The Social, Political, and Environmental Dimensions in Designing Urban Public Space from a Water Management Perspective: Testing European Experiences
Abstract
:1. Introduction
2. Materials and Methods
- RQ1: Which type of public spaces’ design strategies and actions are promoted to increase cities’ resilience; do citizens take part in decision-making processes leading towards increased resilience?
- RQ2: Can a trend towards a more comprehensive incorporation of social issues in urban designing and planning be identified?
- RQ3: How do political strategies affect public space design to face climate change, and which social and environmental benefits can be expected?
2.1. Data Collection
2.2. Data Analysis
3. Experiences
3.1. Northern European Case Studies
3.1.1. Sweden: Augustenborg Neighbourhood (Malmö)
3.1.2. Denmark: Taasinge Square (Copenhagen)
3.1.3. Netherlands: Benthemplein Square (Rotterdam)
3.1.4. Germany: Potsdamer Platz (Berlin)
3.1.5. United Kingdom: Granary Square, King’s Cross (London)
3.2. Southern Europe Case Studies
3.2.1. France: Place de la République (Paris)
3.2.2. Italy: Gorla Maggiore Water Park (Varese)
3.2.3. Greece: Pavlos Melas Metropolitan Park (Thessaloniki)
3.2.4. Spain: Bon Pastor Neighbourhood (Barcelona)
3.2.5. Portugal: Monsanto Green Corridor (Lisboa)
4. Results
4.1. The Social Dimension
4.2. The Political Dimension
4.3. The Environmental Dimension
4.4. The Concurrence of Dimensions
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations (UN). World Urbanization Prospects: The 2018 Revision; UN, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2018; Available online: https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf (accessed on 2 April 2022).
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Parris, K.M.; Amati, M.; Bekessy, S.A.; Dagenais, D.; Fryd, O.; Hahs, A.K.; Hes, D.; Imberger, S.J.; Livesley, S.J.; Marshall, A.J.; et al. The seven lamps of planning for biodiversity in the city. Cities 2018, 83, 44–53. [Google Scholar] [CrossRef]
- Gandini, A.; Garmendia, L.; Prieto, I.; Álvarez, I.; San-José, J.-T. A holistic and multi-stakeholder methodology for vulnerability assessment of cities to flooding and extreme precipitation events. Sustain. Cities Soc. 2020, 63, 102437. [Google Scholar] [CrossRef]
- Hintz, M.J.; Luederitz, C.; Lang, D.J.; von Wehrden, H. Facing the heat: A systematic literature review exploring the transferability of solutions to cope with urban heat waves. Urban Clim. 2018, 24, 714–727. [Google Scholar] [CrossRef]
- Avashia, V.; Garg, A. Implications of land use transitions and climate change on local flooding in urban areas: An assessment of 42 Indian cities. Land Use Policy 2020, 95, 104571. [Google Scholar] [CrossRef]
- Brown, S.J. Future changes in heatwave severity, duration and frequency due to climate change for the most populous cities. Weather Clim. Extreme 2020, 30, 100278. [Google Scholar] [CrossRef]
- Maggiotto, G.; Miani, A.; Rizzo, E.; Castellone, M.D.; Piscitelli, P. Heat waves and adaptation strategies in a mediterranean urban context. Environ. Res. 2021, 197, 111066. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Grimm, N.B. Nature-based approaches to managing climate change impacts in cities. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190124. [Google Scholar] [CrossRef]
- Stone, B.; Hess, J.J.; Frumkin, H. Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities? Environ. Health Perspect. 2010, 118, 1425–1428. [Google Scholar] [CrossRef]
