Correlation between Landscape Pattern and Net Primary Productivity of Vegetation: A Case Study in the Arid and Semi-Arid Regions of Northwest China
Abstract
:1. Introduction
- To reveal the correlation between landscape patterns and net primary productivity in the arid and semi-arid regions of Northwest China.
- Based on the correlation and multiple linear regression equations, to explore the changes in various indices from 2001 to 2020 and the core landscape pattern indices affecting NPP.
- Based on the selected landscape pattern indices and their changes, to provide reliable information for environmental governance and ecological environment improvement.
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Pretreatment
2.2.1. NPP
2.2.2. Land Use
2.3. Research Methods
2.3.1. Quadrat Selection
2.3.2. Selection of Landscape Indicators
2.3.3. Statistical Analysis
3. Results
3.1. Annual Change in NPP
3.2. Spatial Distribution of NPP and Its Changing Characteristics
3.3. Changes in Landscape Pattern
3.3.1. Landscape Indicators at the Landscape Level
3.3.2. Landscape Indicators at Class Level
3.4. Study on the Correlation between NPP and Landscape Index
3.4.1. Landscape Level
3.4.2. Class Level
4. Discussion
4.1. Impact of Landscape Pattern on NPP
4.2. Selection of Landscape Index and Determination of Spatial Scale
4.3. Research Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Turner, M.; Ruscher, C. Changes in landscape patterns in Georgia, USA. Landsc. Ecol. 1998, 1, 241–251. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, W.; Tian, L.; He, W.; Zhang, J.; Liu, D.; Yang, F. Effects of land-use changes on vegetation net primary productivity in the Three Gorges Reservoir Area of Chongqing. Acta Ecol. Sinica. 2018, 38, 7658–7668. [Google Scholar]
- Cheng, F.; Liu, S.; Zhang, Y.; Yin, Y.; Hou, X. Effects of land use change on net primary productivity in Beijing based on MODIS series. Acta Ecol. Sinica. 2017, 37, 5924–5934. [Google Scholar]
- Frondoni, R.; Mollo, B.; Capotorti, G. A landscape analysis of land cover change in the Municipality of Rome (Italy): Spatiotemporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan 2011, 100, 117–128. [Google Scholar] [CrossRef]
- Groot, R.; Brander, L.; Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghemandi, A.; Hein, L.; et al. Global estimates of the value of ecosystemsand their services in monetary unit. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Field, B.; Behrenfeld, J.; Randerson, T.; Paul, F. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Dent, D.; Olsson, L.; Schaepman, M. Proxy global assessment of land degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Lai, C. Severe drought events inducing large decrease of net primary productivity in mainland China during 1982–2015. Sci. Total Environ. 2020, 703, 135541. [Google Scholar] [CrossRef]
- Hu, Y.; Jia, G.; Guo, H. Linking primary production, climate and land use along an urban–wildland transect: A satellite view. Env. Rese Lett. 2009, 4, 044009. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Batelaan, O.; McVicar, T.; Long, D.; Pao, S.; Liang, W.; Liu, B.; Jin, Z.; Simmons, C.T. Contrasting responses of water use effciency to drought across global terrestrial ecosystems. Sci. Rep. 2016, 6, 23284. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Gang, C.; Zhou, F.; Li, J.; Dong, X.; Zhao, C. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest China using net primary productivity as an indicator. Ecol. Indic. 2015, 48, 560–569. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, Z.; Robert, C.; Jiang, L.; Shimizu, H. Did climate drive ecosystem change and induce desertification in Otindag sandy land, China over the past 40 years? J. Arid Environ. 2006, 64, 523–541. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Reshef, I. Mapping land degradation by comparison of vegetation production to spatially derived estimates of potential production. J. Arid Environ. 2008, 72, 1940–1949. [Google Scholar] [CrossRef]
