Distribution and Speciation of Trace Elements in Soils of Four Land-Use Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaji, H.; Chandran, V.; Mathew, L. Chapter 13—Organic fertilizers as a route to controlled release of nutrients. In Controlled Release Fertilizers for Sustainable Agriculture; Lewu, F.B., Volova, T., Thomas, S., Rakhimol, K.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 231–245. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Arya, G.; Kumar, R.; Hamed, L.; Pirasteh-Anosheh, H.; Jasrotia, P.; Kashyap, P.L.; Singh, G.P. Switching to nanonutrients for sustaining agroecosystems and environment: The challenges and benefits in moving up from ionic to particle feeding. J. Nanobiotechnol. 2022, 20, 19. [Google Scholar] [CrossRef]
- Martínez-Toledo, Á.; González-Mille, D.J.; Briones-Gallardo, R.; Carrizalez-Yañez, L.; Felipe Martínez-Montoya, J.; de Jesús Mejía-Saavedra, J.; Ilizaliturri-Hernández, C.A. Functioning of semi-arid soils under long-term mining activity with trace elements at high concentrations. CATENA 2023, 222, 106851. [Google Scholar] [CrossRef]
- Muszyńska, E.; Labudda, M. Dual Role of Metallic Trace Elements in Stress Biology—From Negative to Beneficial Impact on Plants. Int. J. Mol. Sci. 2019, 20, 3117. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, H.; Zheng, Y.; Chen, Z. Atomistic study of the mechanical response of copper nanowires under torsion. J. Phys. D Appl. Phys. 2009, 42, 135408. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Zhang, Y.; Ding, M.; Li, L. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai–Tibet highway. Sci. Total Environ. 2015, 521–522, 160–172. [Google Scholar] [CrossRef]
- Romero-Crespo, P.; Jiménez-Oyola, S.; Salgado-Almeida, B.; Zambrano-Anchundia, J.; Goyburo-Chávez, C.; González-Valoys, A.; Higueras, P. Trace elements in farmland soils and crops, and probabilistic health risk assessment in areas influenced by mining activity in Ecuador. Environ. Geochem. Health 2023, 45, 4549–4563. [Google Scholar] [CrossRef]
- Ahamad, A.; Raju, N.J.; Madhav, S.; Khan, A.H. Trace elements contamination in groundwater and associated human health risk in the industrial region of southern Sonbhadra, Uttar Pradesh, India. Environ. Geochem. Health 2020, 42, 3373–3391. [Google Scholar] [CrossRef]
- Baude, M.; Meyer, B.C.; Schindewolf, M. Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Sci. Total Environ. 2019, 659, 1526–1536. [Google Scholar] [CrossRef]
