resour. Assoc. 2019, 55, 529–542. [Google Scholar] [CrossRef]
- Kovacic, D.A.; David, M.B.; Gentry, L.E.; Starks, K.M.; Cooke, R.A. Effectiveness of Constructed Wetlands in Reducing Nitrogen and Phosphorus Export from Agricultural Tile Drainage. J. Environ. Qual. 2000, 29, 1262–1274. [Google Scholar] [CrossRef] [Green Version]
- Drake, C.W.; Jones, C.S.; Schilling, K.E.; Amado, A.A.; Weber, L.J. Estimating Nitrate-Nitrogen Retention in a Large Constructed Wetland Using High-Frequency, Continuous Monitoring and Hydrologic Modeling. Ecol. Eng. 2018, 117, 69–83. [Google Scholar] [CrossRef]
- Crumpton, W.G.; Stenback, G.A.; Fisher, S.W.; Stenback, J.Z.; Green, D.I.S. Water Quality Performance of Wetlands Receiving Nonpoint-source Nitrogen Loads: Nitrate and Total Nitrogen Removal Efficiency and Controlling Factors. J. Environ. Qual. 2020, 49, 735–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messer, T.L.; Moore, T.L.; Nelson, N.; Ahiablame, L.; Bean, E.Z.; Boles, C.; Cook, S.L.; Hall, S.G.; McMaine, J.; Schlea, D. Constructed Wetlands for Water Quality Improvement: A Synthesis on Nutrient Reduction from Agricultural Effluents. Trans. ASABE 2021, 64, 625–639. [Google Scholar] [CrossRef]
- Walters, K.M.; Babbar-Sebens, M. Using Climate Change Scenarios to Evaluate Future Effectiveness of Potential Wetlands in Mitigating High Flows in a Midwestern U.S. Watershed. Ecol. Eng. 2016, 89, 80–102. [Google Scholar] [CrossRef] [Green Version]
- Schilling, K.E.; Jacobson, P. Effectiveness of Natural Riparian Buffers to Reduce Subsurface Nutrient Losses to Incised Streams. CATENA 2014, 114, 140–148. [Google Scholar] [CrossRef]
- Schultz, R.C.; Collettil, J.P.; Isenhart, T.M.; Simpkins, W.W.; Mize, C.W.; Thompson, M.L. Design and Placement of a Multi-Species Riparian Buffer Strip System. Agrofor. Syst. 1995, 29, 201–226. [Google Scholar] [CrossRef]
- Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; et al. Water Quality Functions of Riparian Forest Buffers in Chesapeake Bay Watersheds. Environ. Manag. 1997, 21, 687–712. [Google Scholar] [CrossRef]
- Hill, A.R.; Vidon, P.G.F.; Langat, J. Denitrification Potential in Relation to Lithology in Five Headwater Riparian Zones. J. Environ. Qual. 2004, 33, 911. [Google Scholar] [CrossRef]
- Dosskey, M.G. Toward Quantifying Water Pollution Abatement in Response to Installing Buffers on Crop Land. Environ. Manag. 2001, 28, 577–598. [Google Scholar] [CrossRef]
- Lowrance, R. Groundwater Nitrate and Denitrification in a Coastal Plain Riparian Forest. J. Environ. Qual. 1992, 21, 401–405. [Google Scholar] [CrossRef]
- Clément, J.-C.; Aquilina, L.; Bour, O.; Plaine, K.; Burt, T.P.; Pinay, G. Hydrological Flowpaths and Nitrate Removal Rates within a Riparian Floodplain along a Fourth-Order Stream in Brittany (France): Hydrological Flowpaths and Nitrate Removal Rates. Hydrol. Process. 2003, 17, 1177–1195. [Google Scholar] [CrossRef]
- Anderson, B.G.; Rutherfurd, I.D.; Western, A.W. An Analysis of the Influence of Riparian Vegetation on the Propagation of Flood Waves. Environ. Model. Softw. 2006, 21, 1290–1296. [Google Scholar] [CrossRef]
- Gergel, S.E.; Dixon, M.D.; Turner, M.G. Consequences of Human-Altered Floods: Levees, Floods, and Floodplain Forests along the Wisconsin River. Ecol. Appl. 2002, 12, 1755–1770. [Google Scholar] [CrossRef]
- Pinter, N.; Huthoff, F.; Dierauer, J.; Remo, J.W.F.; Damptz, A. Modeling Residual Flood Risk behind Levees, Upper Mississippi River, USA. Environ. Sci. Policy 2016, 58, 131–140. [Google Scholar] [CrossRef]
- Theiling, C.H.; Burant, J.T. Flood Inundation Mapping for Integrated Floodplain Management: Upper Mississippi River System: Umr Flood Inundation. River Res. Appl. 2013, 29, 961–978. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers National Levee Database. Available online: https://levees.sec.usace.army.mil/#/ (accessed on 6 November 2022).