- Redzinska, K.; Piotrkowska, M. Urban planning and design for building neighbourhood resilience to climate change. Land 2020, 9, 387. [Google Scholar] [CrossRef]
- Ribeiro, P.J.G.; Pena Jardim Gonçalves, L.A. Urban resilience: A conceptual framework. Sustain. Cities Soc. 2019, 50, 101625. [Google Scholar] [CrossRef]
- Chelleri, L.; Waters, J.J.; Olazabal, M.; Minucci, G. Resilience trade-offs: Addressing multiple scales and temporal aspects of urban resilience. Environ. Urban. 2015, 27, 181–198. [Google Scholar] [CrossRef]
- Vale, L.J. The politics of resilient cities: Whose resilience and whose city? Build. Res. Inf. 2014, 42, 191–201. [Google Scholar] [CrossRef]
- Meerow, S.; Pajouhesh, P.; Miller, T.R. Social equity in urban resilience planning. Local Environ. 2019, 24, 793–808. [Google Scholar] [CrossRef]
- Lee, J.H.; Lim, S. The selection of compact city policy instruments and their effects on energy consumption and greenhouse gas emissions in the transportation sector: The case of South Korea. Sustain. Cities Soc. 2018, 37, 116–124. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J.; Kärrholm, M. Compact city planning and development: Emerging practices and strategies for achieving the goals of sustainability. Dev. Built Environ. 2020, 4, 100021. [Google Scholar] [CrossRef]
- Artmann, M.; Kohler, M.; Meinel, G.; Gan, J.; Ioja, I.-C. How smart growth and green infrastructure can mutually support each other—A conceptual framework for compact and green cities. Ecol. Indic. 2019, 96, 10–22. [Google Scholar] [CrossRef]
- Klemm, W.; Lenzholzer, S.; Brink, A.V.D. Developing green infrastructure design guidelines for urban climate adaptation. J. Landsc. Arch. 2017, 12, 60–71. [Google Scholar] [CrossRef]
- Saloma, C.; Akpedonu, E. Parks, plans, and human needs: Metro Manila’s unrealised urban plans and accidental public green spaces. Int. J. Urban Sustain. Dev. 2021, 13, 715–727. [Google Scholar] [CrossRef]
- Brelsford, C.; Lobo, J.; Hand, J.; Bettencourt, L.M.A. Heterogeneity and scale of sustainable development in cities. Proc. Natl. Acad. Sci. USA 2017, 114, 8963–8968. [Google Scholar] [CrossRef] [Green Version]
- Duivenvoorden, E.; Hartmann, T.; Brinkhuijsen, M.; Hesselmans, T. Managing public space—A blind spot of urban planning and design. Cities 2020, 109, 103032. [Google Scholar] [CrossRef]
- Carter, J.G.; Cavan, G.; Connelly, A.; Guy, S.; Handley, J.; Kazmierczak, A. Climate change and the city: Building capacity for urban adaptation. Prog. Plan. 2015, 95, 1–66. [Google Scholar] [CrossRef]
- Ioppolo, G.; Cucurachi, S.; Salomone, R.; Saija, G.; Shi, L. Sustainable Local Development and Environmental Governance: A Strategic Planning Experience. Sustainability 2016, 8, 180. [Google Scholar] [CrossRef]
- Sussams, L.W.; Sheate, W.R.; Eales, R.P. Green infrastructure as a climate change adaptation policy intervention: Muddying the waters or clearing a path to a more secure future? J. Environ. Manag. 2015, 147, 184–193. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Dolowitz, D.P.; Bell, S.; Keeley, M. Retrofitting urban drainage infrastructure: Green or grey? Urban Water J. 2018, 15, 83–91. [Google Scholar] [CrossRef]
- Li, L.; Uyttenhove, P.; Van Eetvelde, V. Planning green infrastructure to mitigate urban surface water flooding risk—A methodology to identify priority areas applied in the city of Ghent. Landsc. Urban Plan. 2020, 194, 103703. [Google Scholar] [CrossRef]
- Ncube, S.; Arthur, S. Influence of Blue-Green and Grey Infrastructure Combinations on Natural and Human-Derived Capital in Urban Drainage Planning. Sustainability 2021, 13, 2571. [Google Scholar] [CrossRef]