- Della Chiesa, S.; la Cecilia, D.; Genova, G.; Balotti, A.; Thalheimer, M.; Tappeiner, U.; Niedrist, G. Farmers as data sources: Cooperative framework for mapping soil properties for permanent crops in South Tyrol (Northern Italy). Geoderma 2019, 342, 93–105. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Pande, C.B.; Moharir, K.N.; Khadri, S.F.R. Assessment of land-use and land-cover changes in Pangari watershed area (MS), India, based on the remote sensing and GIS techniques. Appl. Water Sci. 2021, 11, 96. [Google Scholar] [CrossRef]
- Wieczorek, J.; Baran, A.; Urbański, K.; Mazurek, R.; Klimowicz-Pawlas, A. Assessment of the pollution and ecological risk of lead and cadmium in soils. Environ. Geochem. Health 2018, 40, 2325–2342. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowski, M.; Modrzewska, B. Acidity and sorption properties of Zinc-contaminated soil following the application of neutralising substances. J. Ecol. Eng. 2016, 17, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Pedreño, J.; Almendro-Candel, M.B.; Gómez Lucas, I.; Jordán Vidal, M.M.; Bech Borras, J.; Zorpas, A.A. Trace Metal Content and Availability of Essential Metals in Agricultural Soils of Alicante (Spain). Sustainability 2018, 10, 4534. [Google Scholar] [CrossRef]
- Yan, X.; Liu, M.; Zhong, J.; Guo, J.; Wu, W. How Human Activities Affect Heavy Metal Contamination of Soil and Sediment in a Long-Term Reclaimed Area of the Liaohe River Delta, North China. Sustainability 2018, 10, 338. [Google Scholar] [CrossRef]
- Nunes, J.R.; Ramos-Miras, J.; Lopez-Piñeiro, A.; Loures, L.; Gil, C.; Coelho, J.; Loures, A. Concentrations of Available Heavy Metals in Mediterranean Agricultural Soils and their Relation with Some Soil Selected Properties: A Case Study in Typical Mediterranean Soils. Sustainability 2014, 6, 9124–9138. [Google Scholar] [CrossRef]
- Sungur, A.; Soylak, M.; Ozcan, H. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: Relationship between soil properties and heavy metals availability. Chem. Speciat. Bioavailab. 2014, 26, 219–230. [Google Scholar] [CrossRef]
- Józefowska, A.; Miechówka, A.; Gąsiorek, M.; Zadrożny, P. Content of zinc, lead and cadmium in selected agricultural soils in the area of the Śląskie and Ciężkowickie foothills. J. Ecol. Eng. 2014, 15, 74–80. [Google Scholar] [CrossRef]
- Sayadi, M. Grain size fraction of heavy metals in soil and their relationship with land use. Proc. Int. Acad. Ecol. Environ. Sci. 2017, 7, 1. [Google Scholar]
- Verla, E.N.; Verla, A.W.; Osisi, A.F.; Okeke, P.N.; Enyoh, C.E. Finding a relationship between mobility factors of selected heavy metals and soil particle size in soils from children’s playgrounds. Environ. Monit. Assess. 2019, 191, 742. [Google Scholar] [CrossRef]
- Wang, L.; Chen, H.; Wu, J.; Huang, L.; Brookes, P.C.; Mazza Rodrigues, J.L.; Xu, J.; Liu, X. Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil. J. Hazard. Mater. 2021, 414, 125494. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowski, M.; Modrzewska, B. Effect of neutralising substances on the total content of trace elements in soil contaminated with zinc. J. Elem. 2017, 22, 4. [Google Scholar] [CrossRef]