- Li, W.; Li, C.; Liu, X.; He, D.; Bao, A.; Yi, Q.; Wang, B.; Liu, T. Analysis of spatial–temporal variation in NPP based on hydrothermal conditions in the Lancang-Mekong River Basin from 2000 to 2014. Env. Monit Assess 2018, 190, 321–335. [Google Scholar] [CrossRef]
- Chen, A.; Yao, L.; Sun, R.; Chen, L. How many metrics are required to identify the effects of the landscape pattern on land surface temperature? Ecol. Indic. 2014, 45, 424–433. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, X.; Wen, Y.; Ou, J. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China. Ecol. Indic. 2019, 103, 542–553. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, S.; Chen, D.; Wei, Z.; Dai, L.; Li, X. Determining the contributions of urbanisation and climate change to NPP variations over the last decade in the Yangtze River Delta, China. Sci. Total Environ. 2014, 472, 397–406. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Zhang, K.; Cheng, X.; Band, L.; Zhang, Q. Effects of land use/land cover and climate changes on terrestrial net primary productivity in the Yangtze River Basin, China, from 2001 to 2010. J. Geophys. Res. Biogeosci. 2014, 119, 1092–1109. [Google Scholar] [CrossRef]
- DeFries, R.; Field, C.; Fung, I.; Collatz, G.; Bounoua, L. Combined satellite data and biogeochemical models to estimate global effects of human—Induced land cover change on carbon emissions and primary productivity. Glob. Biogeochem. 1999, 13, 803–815. [Google Scholar] [CrossRef]
- Milesi, C.; Elvidge, C.D.; Nemani, R.R.; Running, S.W. Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sens. Environ. 2003, 86, 401–410. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.; Maile, N.; Ene, E. FRAGSTATS: Spatial Pattern Analysis for Categorical Maps. Comput. Softw. Progr. Prod. 2002. [Google Scholar]
- Cushman, S.; McGarigal, K.; Neel, M. Parsimony in landscape metrics: Strength, universality, and consistency. Ecol. Indic. 2008, 8, 691–703. [Google Scholar] [CrossRef]
- Lustig, A.; Stouffer, D.; Roigé, M.; Worner, S. Towards more predictable and consistent landscape metrics across spatial scales. Ecol. Indic. 2015, 57, 11–21. [Google Scholar] [CrossRef]
- Ye, F. Application of multiple linear regression in economic and technical output forecasting. China Foreign Energy 2015, 2, 45–48. [Google Scholar]
- Jiang, R.; Li, X.; Zhu, Y.; Zhang, Z. Spatial and temporal variation of NPP and NDVI correlation in the Yellow River Delta wetland based on MODIS. Acta Ecol. Sinica. 2011, 31, 6708–6716. [Google Scholar]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B. Evaluation of modis NPP and GPP products across multiple biomes. Remote Sens. Env. Ment. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Zhao, M. Assessing interannual variation in modis-based estimates of gross primary production. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1899–1907. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef]
- Hasenauer, H.; Petritsch, R.; Zhao, M. Reconciling satellite with ground data to estimate forest productivity at national scales. For. Ecol. Manag. 2012, 276, 196–208. [Google Scholar] [CrossRef]