- Vasiljević, N.; Radić, B.; Gavrilović, S.; Šljukić, B.; Medarević, M.; Ristić, R. The concept of green infrastructure and urban landscape planning: A challenge for urban forestry planning in Belgrade, Serbia. iFor. Biogeosci. For. 2018, 11, 491–498. [Google Scholar] [CrossRef]
- Shandas, V.; Matsler, A.M.; Caughman, L.; Harris, A. Towards the implementation of green stormwater infrastructure: Perspectives from municipal managers in the Pacific Northwest. J. Environ. Plan. Manag. 2019, 63, 959–980. [Google Scholar] [CrossRef]
- Langergraber, G.; Pucher, B.; Simperler, L.; Kisser, J.; Katsou, E.; Buehler, D.; Mateo, M.C.G.; Atanasova, N. Implementing nature-based solutions for creating a resourceful circular city. Blue Green Syst. 2020, 2, 173–185. [Google Scholar] [CrossRef]
- Langergraber, G.; Castellar, J.A.C.; Pucher, B.; Baganz, G.F.M.; Milosevic, D.; Andreucci, M.-B.; Kearney, K.; Pineda-Martos, R.; Atanasova, N. A Framework for Addressing Circularity Challenges in Cities with Nature-Based Solutions. Water 2021, 13, 2355. [Google Scholar] [CrossRef]
- Mi, Z.; Guan, D.; Liu, Z.; Liu, J.; Viguié, V.; Fromer, N.; Wang, Y. Cities: The core of climate change mitigation. J. Clean. Prod. 2019, 207, 582–589. [Google Scholar] [CrossRef]
- Vukmirovic, M.; Gavrilovic, S.; Stojanovic, D. The Improvement of the Comfort of Public Spaces as a Local Initiative in Coping with Climate Change. Sustainability 2019, 11, 6546. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef]
- Karvonen, A. Politics of Urban Runoff: Nature, Technology and the Sustainable City; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar] [CrossRef]
- Andersson, E.; Langemeyer, J.; Borgström, S.; McPhearson, T.; Haase, D.; Kronenberg, J.; Barton, D.N.; Davis, M.; Naumann, S.; Röschel, L.; et al. Enabling Green and Blue Infrastructure to Improve Contributions to Human Well-Being and Equity in Urban Systems. BioScience 2019, 69, 566–574. [Google Scholar] [CrossRef]
- La Rosa, D.; Takatori, C.; Shimizu, H.; Privitera, R. A planning framework to evaluate demands and preferences by different social groups for accessibility to urban greenspaces. Sustain. Cities Soc. 2018, 36, 346–362. [Google Scholar] [CrossRef]
- Vandecasteele, I.; Baranzelli, C.; Siragusa, A.; Aurambout, J.P. (Eds.) The Future of Cities—Opportunities, Challenges and the Way Forward; EUR 29752 EN; Publications Office: Luxembourg, 2019. [Google Scholar]
- Milbourne, P. Growing public spaces in the city: Community gardening and the making of new urban environments of publicness. Urban Stud. 2021, 58, 2901–2919. [Google Scholar] [CrossRef]
- Ferguson, M.; Roberts, H.; McEachan, R.; Dallimer, M. Contrasting distributions of urban green infrastructure across social and ethno-racial groups. Landsc. Urban Plan. 2018, 175, 136–148. [Google Scholar] [CrossRef]
- Dennis, M.; Cook, P.A.; James, P.; Wheater, C.P.; Lindley, S.J. Relationships between health outcomes in older populations and urban green infrastructure size, quality and proximity. BMC Public Health 2020, 20, 626. [Google Scholar] [CrossRef]
- Ni’Mah, N.M.; Wibisono, B.H.; Roychansyah, M.S. Urban Sustainability and Resilience Governance: Review from The Perspective of Climate Change Adaptation and Disaster Risk Reduction. J. Reg. City Plan. 2021, 32, 83–98. [Google Scholar] [CrossRef]
- UN. Sustainable Development Goals: The 17 Goals; Department of Economic and Social Affairs of the United Nations (UN): New York, NY, USA, 2015; Available online: https://sdgs.un.org/goals (accessed on 23 February 2022).