- Dobiński, W. Permafrost active layer. Earth-Sci. Rev. 2020, 208, 103301. [Google Scholar] [CrossRef]
- Dobiński, W. The Occurrence of Permafrost within the Glacial Domain. Geosciences 2020, 10, 193. [Google Scholar] [CrossRef]
- Zanini, E.; Freppaz, M.; Stanchi, S.; Bonifacio, E.; Egli, M. Soil variability in mountain areas. In Understanding Mountain Soils: A Contribution from Mountain Areas to the International Year of Soils 2015; FAO: Rome, Italy, 2015; pp. 60–62. [Google Scholar]
- Baronti, S.; Ungaro, F.; Maienza, A.; Ugolini, F.; Lagomarsino, A.; Agnelli, A.E.; Calzolari, C.; Pisseri, F.; Robbiati, G.; Vaccari, F.P. Rotational pasture management to increase the sustainability of mountain livestock farms in the Alpine region. Reg. Environ. Chang. 2022, 22, 50. [Google Scholar] [CrossRef]
- Qureshi, R.; Ghufran, M.; Sultana, K.; Ashraf, M.; Khan, A. Ethnomedicinal studies of medicinal plants of Gilgit District and surrounding areas. Ethnobot. Res. Appl. 2007, 5, 115–122. Available online: https://ethnobotanyjournal.org/index.php/era/article/view/143 (accessed on 31 December 2007). [CrossRef]
- Brunetto, G.; Bastos de Melo, G.W.; Terzano, R.; Del Buono, D.; Astolfi, S.; Tomasi, N.; Pii, Y.; Mimmo, T.; Cesco, S. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere 2016, 162, 293–307. [Google Scholar] [CrossRef]
- Sungur, A.; Temel, E.; Everest, T.; Soylak, M.; Özcan, H. Effects of soil texture on trace metal concentrations and geochemical fractions in the soil of apple orchards (Çanakkale, NW Turkey). Arch. Agron. Soil Sci. 2023, 69, 2677–2691. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, C. Natural and Human Factors Affect the Distribution of Soil Heavy Metal Pollution: A Review. Water Air Soil Pollut. 2020, 231, 350. [Google Scholar] [CrossRef]
- Graham, R.D.; Welch, R.M. Breeding for Staple Food Crops with High Micronutrient Density; International Food Policy Research Institute: Washington, DC, USA, 1996; Volume 3. [Google Scholar]
- Chang, A.; Page, A. Trace elements slowly accumulating, depleting in soils. Calif. Agric. 2000, 54, 49–55. [Google Scholar] [CrossRef]
- Naz, M.; Raza, M.A.; Bodlah, M.A.; Bouzroud, S.; Ghani, M.I.; Riaz, M.; Shah, T.; Zubair, A.; Bodlah, I.; Fan, X. Beneficial Elements in Plant Life under A Changing Environment. Benef. Chem. Elem. Plants Recent Dev. Future Prospect. 2023, 1, 1–21. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef] [PubMed]
- Giacomino, A.; Abollino, O.; Malandrino, M.; Mentasti, E. The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques. Anal. Chim. Acta 2011, 688, 122–139. [Google Scholar] [CrossRef] [PubMed]