- Bastos, A.; Running, S.W.; Gouveia, C. The global NPP dependence on ENSO: La-Niña and the extraordinary year of 2011. J. Geophys. Res. Biogeosciences 2013, 118, 1247–1255. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W.; Nemani, R.R. Sensitivity of moderate resolution imaging spectroradiometer (MODIS) terrestrial primary produc-tion to the accuracy of meteorological reanalyses. J. Geophys Ical Res. 2015, 111, 338–356. [Google Scholar]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B. Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Liang, D.; Zuo, Y.; Huang, L. Evaluation of the consistency of modis land cover product (MCD12Q1) based on Chinese 30 m globeland30 datasets: A case study in Anhui Province, China. ISPRS Int. J. Geo-Inf. 2015, 4, 2519–2541. [Google Scholar] [CrossRef]
- Cao, C.; Lee, X.; Liu, S. Urban heat islands in China enhanced by haze pollution. Nat. Commun. 2016, 7, 12509. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Xiao, P.; Feng, X. Accuracy assessment of seven global land cover datasets over China. ISPRS J. Photogramme-Try Remote Sens. 2017, 125, 156–173. [Google Scholar] [CrossRef]
- Chang, Y.; Gao, Y.; Xie, Z. Relationship between habitat quality and landscape pattern evolution in Beijing-Tianjin-Hebei region. Chin. J. Environ. Sci. 2021, 201, 848–859. [Google Scholar]
- McGarigal, K.; Cushman, S.; Maile, N.; Ene, E. Fragstats V4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Comput. Softw. Progr. Prod. 2012. [Google Scholar]
- Feng, Y.; Liu, Y.; Tong, X. Spatiotemporal variation of landscape patterns and their spatial determinants in Shanghai. Ecol. Indic. 2018, 87, 22–32. [Google Scholar] [CrossRef]
- Ayinuer, Y.; Zhang, F.; Yu, H.; Kung, H. Quantifying the spatial correlations between landscape pattern and ecosystem service value: A case study in Ebinur Lake Basin, Xinjiang, China. Ecol. Eng. 2018, 113, 94–104. [Google Scholar]
- Schindler, S.; Poirazidis, K.; Wrbka, T. Towards a core set of landscape metrics for biodiversity assessments: A case study from Dadia National Park, Greece. Ecol. Indic. 2008, 8, 502–514. [Google Scholar] [CrossRef]
- Kumar, M.; Denis, D.; Singh, S.; Szabó, S.; Suryavanshi, S. Landscape metrics for assessment of land cover change and fragmentation of a heterogeneous watershed. Remote Sens. Appl. Soc. Environ. 2018, 10, 224–233. [Google Scholar] [CrossRef]
- Jia, Y.; Tang, L.; Xu, M.; Yang, X. Landscape pattern indices for evaluating urban spatial morphology-A case study of Chinese cities. Ecol. Indic. 2019, 99, 27–37. [Google Scholar] [CrossRef]
- Feng, Z. Analysis of Landscape Pattern and Its Influencing Factors in Yilong Lake Basin. Master’s Thesis, Yunnan Normal University, Kunming, China, 2021. [Google Scholar]
- Zhou, Y.; Yue, D.; Guo, J.; Chen, G.; Wang, D. Spatial correlations between landscape patterns and net primary productivity: A case study of the Shule River Basin, China. Ecol. Indic. 2021, 130, 108067. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.; Zhong, J.; Li, C. Spatial scale effects of the variable relationships between landscape pattern and water quality: Example from an agricultural karst river basin, Southwestern China. Agric. Ecosyst. Environ. 2020, 300, 106999. [Google Scholar] [CrossRef]
