Optimization of Microclimate Conditions Considering Urban Morphology and Trees Using ENVI-Met: A Case Study of Cairo City
Abstract
:1. Introduction
1.1. Heat Stress and UHI Appearance and Causes
1.2. Urban Morphology Relating to Urban Shading and PET Parameters
1.2.1. Aspect Ratio Effect
1.2.2. Street Orientation Effect
1.2.3. Combined Effect of Aspect Ratio and Street Orientation
1.2.4. Urban Trees
1.3. Cairo City: The Case Study
1.3.1. Cairo City’s Climate
1.3.2. City Urban Morphology
1.4. Research Gap and Target
2. Materials and Methods
2.1. Stage (1): Theoretical Model
2.1.1. Stage (1): Step (a) Theoretical Model (Base Case)
2.1.2. Stage (1): Step (b) Tree Scenarios
2.1.3. Result Measurement
2.2. Stage (2): Existing Case Study
2.2.1. Study Area Location and Urban Characteristics
2.2.2. Study Area Tree Scenarios
2.3. Data Input, Model Setup, and Measuring Points
2.3.1. Model Setup and Geometry
2.3.2. Simulation Configuration
2.4. Validation of the Results
3. Results
3.1. Theoretical Model Results
3.1.1. Stage One: Results for the 0% Tree Scenario
3.1.2. Stage Two: Results of the Tree Scenarios
3.1.3. Conclusion of the Trees’ Performance in the Theoretical Model
3.2. Case Study Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
UHI | Urban Heat Island |
PET | Physiological Equivalent Temperature |
TMRT | Total Mean Radiant Temperature |
WS | Wind Speed |
RH% | Relative Humidity |
AR | Aspect Ratio |
RMSE | Root Mean Square Error |
d | Index of Agreement |
References
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef]
- Theeuwes, N.E.; Steeneveld, G.J.; Ronda, R.J.; Heusinkveld, B.G.; van Hove, L.W.A.; Holtslag, A.A.M. Seasonal dependence of the urban heat island on the street canyon aspect ratio. Q. J. R. Meteorol. Soc. 2014, 140, 2197–2210. [Google Scholar] [CrossRef]
- Dimoudi, A.; Kantzioura, A.; Zoras, S.; Pallas, C.; Kosmopoulos, P. Investigation of urban microclimate parameters in an urban center. Energy Build. 2013, 64, 1–9. [Google Scholar] [CrossRef]
- Taheri Shahraiyni, H.; Sodoudi, S.; El-Zafarany, A.; Abou El Seoud, T.; Ashraf, H.; Krone, K. A Comprehensive Statistical Study on Daytime Surface Urban Heat Island during Summer in Urban Areas, Case Study: Cairo and Its New Towns. Remote Sens. 2016, 8, 643. [Google Scholar] [CrossRef]
- Abutaleb, K.; Ngie, A.; Darwish, A.; Ahmed, M.; Arafat, S.; Ahmed, F. Assessment of urban heat island using remotely sensed imagery over Greater Cairo, Egypt. Adv. Remote Sens. 2015, 04, 35–47. [Google Scholar] [CrossRef]
- Shishegar, N. Street Design and Urban Microclimate: Analyzing the Effects of Street Geometry and Orientation on Airflow and Solar Access in Urban Canyons. J. Clean Energy Technol. 2013, 1, 52–56. [Google Scholar] [CrossRef]
- Kotharkar, R.; Bagade, A.; Ramesh, A. Assessing urban drivers of canopy layer urban heat island: A numerical modeling approach. Landsc. Urban Plan. 2019, 190, 103586. [Google Scholar] [CrossRef]
- Rodríguez-Algeciras, J.; Tablada, A.; Chaos-Yeras, M.; De la Paz, G.; Matzarakis, A. Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camagüey-Cuba. Renew. Energy 2018, 125, 840–856. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Kong, L.; Lau, K.K.-L.; Yuan, C.; Ng, E. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build. Environ. 2017, 115, 1–17. [Google Scholar] [CrossRef]