- Luz, F.; Mateus, A.; Matos, J.X.; Gonçalves, M.A. Cu- and Zn-Soil Anomalies in the NE Border of the South Portuguese Zone (Iberian Variscides, Portugal) Identified by Multifractal and Geostatistical Analyses. Nat. Resour. Res. 2014, 23, 195–215. [Google Scholar] [CrossRef]
- Odukudu, F.B.; Ayenimo, J.G.; Adekunle, A.S.; Yusuff, A.M.; Mamba, B.B. Safety evaluation of heavy metals exposure from consumer products. Int. J. Consum. Stud. 2014, 38, 25–34. [Google Scholar] [CrossRef]
- Ayoubi, S.; Khormali, F.; Sahrawat, K.; De Lima, A. Assessing impacts of land use change on soil quality indicators in a loessial soil in Golestan Province, Iran. Rodrigues 2011, 13, 727–742. [Google Scholar]
- Panditharathne, D.L.D.; Abeysingha, N.S.; Nirmanee, K.G.S.; Mallawatantri, A. Application of Revised Universal Soil Loss Equation (Rusle) Model to Assess Soil Erosion in “Kalu Ganga” River Basin in Sri Lanka. Appl. Environ. Soil Sci. 2019, 2019, 4037379. [Google Scholar] [CrossRef]
- Zang, F.; Wang, H.; Zhao, C.; Nan, Z.; Wang, S.; Yang, J.; Li, N. Atmospheric wet deposition of trace elements to forest ecosystem of the Qilian Mountains, northwest China. Catena 2021, 197, 104966. [Google Scholar] [CrossRef]
- Marsay, C.M.; Kadko, D.; Landing, W.M.; Buck, C.S. Bulk aerosol trace element concentrations and deposition fluxes during the US GEOTRACES GP15 Pacific Meridional Transect. Glob. Biogeochem. Cycles 2022, 36, e2021GB007122. [Google Scholar] [CrossRef]
- Zheng, G.; Yue, L.; Li, Z.; Chen, C. Assessment on heavy metals pollution of agricultural soil in Guanzhong District. J. Geogr. Sci. 2006, 16, 105–113. [Google Scholar] [CrossRef]
- Magnani, A.; Viglietti, D.; Godone, D.; Williams, M.W.; Balestrini, R.; Freppaz, M. Interannual variability of soil N and C forms in response to snow-cover duration and pedoclimatic conditions in alpine tundra, northwest Italy. Arct. Antarct. Alp. Res. 2017, 49, 227–242. [Google Scholar] [CrossRef]
- Hafeez, F.; Amin, B.A.Z.; Akbar, U.; Iqbal, A.; Faridullah; Bilal, M.; Nazir, R. Assessment of phosphorus availability in soil by introducing P-solubilizing novel bacterial and fungal strains of Lower Himalaya. Commun. Soil Sci. Plant Anal. 2019, 50, 1541–1549. [Google Scholar] [CrossRef]
- Ahmad, D.; Hafeez, F.; Irshad, M.; Mehmood, Q.; Tahir, A.A.; Iqbal, A.; Faridullah. The comparative analysis of essential nutrient fractions in permafrost and different land use systems of Diamer Division, Gilgit-Baltistan. Arab. J. Geosci. 2021, 13, 1286. [Google Scholar] [CrossRef]