- Liu, J.; Linderman, M.; Ouyang, Z.; An, L.; Yang, J.; Zhang, H. Ecological bai degradation in protected areas: The case of Wolong nature reserve for giant pandas. Science 2001, 292, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Bo, J.; Li, X.; Fang, F.; Cheng, W. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Yan, C.; Li, S.; Xie, J. Assessment of sandy desertification trends in the Shule River Basin from 1978 to 2010. Sci. Cold Arid Reg. 2014, 16, 52–58. [Google Scholar]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Mu, S.; Zhou, S.; Chen, Y.; Li, J.; Ju, W.; Odeh, I.O.A. Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in Inner Mongolian grassland. China. Glob. Planet. Chang. 2013, 108, 29–41. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563–564, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Fu, H.; Wan, C. Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agric. Ecosyst. Environ. 2008, 124, 33–39. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y. Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 9–16. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Q.; Fu, S.; Han, N. Study on the correlation between cultivated land area change and population and economic development in arid and semi-arid region of Northwest China—A case study of Gansu Province. J. Arid. Land Resour. Environment. 2011, 25, 36. [Google Scholar]
- Mirzatijan, M.; Gulmi, E.; Ayitulsun, S. Spatial-temporal change and driving factors of land use/cover in Xinjiang based on MODIS data. Hubei Agric. Sci. 2022, 61, 58–63. [Google Scholar]
- Wang, N.; Yang, G. Land use change and ecosystem service value in Inner Mongolia, 1990–2018. J. Soil Water Conserv. 2022, 34, 244–250. [Google Scholar]
- Zhang, Z.; Xiong, M.; Li, F.; Liu, X.; Hao, Y.; Xing, L.; Wang, X.; Lai, M.; Yuan, P. Analysis of the temporal and spatial variations in net primary productivity of vegetation in the grassland region of Inner Mongolia and the factors influencing those changes. Pratacultural Sci. 2022, 39, 2492–2502. [Google Scholar]
- Estreguil, C.; De Rigo, D.; Caudullo, G. A proposal for an integrated modelling framework to characterise habitat pattern. Environ. Modell. Softw. 2014, 52, 176–191. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y. Fractal dimension as an indicator for quantifying the effects of changing spatial scales on landscape metrics. Ecol. Indic. 2015, 53, 18–27. [Google Scholar] [CrossRef]
- Gustafson, E. Quantifying landscape spatial pattern: What is the state of the art? Ecosystems 1998, 1, 143–156. [Google Scholar] [CrossRef]
- Wu, J.; Jelinski, D.; Luck, M.; Tueller, P. Multiscale analysis of landscape heterogeneity: Scale variance and pattern metrics. Ann. Gis. 2000, 6, 6–19. [Google Scholar] [CrossRef]
- Chen, Y. Responses of Forest Productivity and Carbon Storage to Landscape Pattern Change in the Three Gorges Reservoir Area; Chinese Academy of Forestry Sciences: Beijing, China, 2017. [Google Scholar]
- Zhu, M.; Pu, L.; Li, J. The influence of spatial resolution and grain size change of remote sensing image on urban landscape pattern analysis. Acta Ecol. Sinica. 2008, 28, 2753–2763. [Google Scholar]
- Zhang, Q.; Chen, C.; Wang, J.; Yang, D.; Zhang, Y.; Wang, Z.; Gao, M. The spatial granularity effect, changing landscape patterns, and suitable landscape metrics in the Three Gorges Reservoir Area, 1995–2015. Ecol. Indic. 2020, 114, 106259. [Google Scholar] [CrossRef]
Year | Landscape Pattern Index | ||||
---|---|---|---|---|---|
NP | TE | IJI | PR | SHDI | |
2001 | 146.60 | 14.42 | 27.72 | 3.87 | 0.36 |
2005 | 142.80 | 14.36 | 28.49 | 3.92 | 0.38 |
2010 | 146.68 | 14.56 | 30.36 | 3.96 | 0.37 |
2015 | 169.29 | 16.24 | 29.79 | 4.04 | 0.39 |
2020 | 171.38 | 16.28 | 29.68 | 4.07 | 0.40 |