- Pinter, N. One Step Forward, Two Steps Back on U.S. Floodplains. Science 2005, 308, 207–208. [Google Scholar] [CrossRef] [Green Version]
- Schilling, K.E.; Jacobson, P.J.; Vogelgesang, J.A. Agricultural Conversion of Floodplain Ecosystems: Implications for Groundwater Quality. J. Environ. Manag. 2015, 153, 74–83. [Google Scholar] [CrossRef]
- Acreman, M.C.; Riddington, R.; Booker, D.J. Hydrological Impacts of Floodplain Restoration: A Case Study of the River Cherwell, UK. Hydrol. Earth Syst. Sci. 2003, 7, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Ahilan, S.; Guan, M.; Sleigh, A.; Wright, N.; Chang, H. The Influence of Floodplain Restoration on Flow and Sediment Dynamics in an Urban River. J. Flood Risk Manag. 2018, 11, S986–S1001. [Google Scholar] [CrossRef]
- Clilverd, H.M.; Thompson, J.R.; Heppell, C.M.; Sayer, C.D.; Axmacher, J.C. Coupled Hydrological/Hydraulic Modelling of River Restoration Impacts and Floodplain Hydrodynamics: Modelling of River Restoration Impacts. River Res. Appl. 2016, 32, 1927–1948. [Google Scholar] [CrossRef]
- Forshay, K.J.; Stanley, E.H. Rapid Nitrate Loss and Denitrification in a Temperate River Floodplain. Biogeochemistry 2005, 75, 43–64. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Day, J.W. Restoration of Wetlands in the Mississippi–Ohio–Missouri (MOM) River Basin: Experience and Needed Research. Ecol. Eng. 2006, 26, 55–69. [Google Scholar] [CrossRef]
- Newcomer Johnson, T.; Kaushal, S.; Mayer, P.; Smith, R.; Sivirichi, G. Nutrient Retention in Restored Streams and Rivers: A Global Review and Synthesis. Water 2016, 8, 116. [Google Scholar] [CrossRef] [Green Version]
- Weber, L.J.; Muste, M.; Bradley, A.A.; Amado, A.A.; Demir, I.; Drake, C.W.; Krajewski, W.F.; Loeser, T.J.; Politano, M.S.; Shea, B.R.; et al. The Iowa Watersheds Project: Iowa’s Prototype for Engaging Communities and Professionals in Watershed Hazard Mitigation. Int. J. River Basin Manag. 2018, 16, 315–328. [Google Scholar] [CrossRef]
- Prokopy, L.S.; Floress, K.; Arbuckle, J.G.; Church, S.P.; Eanes, F.R.; Gao, Y.; Gramig, B.M.; Ranjan, P.; Singh, A.S. Adoption of agricultural conservation practices in the United States: Evidence from 35 years of quantitative literature. J. Soil Water Conserv. 2019, 74, 520–534. [Google Scholar] [CrossRef] [Green Version]
- Keeler, B.L.; Dalzell, B.J.; Gourevitch, J.D.; Hawthorne, P.L.; Johnson, K.A.; Noe, R.R. Putting people on the map improves the prioritization of ecosystem services. Front. Ecol. Environ. 2019, 17, 51–156. [Google Scholar] [CrossRef]
- Knight, B.I. Precision conservation. J. Soil Water Conserv. 2005, 60, 137A. [Google Scholar]
- McLellan, E.; Robertson, D.; Schilling, K.; Tomer, M.; Kostel, J.; Smith, D.; King, K. Reducing Nitrogen Export from the Corn Belt to the Gulf of Mexico: Agricultural Strategies for Remediating Hypoxia. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 263–289. [Google Scholar] [CrossRef]
HUC4 | Name | Flood Risk | NO3-N Risk | Total Combined Risk | Row Crop Change on Slopes * | WASCOBs * | Depress. Wetlands * | N Treat. Wetlands * | Rip. Buff. * | FP Levee Areas * | FP Row Crop Change * | Total Combined Score (Risk + NI) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0512 | Wabash | 5 | 5 | 10 | 5 | 5 | 5 | 5 | 5 | 3 | 5 | 43 |