- Ketterer, C.; Matzarakis, A. Human-biometeorological assessment of heat stress reduction by replanning measures in Stuttgart, Germany. Landsc. Urban Plan. 2014, 122, 78–88. [Google Scholar] [CrossRef]
- Qaid, A.; Ossen, D.R. Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. Int. J. Biometeorol. 2015, 59, 657–677. [Google Scholar] [CrossRef]
- Yola, L.; Siong, H.C.; Djaja, K. Climatically responsive urban configuration in residential area: Research gaps. In The 4th International Tropical Renewable Energy Conference (i-TREC 2019); AIP Publishing LLC: Bali, Indonesia, 2020. [Google Scholar]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Andreou, E. Thermal comfort in outdoor spaces and urban canyon microclimate. Renew. Energy 2013, 55, 182–188. [Google Scholar] [CrossRef]
- Matzarakis, A.; Amelung, B. Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In Seasonal Forecasts, Climatic Change and Human Health: Health and Climate; Springer: Dordrecht, The Netherlands, 2008; pp. 161–172. [Google Scholar]
- Morakinyo, T.E.; Lam, Y.F. Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s micro-climate and thermal comfort. Build. Environ. 2016, 103, 262–275. [Google Scholar] [CrossRef]
- Abdollahzadeh, N.; Biloria, N. Outdoor thermal comfort: Analyzing the impact of urban configurations on the thermal performance of street canyons in the humid subtropical climate of Sydney. Front. Archit. Res. 2021, 10, 394–409. [Google Scholar] [CrossRef]
- De, B.; Mukherjee, M. Optimisation of canyon orientation and aspect ratio in warm-humid climate: Case of Rajarhat Newtown, India. Urban Clim. 2018, 24, 887–920. [Google Scholar] [CrossRef]
- Memon, R.A.; Leung, D.Y.C.; Liu, C.-H. Effects of building aspect ratio and wind speed on air temperatures in urban-like street canyons. Build. Environ. 2010, 45, 176–188. [Google Scholar] [CrossRef]
- Jamei, E.; Ossen, D.R.; Seyedmahmoudian, M.; Sandanayake, M.; Stojcevski, A.; Horan, B. Urban design parameters for heat mitigation in tropics. Renew. Sustain. Energy Rev. 2020, 134, 110362. [Google Scholar] [CrossRef]
- Kolokotsa, D.; Lilli, K.; Gobakis, K.; Mavrigiannaki, A.; Haddad, S.; Garshasbi, S.; Mohajer, H.R.H.; Paolini, R.; Vasilakopoulou, K.; Bartesaghi, C.; et al. Analyzing the Impact of Urban Planning and Building Typologies in Urban Heat Island Mitigation. Buildings 2022, 12, 537. [Google Scholar] [CrossRef]
- Balany, F.; Ng, A.W.; Muttil, N.; Muthukumaran, S.; Wong, M.S. Green Infrastructure as an Urban Heat Island Mitigation Strategy—A Review. Water 2020, 12, 3577. [Google Scholar] [CrossRef]
- Takebayashi, H.; Moriyama, M. Relationships between the properties of an urban street canyon and its radiant environment: Introduction of appropriate urban heat island mitigation technologies. Sol. Energy 2012, 86, 2255–2262. [Google Scholar] [CrossRef]
- Lan, H.; Lau, K.K.-L.; Shi, Y.; Ren, C. Improved urban heat island mitigation using bioclimatic redevelopment along an urban waterfront at Victoria Dockside, Hong Kong. Sustain. Cities Soc. 2021, 74, 103172. [Google Scholar] [CrossRef]
- Hamdi, R.; Schayes, G. Sensitivity study of the urban heat island intensity to urban characteristics. Int. J. Climatol. A J. R. Meteorol. Soc. 2008, 28, 973–982. [Google Scholar] [CrossRef]
- De Lieto Vollaro, A.; De Simone, G.; Romagnoli, R.; Vallati, A.; Botillo, S. Numerical Study of Urban Canyon Microclimate Related to Geometrical Parameters. Sustainability 2014, 6, 7894–7905. [Google Scholar] [CrossRef]