- Sungur, A.; Gur, E.; Everest, T.; Soylak, M.; Ozcan, H. Assessment of relationship between geochemical fractions of barium in soil of cherry orchards and plant barium uptake and determination by inductively coupled plasma optical emission spectrometry. Spectrosc 2019, 40, 173–178. [Google Scholar] [CrossRef]
- Swartjes, F.A.; Siciliano, S. Dealing with contaminated sites: From theory towards practical application. Soil Sci. Soc. Am. J. 2012, 76, 748. [Google Scholar] [CrossRef]
- Mamindy-Pajany, Y.; Sayen, S.; Guillon, E. Impact of sewage sludge spreading on nickel mobility in a calcareous soil: Adsorption–desorption through column experiments. Environ. Sci. Pollut. Res. 2013, 20, 4414–4423. [Google Scholar] [CrossRef]
- Yang, M.; Li, Y.; Liu, Z.; Tian, J.; Liang, L.; Qiu, Y.; Wang, G.; Du, Q.; Cheng, D.; Cai, H. A high activity zinc transporter OsZIP9 mediates zinc uptake in rice. Plant J. 2020, 103, 1695–1709. [Google Scholar] [CrossRef]
- Alsafran, M.; Usman, K.; Ahmed, B.; Rizwan, M.; Saleem, M.H.; Al Jabri, H. Understanding the phytoremediation mechanisms of potentially toxic elements: A proteomic overview of recent advances. Front. Plant Sci. 2022, 13, 881242. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Stockmann, R.; Ng, K.; Ajlouni, S. Revisiting phytate-element interactions: Implications for iron, zinc and calcium bioavailability, with emphasis on legumes. Crit. Rev. Food Sci. Nutr. 2022, 62, 1696–1712. [Google Scholar] [CrossRef]
- Sungur, A.; Soylak, M.; Yilmaz, E.; Yilmaz, S.; Ozcan, H. Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure: The relationship between soil properties and heavy metal fractions. Soil Sediment Contam. Int. J. 2015, 24, 907238. [Google Scholar] [CrossRef]
- Acosta, J.A.; Jansen, B.; Kalbitz, K.; Faz, A.; Martínez-Martínez, S. Salinity increases mobility of heavy metals in soils. Chemosphere 2011, 85, 1318–1324. [Google Scholar] [CrossRef]
- Romero-Freire, A.; Sierra Aragón, M.; Martínez Garzón, F.J.; Martín Peinado, F.J. Is soil basal respiration a good indicator of soil pollution? Geoderma 2016, 263, 132–139. [Google Scholar] [CrossRef]
- Provenzano, M.R.; El Bilali, H.; Simeone, V.; Baser, N.; Mondelli, D.; Cesari, G. Copper contents in grapes and wines from a Mediterranean organic vineyard. Food Chem. 2010, 122, 1338–1343. [Google Scholar] [CrossRef]
- Marastoni, L.; Sandri, M.; Pii, Y.; Valentinuzzi, F.; Brunetto, G.; Cesco, S.; Mimmo, T. Synergism and antagonisms between nutrients induced by copper toxicity in grapevine rootstocks: Monocropping vs. intercropping. Chemosphere 2019, 214, 563–578. [Google Scholar] [CrossRef]
- Brunetto, G.; Miotto, A.; Ceretta, C.A.; Schmitt, D.E.; Heinzen, J.; de Moraes, M.P.; Canton, L.; Tiecher, T.L.; Comin, J.J.; Girotto, E. Mobility of copper and zinc fractions in fungicide-amended vineyard sandy soils. Arch. Agron. Soil Sci. 2014, 60, 609–624. [Google Scholar] [CrossRef]