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Dianat, H.; Wilkinson, S.; Williams, P.; Khatibi, H. Planning the resilient city: Investigations into using “causal loop diagram” in combination with “UNISDR scorecard” for making cities more resilient. Int. J. Disast. Risk Reduct. 2021, 65, 102561. [Google Scholar] [CrossRef]
- Madsen, S.H.J.; Hansen, T. Cities and climate change—Examining advantages and challenges of urban climate change experiments. Eur. Plan. Stud. 2018, 27, 282–299. [Google Scholar] [CrossRef]
- Coletta, V.R.; Pagano, A.; Pluchinotta, I.; Fratino, U.; Scrieciu, A.; Nanu, F.; Giordano, R. Causal Loop Diagrams for supporting Nature Based Solutions participatory design and performance assessment. J. Environ. Manag. 2021, 280, 111668. [Google Scholar] [CrossRef]
- Voukkali, I.; Zorpas, A.A. Evaluation of urban metabolism assessment methods through SWOT analysis and analytical hierocracy process. Sci. Total Environ. 2022, 807, 150700. [Google Scholar] [CrossRef]
- Liebovitch, L.S.; Coleman, P.T.; Fisher, J. Approaches to Understanding Sustainable Peace: Qualitative Causal Loop Diagrams and Quantitative Mathematical Models. Am. Behav. Sci. 2019, 64, 123–144. [Google Scholar] [CrossRef]
- Soto-Fernandez, R.; Perales-Momparler, S. El camino del agua en el paisaje urbano, barrio de Bon Pastor, Barcelona. In Proceedings of the V National Water Engineering Conference, Coruña, Spain, 24–26 October 2017. [Google Scholar]
- Carmona, M. Principles for public space design, planning to do better. Urban Des. Int. 2018, 24, 47–59. [Google Scholar] [CrossRef]
- Obringer, R.; Nateghi, R. What makes a city ‘smart’ in the Anthropocene? A critical review of smart cities under climate change. Sustain. Cities Soc. 2021, 75, 103278. [Google Scholar] [CrossRef]
- Hansen, R.; Olafsson, A.S.; van der Jagt, A.P.N.; Rall, E.; Pauleit, S. Planning multifunctional green infrastructure for compact cities: What is the state of practice? Ecol. Indic. 2019, 96, 99–110. [Google Scholar] [CrossRef]
- Mehryar, S.; Sasson, I.; Surminski, S. Supporting urban adaptation to climate change: What role can resilience measurement tools play? Urban Clim. 2022, 41, 101047. [Google Scholar] [CrossRef]
- Rivera-Navarro, J.; Brey, E.; Franco, M. Immigration and use of public spaces and food stores in a large city: A qualitative study on urban health inequalities. J. Migr. Health 2020, 1–2, 100019. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.R.; Jangjoo, S. Women’s preferences and urban space: Relationship between built environment and women’s presence in urban public spaces in Iran. Cities 2022, 126, 103694. [Google Scholar] [CrossRef]
- Shahraki, A.A. Urban planning for physically disabled people’s needs with case studies. Spat. Inf. Res. 2020, 29, 173–184. [Google Scholar] [CrossRef]
- Ujang, N.; Kozlowski, M.; Maulan, S. Linking place attachment and social interaction: Towards meaningful public places. J. Place Manag. Dev. 2018, 11, 115–129. [Google Scholar] [CrossRef]
- Bertoldi, P.; Kona, A.; Palermo, V.; Zangheri, P.; Serrenho, T.; Rivas, S.; Labanca, N.; Kilkis, S.; Lah, O.; Glancy, R.; et al. Guidebook ‘How to Develop a Sustainable Energy and Climate Action Plan (SECAP)’: PART 3—Policies, Key Actions, Good Practices for Mitigation and Adaptation to Climate Change and Financing SECAP(s); EUR 29412 EN; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Opdam, P. Navigating the space between landscape science and collective action for sustainability: Identifying key factors in information processing. Landsc. Ecol. 2020, 35, 2629–2639. [Google Scholar] [CrossRef]
- Weymouth, R.; Hartz-Karp, J.; Marinova, D. Repairing Political Trust for Practical Sustainability. Sustainability 2020, 12, 7055. [Google Scholar] [CrossRef]
- Silva, M.M.; Costa, J.P. Urban Floods and Climate Change Adaptation: The Potential of Public Space Design When Accommodating Natural Processes. Water 2018, 10, 180. [Google Scholar] [CrossRef]
- Moosavi, S.; Browne, G.R.; Bush, J. Perceptions of nature-based solutions for Urban Water challenges: Insights from Australian researchers and practitioners. Urban For. Urban Green. 2021, 57, 126937. [Google Scholar] [CrossRef]
- Oral, H.V.; Radinja, M.; Rizzo, A.; Kearney, K.; Andersen, T.R.; Krzeminski, P.; Buttiglieri, G.; Ayral-Cinar, D.; Comas, J.; Gajewska, M.; et al. Management of Urban Waters with Nature-Based Solutions in Circular Cities—Exemplified through Seven Urban Circularity Challenges. Water 2021, 13, 3334. [Google Scholar] [CrossRef]