- Pioppi, B.; Pigliautile, I.; Pisello, A.L. Human-centric microclimate analysis of Urban Heat Island: Wearable sensing and data-driven techniques for identifying mitigation strategies in New York City. Urban Clim. 2020, 34, 100716. [Google Scholar] [CrossRef]
- Andreou, E.; Axarli, K. Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis. Renew. Energy 2012, 43, 354–363. [Google Scholar] [CrossRef]
- Aboelata, A. Vegetation in different street orientations of aspect ratio (H/W 1: 1) to mitigate UHI and reduce buildings’ energy in arid climate. Build. Environ. 2020, 172, 106712. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Acero, J.A.; Sanchez Martinez, G.; Padro, A.; Laburu, T.; Fernandez, G. Effects of Orientations, Aspect Ratios, Pavement Materials and Vegetation Elements on Thermal Stress inside Typical Urban Canyons. Int. J. Environ. Res. Public Health 2019, 16, 3574. [Google Scholar] [CrossRef]
- Vuckovic, M.; Kiesel, K.; Mahdavi, A. Trees and the microclimate of the urban canyon: A case study. In Proceedings of the 2nd ICAUD International Conference in Architecture and Urban Design, Tirana, Albania, 8–10 May 2014. [Google Scholar]
- Mohamed, E. Analysis of urban growth at Cairo, Egypt using remote sensing and GIS. Nat. Sci. 2012, 4, 355–361. [Google Scholar]
- Hassan, A.A.M. Dynamic expansion and urbanization of greater Cairo metropolis, Egypt. In Proceedings of the 6th International Conference on Urban Planning—Essen and Regional Development in the Information Society, Essen, Germany, 18–20 May 2011. [Google Scholar]
- Zied, E.; Vialard, A. Syntactic Stitching: Towards a Better Integration of Cairo’s Urban Fabric. In Proceedings of the 11th International Space Syntax Symposium, Instituto Superior Técnico—Universidade de Lisboa, Lisbon, Portugal, 3–7 July 2017. [Google Scholar]
- Elbardisy, W.M.; Salheen, M.A.; Fahmy, M. Solar Irradiance Reduction Using Optimized Green Infrastructure in Arid Hot Regions: A Case Study in El-Nozha District, Cairo, Egypt. Sustainability 2021, 13, 9617. [Google Scholar] [CrossRef]
- Osman, R.; Ferrari, E.; McDonald, S. Water scarcity and irrigation efficiency in Egypt. Water Econ. Policy 2016, 2, 1650009. [Google Scholar] [CrossRef]
- Envi-Board. Envi-Met Support Center. Envi-Met. Available online: http://www.envi-hq.com/ (accessed on 30 April 2023).
- Middel, A.; Chhetri, N.; Quay, R. Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban For. Urban Green. 2015, 14, 178–186. [Google Scholar] [CrossRef]
- Shahidan, M.F.; Shariff, M.K.M.; Jones, P.; Salleh, E.; Abdullah, A.M. A comparison of Mesua ferrea L. and Hura crepitans L. for shade creation and radiation modification in improving thermal comfort. Landsc. Urban Plan. 2010, 97, 168–181. [Google Scholar] [CrossRef]
- Weather and Climate. Available online: https://weather-and-climate.com/Cairo-July-averages (accessed on 10 October 2022).
- Time and Date. Available online: https://www.timeanddate.com/weather/egypt/cairo/historic?month=7&year=2022 (accessed on 10 October 2022).
- Karimimoshaver, M.; Khalvandi, R.; Khalvandi, M. The effect of urban morphology on heat accumulation in urban street canyons and mitigation approach. Sustain. Cities Soc. 2021, 73, 103127. [Google Scholar] [CrossRef]
Urban Canyon | Canyon Side (a or b) | Aspect Ratio | Orientation 1 | Orientation 2 | Tree Scenario 1 | Tree Scenario 2 | Tree Scenario 3 | Total Number of Cases |