Region | Land Use | pH | EC (µS/cm) | OM (mg·kg−1) | Moisture Content% |
---|---|---|---|---|---|
Babusar Valley | Permafrost | 7.07 ± 0.07 | 482.2 ± 5.2 | 0.17 ± 0.04 | 11.2 ± 0.3 |
Forest | 7.0 ± 0.05 | 577.6 ± 4.8 | 0.58 ± 0.07 | 9.4 ± 0.6 | |
Pasture | 7.45 ± 0.08 | 362.2 ± 6.1 | 0.48 ± 0.06 | 7.3 ± 0.2 | |
Agriculture | 7.33 ± 0.04 | 601.6 ± 5.3 | 0.56 ± 0.05 | 5.1 ± 0.03 | |
Astore Rama Valley | Permafrost | 7.67 ± 0.06 | 451.4 ± 4.5 | 0.12 ± 0.02 | 13.3 ± 0.4 |
Forest | 7.51 ± 0.05 | 527.2 ± 6.2 | 0.61 ± 0.07 | 10.5 ± 0.7 | |
Pasture | 6.95 ± 0.06 | 549.2 ± 5.6 | 0.5 ± 0.08 | 8.4 ± 0.5 | |
Agriculture | 7.46 ± 0.08 | 419.5 ± 4.1 | 0.58 ± 0.05 | 5.3 ± 0.4 | |
Fairy Meadow | Permafrost | 7.16 ± 0.03 | 412.6 ± 3.7 | 0.26 ± 0.05 | 12.4 ± 0.3 |
Forest | 6.97 ± 0.08 | 412 ± 5.2 | 0.75 ± 0.03 | 8.4 ± 0.5 | |
Pasture | 7.11 ± 0.04 | 422.8 ± 4.2 | 0.46 ± 0.02 | 7.3 ± 0.2 | |
Agriculture | 6.59 ± 0.03 | 492 ± 5.5 | 0.27 ± 0.05 | 6.1 ± 0.3 |
Region | Land Use | Exchangeable (KNO3) | Adsorbed (H2O) | Organically Bound (NaOH) | Carbonate Precipitated (EDTA) | Remaining Structures (HNO3) | Total (hClO4 + HNO3) |
---|---|---|---|---|---|---|---|
Babusar Valley | Permafrost | 3.15 ± 1.06 B,b | 1.4 ± 0.28 A,b | 8.35 ± 0.35 A,a | 336.7 ± 0.28 A,c | 144.7 ± 0.85 B,b | 483.3 ± 2.83 B,a |
Forest | 3.5 ± 0.28 B,b | 0.85 ± 0.07 A,a | 2.4 ± 0.42 C,b | 216.7 ± 0.28 C,b | 122.7 ± 0.14 C,b | 340.6 ± 3.11 C,a | |
Pasture | 1.75 ± 0.21 C,b | 0.65 ± 0.21 B,b | 4.75 ± 0.07 B,b | 206.8 ± 1.56 D,b | 117.7 ± 1.41 D,b | 330.3 ± 0.57 D,b | |
Agriculture | 5.9 ± 0.28 A,b | 1.65 ± 0.07 A,c | 1.45 ± 0.07 C,b | 313.4 ± 0.42 B,c | 290.65 ± 0.35 A,b | 545.5 ± 1.41 A,b | |
Astore Rama Valley | Permafrost | 3.5 ± 0.85 B,a | 0.25 ± 0.01 C,c | 6.65 ± 1.63 B,b | 354.65 ± 0.21 A,a | 156.95 ± 0.21 B,a | 435.5 ± 1.41 B,c |
Forest | 6.6 ± 0.71 B,a | 1.35 ± 0.78 B,a | 5.85 ± 0.64 B,a | 215.5 ± 0.57 C,b | 125.7 ± 0.85 C,a | 323.6 ± 0.57 D,c | |
Pasture | 3.8 ± 0.1.84 C,a | 2.5 ± 0.28 A,a | 3.8 ± 0.57 C,b | 206.6 ± 0.28 D,b | 116.9 ± 1.41 D,b | 342.5 ± 1.27 C,a | |
Agriculture | 6.95 ± 0.78 A,a | 2.6 ± 0.28 A,b | 9.3 ± 0.85 A,a | 315.5 ± 0.42 B,b | 298.3 ± 0.14 A,a | 555.5 ± 2.12 A,c | |
Fairy Meadow | Permafrost | 4.45 ± 0.07 B,b | 3.3 ± 0.71 C,a | 7.05 ± 0.78 AB,a | 343.5 ± 0.21 B,b | 134.05 ± 0.35 B,c | 442.2 ± 3.11 B,b |
Forest | 3.65 ± 0.78 B,b | 0.55 ± 0.07 B,a | 4.45 ± 0.35 C,a | 233.8 ± 0.42 C,a | 121.35 ± 0.35 C,c | 332.1 ± 1.27 C,b | |
Pasture | 2.25 ± 0.21 C,b | 2.65 ± 0.64 A,a | 6.55 ± 0.49 B,a | 218.45 ± 0.49 D,a | 122.45 ± 0.21 C,a | 311.2 ± 3.96 D,c | |
Agriculture | 5.7 ± 0.148 A,b | 3.85 ± 0.35 A,a | 8.5 ± 0.14 A,a | 372.85 ± 2.19 A,a | 282.45 ± 0.49 A,c | 642.5 ± 0.14 A,a |