- Pamukcu-Albers, P.; Ugolini, F.; La Rosa, D.; Grădinaru, S.R.; Azevedo, J.C.; Wu, J. Building green infrastructure to enhance urban resilience to climate change and pandemics. Landsc. Ecol. 2021, 36, 665–673. [Google Scholar] [CrossRef]
- Bayulken, B.; Huisingh, D.; Fisher, P.M. How are nature based solutions helping in the greening of cities in the context of crises such as climate change and pandemics? A comprehensive review. J. Clean. Prod. 2020, 288, 125569. [Google Scholar] [CrossRef]
Case Study | Location | Year | Climate Risks (Main) | Scale of Intervention |
---|---|---|---|---|
Augustenborg neighbourhood | Malmö, Sweden | 1998 | Floods | Supra-local |
Taasinge Square | Copenhagen, Denmark | 2013–2015 | Floods, heatwaves | Supra-local |
Benthemplein Square | Rotterdam, Netherlands | 2011–2013 | Floods, heavy rainfall | Supra-local |
Potsdamer Platz | Berlin, Germany | 1997–1998 | Heatwaves, heavy rainfall | Local |
Granary Square, King’s Cross | London, United Kingdom | 2012 | High temperatures, hot days | Supra-local |
Place de la République | Paris, France | 2010–2013 | High temperatures, hot days | Local |
Gorla Maggiore water park | Varese, Italy | 2008–2013 | Floods | Supra-local |
Pavlos Melas metropolitan park | Thessaloniki, Greece | 2007–nowadays | Forest fires, heat island effect | Regional |
Bon Pastor neighbourhood | Barcelona, Spain | 1999–2012 | Floods, heavy rainfall | Supra-local |
Monsanto green corridor | Lisbon, Portugal | 2009–2012 | Floods, heat island effect | Regional |
Social Dimension | Citizen Well-Being | Spatial Benefit(s) | Citizenry Vulnerable Segments | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case Study | W1 | W2 | W3 | W4 | W5 | W6 | S1 | S2 | S3 | S4 | V1 | V2 | V3 | V4 | V5 | V6 | V7 |
Augustenborg neighbourhood | √ | √ | − | − | − | − | √ | − | − | − | − | − | − | − | − | − | √ |
Taasinge Square | √ | √ | √ | − | − | √ | √ | − | √ | √ | − | − | − | − | − | √ | − |
Benthemplein Square | √ | √ | √ | √ | √ | √ | √ | √ | √ | − | √ | − | − | − | − | − | |
Potsdamer Platz | √ | √ | √ | − | − | √ | √ | − | − | √ | − | − | − | − | − | − | − |
Granary Square-King’s Cross | √ | √ | √ | √ | − | √ | √ | − | √ | √ | − | − | − | − | − | − | − |
Place de la République | √ | √ | √ | − | − | √ | √ | √ | √ | √ | − | − | − | − | − | − | − |
Gorla Maggiore water park | √ | √ | − | √ | − | √ | √ | − | − | √ | − | √ | − | − | − | − | − |
Pavlos Melas metropolitan park | √ | √ | √ | − | − | √ | √ | √ | √ | √ | − | − | − | − | − | − | √ |
Bon Pastor neighbourhood | − | √ | √ | − | − | − | √ | − | − | − | √ | − | − | − | − | − | − |
Monsanto green corridor | √ | √ | − | − | − | − | √ | − | − | − | − | − | − | − | − | − | − |
Political Dimension | Strategy/Plan | Urban Planning | ||
---|---|---|---|---|
Case Study | P1 | P2 | A1 | A2 |
Augustenborg neighbourhood | Plan for the renewal of Augusternborg neighbourhood | − | Creation of a flood-resilient district based on ponds, canals, and green roofs as part of a larger operation of urban renewal | − |
Taasinge Square | Part of Copenhagen’s Climate Adaption Plan and Copenhagen Cloudburst Management Plan | Long-term strategy: the transformation of the whole neighbourhood of Skt. Kjelds, which is to become The Climatic Quarter in Copenhagen | Control and retain rainwater from roofs and streets locally, delaying the water flow to the sewers | Introducing green and blue infrastructure |
Benthemplein Square | The Rotterdam approach started in 2008 as Rotterdam Climate Proof | Rotterdam Climate Initiative (RCI) | Creation of a “water square” with the dual function of collecting rainwater and developing the area (playful-recreational activities) | − |
Potsdamer Platz | Plan to reunify the city after the intervening fall of the Berlin Wall in Nov. 1989 | Plan to create a European-like city quarter | Rainwater from 19 buildings’ green rooftops is collected year-round in three large underground cisterns | − |
Granary Square-King’s Cross | Part of the King’s Cross Masterplan | Voted by the public to win a Camden Planning Award for “Best New Public Space” in 2014 | Subterranean fountain plant rooms run day and night to create an urban beach framework | − |
Place de la République | Plan to regenerate and improve life quality in the four neighbourhoods opening onto it, Arts-et-Métiers, Enfants-Rouges, Porte-Saint-Martin and Folie-Méricourt | − | Maximizing the proportion of trees and plants to increase ventilation | − |