---|---|---|---|---|---|---|---|---|
R1 | R1a | 3 to 1 | North–South | NE–SW | 0% | 20% | 50% | 6 |
R1b | 3 to 1 | North–South | NE–SW | 0% | 20% | 50% | 6 | |
R2 | R2a | 3 to 1 | East–West | NW–SE | 0% | 20% | 50% | 6 |
R2b | 3 to 1 | East–West | NW–SE | 0% | 20% | 50% | 6 | |
R3 | R3a | 1 to 2 | North–South | NE–SW | 0% | 20% | 50% | 6 |
R3b | 1 to 2 | North–South | NE–SW | 0% | 20% | 50% | 6 | |
R4 | R4a | 1 to 2 | East–West | NW–SE | 0% | 20% | 50% | 6 |
R4b | 1 to 2 | East–West | NW–SE | 0% | 20% | 50% | 6 | |
R5 | R5a | 1.5 to 1 | North–South | NE–SW | 0% | 20% | 50% | 6 |
R5b | 1.5 to 1 | North–South | NE–SW | 0% | 20% | 50% | 6 | |
R6 | R6a | 1.5 to 1 | East–West | NW–SE | 0% | 20% | 50% | 6 |
R6b | 1.5 to 1 | East–West | NW–SE | 0% | 20% | 50% | 6 | |
R7 | R7a | 1 to 1 | North–South | NE–SW | 0% | 20% | 50% | 6 |
R7b | 1 to 1 | North–South | NE–SW | 0% | 20% | 50% | 6 | |
R8 | R8a | 1 to 1 | East–West | NW–SE | 0% | 20% | 50% | 6 |
R8b | 1 to 1 | East–West | NW–SE | 0% | 20% | 50% | 6 | |
R9 | R9a | 0.5 to 1 | North–South | NE–SW | 0% | 20% | 50% | 6 |
R9b | 0.5 to 1 | North–South | NE–SW | 0% | 20% | 50% | 6 | |
R10 | R10a | 0.5 to 1 | East–West | NW–SE | 0% | 20% | 50% | 6 |
R10b | 0.5 to 1 | East–West | NW–SE | 0% | 20% | 50% | 6 | |
R11 | R11a | 0.25 to 1 | North–South | NE–SW | 0% | 20% | 50% | 6 |
R11b | 0.25 to 1 | North–South | NE–SW | 0% | 20% | 50% | 6 | |
R12 | R12a | 0.25 to 1 | East–West | NW–SE | 0% | 20% | 50% | 6 |
R12b | 0.25 to 1 | East–West | NW–SE | 0% | 20% | 50% | 6 | |
Total number of cases | 144 |
Abbreviation in Figure 7D | Street Name | Avg. Width (m) | Avg. Height (m) | Aspect Ratio (H/W) | Orientation | No. of Cases |
---|---|---|---|---|---|---|
S1 | Rameses St. | 40 | 20 | 0.5 to 1 | NE ↗ | 6 |
S2 | Sayed Anbar St. | 20 | 21 | 1.05 to 1 | NW ↖ | 6 |
S3 | Souq Al-Tawfikiya St. | 12 | 17 | 1.42 to 1 | NW ↖ | 3 |
S4 | Al-Boursa Al-Kadyima St. | 12 | 24 | 2 to 1 | NE ↗ | 3 |
S5 | Al-Boursa Al-Kadyima St. | 12 | 18 | 1.5 to 1 | NE ↗ | 3 |
S6 | Mohamed Bek Al-Alfy St. | 19 | 18 | 0.95 to 1 | E → | 6 |
S6′ | Waked St. | 20 | 19 | 0.95 to 1 | E → | 6 |
S7 | Zakriya Ahmed St. | 9 | 16 | 1.8 to 1 | N ↑ | 3 |
S8 | Saraya Al-Azbakiya St. | 10 | 19 | 1.9 to 1 | E → | 3 |
S9 | 26 July St. | 29 | 18 | 0.6 to 1 | E → | 6 |
S10 | Emad Al-Din St. | 19 | 17 | 0.9 to 1 | N ↑ | 6 |
S11 | Bostan Al-Dekkah St. | 24 | 14 | 0.6 to 1 | N ↑ | 6 |
S12 | Suliman Al-Halabi St. | 20 | 14 | 0.7 to 1 | NW ↖ | 6 |
Total number of cases | 63 |
N | Street | NE | Street | E | Street | NW | Street |
---|---|---|---|---|---|---|---|
1 to 3 | 1 to 3 | 1 to 3 | 1 to 3 | ||||
1 to 2 | S7 | 1 to 2 | S4 | 1 to 2 | S8 | 1 to 2 | |
1 to 1.5 | 1 to 1.5 | S5 | 1 to 1.5 | 1 to 1.5 | S3 | ||
1 to 1 | S10 | 1 to 1 | 1 to 1 | S6 and S6′ | 1 to 1 | S2 | |
1 to 0.5 | S11 | 1 to 0.5 | S1 | 1 to 0.5 | S9 | 1 to 0.5 | S12 |
1 to 0.25 | 1 to 0.25 | 1 to 0.25 | 1 to 0.25 |
Modeling Information | Theoretical Model | Case Study Model |
---|---|---|
Area size | X = 165, Y = 140, Z = 30 | X = 212, Y = 151, Z = 22 |
Grid resolution | X = 3, Y = 3, Z = 3 | X = 3, Y = 3, Z = 3 |
Orientation | Model (1) = 0, Model (2) = −45 | 0 |
Split lower grid box into 5 sub cells | Yes | Yes |
Telescoping applied | Telescoping factor of 20%, starting at a 63 m height | Not applied, as the maximum building height is not very tall |