0708 | Upper Mississippi-Iowa-Skunk-Wapsipinicon | 5 | 5 | 10 | 5 | 5 | 5 | 5 | 4 | 3 | 5 | 42 |
0713 | Lower Illinois | 5 | 5 | 10 | 4 | 4 | 5 | 5 | 3 | 3 | 5 | 39 |
0714 | Upper Mississippi-Kaskaskia-Meramec | 5 | 5 | 10 | 4 | 4 | 4 | 5 | 4 | 3 | 5 | 39 |
0702 | Minnesota | 4 | 5 | 9 | 4 | 4 | 5 | 5 | 5 | 2 | 3 | 37 |
0802 | Lower Mississippi-St. Francis | 5 | 3 | 8 | 3 | 3 | 5 | 5 | 5 | 3 | 5 | 37 |
0709 | Rock | 3 | 5 | 8 | 5 | 5 | 4 | 5 | 3 | 3 | 4 | 37 |
1017 | Missouri-Big Sioux | 2 | 5 | 7 | 5 | 5 | 5 | 5 | 4 | 2 | 4 | 37 |
0710 | Des Moines | 3 | 5 | 8 | 5 | 5 | 5 | 5 | 2 | 2 | 4 | 36 |
0514 | Lower Ohio | 5 | 5 | 10 | 4 | 4 | 3 | 4 | 3 | 3 | 5 | 36 |
1023 | Missouri-Little Sioux | 2 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | 5 | 36 |
1027 | Kansas | 3 | 4 | 7 | 5 | 5 | 4 | 4 | 3 | 3 | 5 | 36 |
HUC12 | Name | Flood Risk | NO3-N Risk | Total Combined Risk | Row Crop Change on Slopes * | WASCOBs * | Depress. Wetlands * | N Treat. Wetlands * | Rip. Buff. * | Levee Areas * | FP Row Crop Change * | Total Combined Score (Risk + NI) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
070801010705 | Boston Bay | 5 | 3 | 8 | 3 | 3 | 5 | 5 | 5 | 5 | 5 | 39 |
070801041501 | Cartlage Lake | 5 | 2 | 7 | 3 | 3 | 5 | 5 | 5 | 5 | 5 | 38 |
070801040402 | Mud Creek | 3 | 3 | 6 | 5 | 5 | 4 | 3 | 5 | 5 | 4 | 37 |
070801030405 | Mockridge | 5 | 5 | 10 | 5 | 5 | 4 | 5 | 3 | 5 | 0 | 37 |
070801041101 | Cottonwood Drain | 4 | 4 | 8 | 2 | 2 | 5 | 5 | 5 | 5 | 5 | 37 |
070801041704 | Spillman Creek- | 3 | 4 | 7 | 3 | 3 | 5 | 4 | 5 | 5 | 5 | 37 |
070801010102 | Johnson Creek | 2 | 4 | 6 | 5 | 5 | 4 | 2 | 5 | 5 | 4 | 36 |
070801030406 | Yankee Run | 5 | 3 | 8 | 5 | 5 | 4 | 5 | 4 | 5 | 0 | 36 |
070801051106 | Van Zante Creek- | 5 | 2 | 7 | 5 | 5 | 4 | 5 | 5 | 5 | 0 | 36 |
070802060704 | East Branch Wapsinonoc | 2 | 5 | 7 | 5 | 5 | 5 | 5 | 4 | 5 | 0 | 36 |
070802091104 | Sunfish Lake | 5 | 1 | 6 | 3 | 3 | 5 | 3 | 5 | 5 | 5 | 35 |
070802020101 | Bancroft Creek | 4 | 4 | 8 | 4 | 4 | 5 | 5 | 5 | 4 | 0 | 35 |
070802080703 | Plague Mine Creek | 5 | 1 | 6 | 5 | 5 | 5 | 2 | 5 | 4 | 3 | 35 |
070802020106 | Goose Creek | 4 | 4 | 8 | 4 | 4 | 5 | 5 | 5 | 4 | 0 | 35 |
070801040601 | Iowa Slough | 3 | 4 | 7 | 2 | 2 | 5 | 5 | 4 | 5 | 5 | 35 |
070801060404 | Pleasant Creek | 4 | 4 | 8 | 5 | 5 | 4 | 3 | 5 | 5 | 0 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schilling, K.E.; Mount, J.; Suttles, K.M.; McLellan, E.L.; Gassman, P.W.; White, M.J.; Arnold, J.G. An Approach for Prioritizing Natural Infrastructure Practices to Mitigate Flood and Nitrate Risks in the Mississippi-Atchafalaya River Basin. Land 2023, 12, 276. https://doi.org/10.3390/land12020276
Schilling KE, Mount J, Suttles KM, McLellan EL, Gassman PW, White MJ, Arnold JG. An Approach for Prioritizing Natural Infrastructure Practices to Mitigate Flood and Nitrate Risks in the Mississippi-Atchafalaya River Basin. Land. 2023; 12(2):276. https://doi.org/10.3390/land12020276
Chicago/Turabian StyleSchilling, Keith E., Jerry Mount, Kelly M. Suttles, Eileen L. McLellan, Phillip W. Gassman, Michael J. White, and Jeffrey G. Arnold. 2023. "An Approach for Prioritizing Natural Infrastructure Practices to Mitigate Flood and Nitrate Risks in the Mississippi-Atchafalaya River Basin" Land 12, no. 2: 276. https://doi.org/10.3390/land12020276