Year | NP | TE (ha) | IJI (%) | NLSI |
---|---|---|---|---|
2001 | 7459 | 1161.15 | 16.69 | 0.14 |
2005 | 7597 | 1172.82 | 16.00 | 0.14 |
2010 | 7847 | 1219.33 | 15.85 | 0.13 |
2015 | 10204 | 1484.25 | 14.33 | 0.13 |
2020 | 10492 | 1531.99 | 13.68 | 0.14 |
Year | NP | TE (ha) | IJI (%) | NLSI |
---|---|---|---|---|
2001 | 1959 | 141.86 | 24.79 | 0.34 |
2005 | 1756 | 125.12 | 20.09 | 0.34 |
2010 | 1989 | 146.34 | 18.18 | 0.34 |
2015 | 2349 | 183.89 | 18.67 | 0.34 |
2020 | 2600 | 186.64 | 21.10 | 0.36 |
Year | NP | TE (ha) | IJI (%) | NLSI |
---|---|---|---|---|
2001 | 12284 | 3623.52 | 55.89 | 0.04 |
2005 | 11543 | 3535.30 | 55.81 | 0.03 |
2010 | 11985 | 3572.72 | 57.20 | 0.03 |
2015 | 13876 | 3992.98 | 58.40 | 0.04 |
2020 | 13601 | 3986.10 | 59.08 | 0.04 |
NP | TE | IJI | PR | SHDI | |
---|---|---|---|---|---|
2001 | 0.445 ** | 0.351 ** | 0.375 ** | 0.549 ** | 0.178 * |
2005 | 0.412 ** | 0.295 ** | 0.354 ** | 0.513 ** | 0.116 * |
2010 | 0.447 ** | 0.318 ** | 0.324 ** | 0.521 ** | 0.127 * |
2015 | 0.465 ** | 0.329 ** | 0.315 ** | 0.503 ** | 0.102 * |
2020 | 0.451 ** | 0.326 ** | 0.311 ** | 0.504 ** | 0.078 * |
Landscape Index | Farmland | Forestland | Grassland | Built-Up Land | Unused Land |
---|---|---|---|---|---|
NP | 0.729 ** | 0.882 * | −0.018 | 0.388 | 0.726 ** |
TE | 0.583 ** | 0.885 * | 0.416 * | 0.305 | 0.126 |
IJI | 0.623 ** | 0.743 * | 0.481 ** | 0.071 | −0.212 |
NLSI | −0.325 ** | 0.417 | −0.375 | 0.59 * | −0.214 |
Land Use Type | Standardized Coefficient Regression Equation | Adjusted R2 | Significance |
---|---|---|---|
Farmland | 0.66 × NP + 0.21 × TE | 0.674 | 0.00 |
Forestland | 0.931 × IJI + 0.099 × NLSI | 0.961 | 0.00 |
Grassland | 0.687 × TE + 0.479 × IJI − 0.396 × NP | 0.731 | 0.00 |
Built-up land | 0.756 × NP − 0.466 × IJI | 0.564 | 0.00 |
Unused land | 0.794 × NP + 0.157 × NLSI − 0.031 × IJI | 0.501 | 0.00 |
2001 2020 | Grassland | Farmland | Built-Up Land | Forestland | Water Bodies | Unused Land | Sum |
---|---|---|---|---|---|---|---|
Grassland | 897,400.51 | 36,515.51 | 299.30 | 1764.31 | 190.03 | 8735.64 | 944,905.31 |
Farmland | 9911.24 | 63,981.65 | 140.91 | 191.32 | 13.26 | 94.09 | 74,332.47 |
Built-up land | 110.34 | 82.81 | 5020.42 | 0.01 | 0.09 | 9.10 | 5222.77 |
Forestland | 974.82 | 56.37 | 0.13 | 2400.62 | 1.71 | 41.37 | 3475.01 |
Water bodies | 418.68 | 18.46 | 0.76 | 0.09 | 8585.34 | 1336.66 | 10,359.99 |
Unused land | 67,895.03 | 2470.19 | 31.65 | 37.74 | 7329.13 | 1,314,893.30 | 1,392,657.05 |
Sum | 976,710.62 | 103,124.99 | 5493.18 | 4394.10 | 16,119.55 | 1,325,110.17 | 2430952.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Li, C. Correlation between Landscape Pattern and Net Primary Productivity of Vegetation: A Case Study in the Arid and Semi-Arid Regions of Northwest China. Land 2023, 12, 2004. https://doi.org/10.3390/land12112004
Xu C, Li C. Correlation between Landscape Pattern and Net Primary Productivity of Vegetation: A Case Study in the Arid and Semi-Arid Regions of Northwest China. Land. 2023; 12(11):2004. https://doi.org/10.3390/land12112004
Chicago/Turabian StyleXu, Congrui, and Chuanhua Li. 2023. "Correlation between Landscape Pattern and Net Primary Productivity of Vegetation: A Case Study in the Arid and Semi-Arid Regions of Northwest China" Land 12, no. 11: 2004. https://doi.org/10.3390/land12112004
APA StyleXu, C., & Li, C. (2023). Correlation between Landscape Pattern and Net Primary Productivity of Vegetation: A Case Study in the Arid and Semi-Arid Regions of Northwest China. Land, 12(11), 2004. https://doi.org/10.3390/land12112004