Region | Land Use | Exchangeable (KNO3) | Adsorbed (H2O) | Organically Bound (NaOH) | Carbonate Precipitated (EDTA) | Remaining Structures (HNO3) | Total (hClO4 + HNO3) |
---|---|---|---|---|---|---|---|
Babusar Valley | Permafrost | 72.85 ± 0.07 B,c | 1.25 ± 0.07 A,a | 17.3 ± 0.14 B,b | 225.35 ± 0.07 B,c | 196.45 ± 0.21 D,a | 522.5 ± 0.71 B,b |
Forest | 52.75 ± 0.21 D,c | 0.65 ± 0.07 B,a | 8.35 ± 0.21 D,c | 124.15 ± 1.91 C,b | 183.45 ± 3.04 C,a | 355.6 ± 1.70 C,a | |
Pasture | 62.55 ± 0.07 C,c | 0.8 ± 0.14 B,a | 11.35 ± 0.21 C,b | 109 ± 0.28 D,a | 85.9 ± 0.57 D,c | 284.6 ± 3.25 D,b | |
Agriculture | 119.5 ± 0.14 A,a | 1.15 ± 0.07 A,a | 18.35 ± 0.21 A,b | 327.65 ± 2.62 A,a | 295.55 ± 0.35 A,a | 752.5 ± 1.41 A,a | |
Astore Rama Valley | Permafrost | 81.65 ± 0.35 B,b | 1.2 ± 0.14 A,ab | 21.6 ± 0.42 B,a | 250.4 ± 0.14 B,a | 167.45 ± 0.21 D,c | 518.8 ± 0.14 B,b |
Forest | 68.35 ± 0.07 D,b | 0.7 ± 0.14 B,ab | 20.7 ± 0.28 B,a | 124.7 ± 0.14 B,a | 122.7 ± 2.97 C,c | 322.5 ± 0.0 C,b | |
Pasture | 70.75 ± 0.21 C,b | 0.55 ± 0.21 B,ab | 18.1 ± 1.41 C,a | 105.25 ± 0.64 C,b | 98.55 ± 0.35 D,a | 301.55 ± 2.9 D,a | |
Agriculture | 111.85 ± 0.07 A,a | 1.25 ± 0.07 A,ab | 22.85 ± 0.07 A,a | 311.8 ± 0.71 A,c | 289 ± 1.13 A,b | 731.5 ± 1.41 A,b | |
Fairy Meadow | Permafrost | 87.75 ± 0.92 B,a | 1.15 ± 0.07 A,b | 14.8 ± 0.14 B,c | 235.35 ± 1.34 B,b | 183.8 ± 6.08 D,b | 555.7 ± 2.97 B,a |
Forest | 71.5 ± 0.57 D,a | 0.45 ± 0.21 B,b | 9.7 ± 0.14 D,b | 105.15 ± 0.07 C,b | 122.75 ± 0.92 C,b | 310.8 ± 1.56 C,c | |
Pasture | 76.85 ± 0.35 C,a | 0.4 ± 0.14 B,b | 12.25 ± 0.21 C,b | 108.5 ± 1.41 D,a | 91.5 ± 0.99 D,b | 285.5 ± 3.96 D,b | |
Agriculture | 115.3 ± 2.12 A,b | 1.15 ± 0.07 A,b | 18.15 ± 0.07 A,b | 317.2 ± 0.85 A,b | 263.15 ± 1.34 A,c | 705.7 ± 4.38 A,c |
Region | Land Use | Exchangeable (KNO3) | Adsorbed (H2O) | Organically Bound (NaOH) | Carbonate Precipitated (EDTA) | Remaining Structures (HNO3) | Total (HClO4 + HNO3) |
---|---|---|---|---|---|---|---|
Babusar Valley | Permafrost | 15.6 ± 042 B,c | 1.7 ± 0.14 A,a | 14.35 ± 0.35 A,c | 84.4 ± 0.28 B,a | 23.6 ± 0.28 AC,b | 137.3 ± 2.62 B,c |
Forest | 12.7 ± 0.21 C,a. | 0.15 ± 0.07 D,b | 11.85 ± 0.07 C,b | 31.3 ± 0.28 D,c | 13.7 ± 0.14 D,a | 69.65 ± 0.64 D,b | |
Pasture | 11.7 ± 0.14 D,b | 0.45 ± 0.07 C,a | 11.8 ± 0.14 C,b | 34.5 ± 0.14 C,b | 20.7 ± 0.28 C,a | 73.85 ± 1.91 C,b | |
Agriculture | 18.3 ± 0.28 A,c | 0.85 ± 0.07 B,b | 13.4 ± 0.14 B,c | 91.35 ± 0.21 A,c | 24.85 ± 0.92 A,b | 148.35 ± 1.77 A,b | |
Astore Rama Valley | Permafrost | 19.4 ± 0.14 B,a | 0.65 ± 0.07 B,c | 15.85 ± 0.07 B,b | 78.9 ± 0.57 B,c | 31.4 ± 1.13 A,a | 146.15 ± 0.35 A,b |
Forest | 12.5 ± 0.49 C,a | 0.35 ± 0.07 C,a | 12.65 ± 0.21 C,a | 32.7 ± 0.28 D,b | 16.4 ± 3.11 B,a | 74.55 ± 0.35 B,a | |