Maximum model height * | 198 m | 66 m |
Nesting grids ** | 5 Grids, sandy soil | 5 Grids, sandy soil |
DEM | Not applied, as the site is flat | Not applied, as the site is flat |
Soil | Asphalt for roads, concrete for sidewalks, and sand under buildings | Asphalt for roads, concrete for sidewalks, and sand under buildings |
Buildings materials | Default wall—moderate insulation | Default wall—moderate insulation |
Tree model and size | Latin name: Acer Platanoides *** Height = 15 m; crown width = 7 m | Latin name: Acer Platanoides *** Height = 15 m; crown width = 7 m |
SPSS Statistics Analysis | N(a) Avg. ΔPET (Peak) 20% Trees | N(a) Avg. ΔPET (Peak) 50% Trees | N(b) Avg. ΔPET (Peak) 20% Trees | N(b) Avg. ΔPET (Peak) 50% Trees | E(a) Avg. ΔPET (Peak) 20% Trees | E(a) Avg. ΔPETT (Peak) 50% Trees | E(b) Avg. ΔPET (Peak) 20% Trees | E(b) Avg. ΔPET (Peak) 50% Trees | NW(a) Avg. ΔPET (Peak) 20% Trees | NW(a) Avg. ΔPET (Peak) 50% Trees | NW(b) Avg. ΔPET (Peak) 20% Trees | NW(b) Avg. ΔPET (Peak) 50% Trees | NE(a) Avg. ΔPET (Peak) 20% Trees | NE(a) Avg. ΔPET (Peak) 50% Trees | NE(b) Avg. ΔPET (Peak) 20% Trees | NE(b) Avg. ΔPET (Peak) 50% Trees |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 2.667 | 3.500 | 2.833 | 4.167 | 6.000 | 10.000 | 5.333 | 8.167 | 3.667 | 4.000 | 3.167 | 4.833 | 2.667 | 4.833 | 3.167 | 4.000 |
Std. Deviation | 3.204 | 2.074 | 3.488 | 2.787 | 1.095 | 1.095 | 1.506 | 2.229 | 1.633 | 2.280 | 2.401 | 2.714 | 2.066 | 2.483 | 1.169 | 2.898 |
(K-S) Test, c | 0.105 | 0.200 e | 0.121 | 0.041 | 0.056 | 0.056 | 0.069 | 0.012 | 0.200 e | 0.200 e | 0.200 e | 0.200 e | 0.125 | 0.197 | 0.200 e | 0.094 |
Correlation AR | −0.871 * | −0.932 ** | −0.863 * | −0.971 ** | −0.849 * | −0.849 * | −0.878 * | −0.802 | −0.929 ** | −0.858 * | −0.887 * | −0.911 * | −0.853 * | −0.936 ** | −0.900 * | −0.794 |
Sig. (2-tailed) | 0.024 | 0.007 | 0.027 | 0.001 | 0.033 | 0.033 | 0.022 | 0.055 | 0.007 | 0.029 | 0.019 | 0.012 | 0.031 | 0.006 | 0.014 | 0.059 |
* | Correlation is significant at the 0.05 level (2-tailed). | |||||||||||||||
** | Correlation is significant at the 0.01 level (2-tailed). | |||||||||||||||
Kolmogorov–Smirnov test: data are not normally distributed. | ||||||||||||||||
Spearman correlation. | ||||||||||||||||
Pearson correlation. | ||||||||||||||||
c | Lilliefors significance correction. | |||||||||||||||
e | This is the lower bound of the true significance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelmejeed, A.Y.; Gruehn, D. Optimization of Microclimate Conditions Considering Urban Morphology and Trees Using ENVI-Met: A Case Study of Cairo City. Land 2023, 12, 2145. https://doi.org/10.3390/land12122145
Abdelmejeed AY, Gruehn D. Optimization of Microclimate Conditions Considering Urban Morphology and Trees Using ENVI-Met: A Case Study of Cairo City. Land. 2023; 12(12):2145. https://doi.org/10.3390/land12122145
Chicago/Turabian StyleAbdelmejeed, Ahmed Yasser, and Dietwald Gruehn. 2023. "Optimization of Microclimate Conditions Considering Urban Morphology and Trees Using ENVI-Met: A Case Study of Cairo City" Land 12, no. 12: 2145. https://doi.org/10.3390/land12122145
APA StyleAbdelmejeed, A. Y., & Gruehn, D. (2023). Optimization of Microclimate Conditions Considering Urban Morphology and Trees Using ENVI-Met: A Case Study of Cairo City. Land, 12(12), 2145. https://doi.org/10.3390/land12122145