Pasture | 12.4 ± 0.14 D,a | 0.25 ± 0.07 D,b | 12.35 ± 0.35 C,a | 33.35 ± 0.21 C,c | 15.7 ± 0.57 B,a | 74.55 ± 1.20 B,b | |
Agriculture | 22.3 ± 0.14 A,a | 1.35 ± 0.07 A,a | 16.7 ± 0.28 A,a | 84 ± 0.21 A,b | 32.45 ± 1.48 A,a | 74.05 ± 0.49 B,c | |
Fairy Meadow | Permafrost | 17.4 ± 0.21 B,b | 1.45 ± 0.07 A,b | 16.8 ± 0.14 A,a | 81.7 ± 0.28 B,b | 33.65 ± 1.56 A,a | 150.65 ± 0.21 B,a |
Forest | 12.5 ± 0.14 C,a | 0.4 ± 0.14 D,a | 11.65 ± 0.21 C,c | 33.45 ± 0.07 D,a | 14.85 ± 1.34 B,a | 71.85 ± 2.05 D,a | |
Pasture | 11.6 ± 0.28 D,c | 0.5 ± 0.14 C,a | 11.3 ± 0.14 C,c | 51.8 ± 0.14 C,a | 12.55 ± 1.63 B,b | 87.45 ± 0.35 C,a | |
Agriculture | 19.2 ± 0.07 A,b | 1.55 ± 0.21 A,a | 14.65 ± 0.21 B,b | 94.65 ± 0.21 A,a | 34.25 ± 2.90 A,a | 166.85 ± 0.35 A,a |
Land-Use Systems | Properties | EC | OM | MC | Ni | Zn | Cu |
---|---|---|---|---|---|---|---|
Babusar Valley | pH | −0.501 | 0.142 | −0.749 | 0.0191 | 0.0452 | 0.0218 |
EC | - | 0.169 | −0.177 | 0.510 | 0.652 | 0.394 | |
OM | - | - | −0.694 | −0.956 | −0.862 | −0.984 | |
MC | - | - | - | −0.255 | −0.420 | 0.158 | |
Astore Rama Valley | pH | −0.649 | −0.407 | 0.436 | 0.368 | 0.471 | 0.581 |
EC | - | 0.300 | 0.193 | −0.941 | −0.968 * | −0.379 | |
OM | - | - | −0.738 | −0.0935 | −0.104 | −0.979 * | |
MC | - | - | - | −0.488 | −0.431 | 0.778 | |
Fairy Meadows | pH | −0.932 | 0.186 | 0.704 | −0.810 | −0.637 | −0.460 |
EC | - | −0.493 | −0.653 | 0.893 | 0.754 | 0.653 | |
OM | - | - | −0.185 | −0.681 | −0.783 | −0.907 | |
MC | - | - | - | −0.250 | 0.0042 | 0.134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, F.U.; Faridullah, F.; Irshad, M.; Bacha, A.-U.-R.; Ullah, Z.; Fawad, M.; Hafeez, F.; Iqbal, A.; Nazir, R.; Alrefaei, A.F.; et al. Distribution and Speciation of Trace Elements in Soils of Four Land-Use Systems. Land 2023, 12, 1894. https://doi.org/10.3390/land12101894
Haque FU, Faridullah F, Irshad M, Bacha A-U-R, Ullah Z, Fawad M, Hafeez F, Iqbal A, Nazir R, Alrefaei AF, et al. Distribution and Speciation of Trace Elements in Soils of Four Land-Use Systems. Land. 2023; 12(10):1894. https://doi.org/10.3390/land12101894
Chicago/Turabian StyleHaque, Farid Ul, Faridullah Faridullah, Muhammad Irshad, Aziz-Ur-Rahim Bacha, Zahid Ullah, Muhammad Fawad, Farhan Hafeez, Akhtar Iqbal, Rashid Nazir, Abdulwahed Fahad Alrefaei, and et al. 2023. "Distribution and Speciation of Trace Elements in Soils of Four Land-Use Systems" Land 12, no. 10: 1894. https://doi.org/10.3390/land12101894
APA StyleHaque, F. U., Faridullah, F., Irshad, M., Bacha, A.-U.-R., Ullah, Z., Fawad, M., Hafeez, F., Iqbal, A., Nazir, R., Alrefaei, A. F., & Almutairi, M. H. (2023). Distribution and Speciation of Trace Elements in Soils of Four Land-Use Systems. Land, 12(10), 1894. https://doi.org/10.3390/land12101894