Gorla Maggiore water park | Rete Ecologica Regionale Plan (Ecological Network Regional Plan) | River Contract of the Olona-Bozzente-Lura (2003) to (1) reduce water pollution; (2) reduce flood risk; (3) restore the landscape, environmental and urban systems relative to river corridors; and (4) sharing of information and knowledge on water resources management | Constructed wetlands (CWs) | A park on the shore of the Olona River in an area previously used for poplar plantation |
Pavlos Melas metropolitan park | Part of the “Connecting Nature” project funded by the European Commission’s Horizon 2020 (ID grant agreement 730222) | Long-term Strategic Action Plan for Thessaloniki | 26 buildings of the former camp will be restored to house educational, sports and cultural facilities; public gathering spaces; offices, leisure and commercial venues; small-scale trade fair facilities; and tourist accommodation units | The creation of four outdoor parking lots, an underground parking lot, sidewalks and a cycling network |
Bon Pastor neighbourhood | Plan for the renewal of the Bon Pastor neighbourhood | − | Substitution of former low-income housing (units of 30 m2 built in the late 1920s) for apartment blocks to reinforce sustainable urban drainage systems (SUDs) and green infrastructure (vegetation planting, permeable pavement) | |
Monsanto green corridor | Plan for the creation of the Monsanto ecological corridor | Part of a Master Development Plan created by the city of Lisbon | A continuous natural structure based on a coordinated set of green spaces connected via pedestrian and cycling paths | − |
Political Dimension | Governance–Participation | Financing | ||||
---|---|---|---|---|---|---|
Case Study | G1 | G2 | G3 | F1 | F2 | F3 |
Augustenborg neighbourhood | Bottom-up | Remodelling projects | Park’ users | Public | Malmo City Council | 24 million € (including all physical infrastructure) |
Taasinge Square | Bottom-up | Temporary projects created with residents from the beginning | Public consultation to residents | Public | Copenhagen City Council | 2 million € |
Benthemplein Square | Bottom-up | − | Teachers and students from the Graphic Lyceum and Zadkine College, users of the gymnasium, members of the congregation of the nearby church, and residents | Public | Rotterdam City Council | 4.5 million € |
Potsdamer Platz | Bottom-up (partially) | − | Public consultation (not limited to local districts or citizens). Neighbourhood associations and environmental organisations denounce the lack of environmental issues | Public–Private Partnership | Berlin City Council and Daimer Chrysler Inmobilien | − |
Granary Square- King’s Cross | Bottom-up | Intensive studies and consultancy during different stages of the process | The local community, government, and other stakeholders | Public–Private Partnership | UK government owned property company and Argent King’s Cross Limited Partnership | − |
Place de la République | Bottom-up | Public events and thematic workshops organised by the city council | Residents and business people | Public | Paris City Council | − |
Gorla Maggiore water park | Bottom-up | Adotta il verde pubblico (adopt a green area) to sponsor public green areas | Residents | Public | Lombardy Region and Milan City Council | 500,000– 2 million € |
Pavlos Melas metropolitan park | Bottom-up | Workshops to delve into key city stakeholders | Residents, key city stakeholders (urban development and financial programmes, operational services and maintenance), and consultants (economists, architects, engineers and community builders) | Public–Private Partnership | European Union, Greek government and Pavlos Melas City Council | 60 million € (Phase A: open space development, 18 million €) |
Bon Pastor neighbourhood | Bottom-up | Planning and development of SUDS discussion | Representatives and members of the neighbourhood community association. Social opposition to the entire demolition of the neighbourhood (memory preservation) | Public | Barcelona City Council | 84,000 € |
Monsanto green corridor | Bottom-up (partially) | − | − | Public | Lisbon City Council | 50,000–100,000 € |
Environmental Dimension | Biodiversity | Water Management | Climate Change | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case Study | B1 | B2 | B3 | B4 | B5 | B6 | M1 | M2 | M3 | M4 | M5 | C1 | C2 | C3 | C4 |
Augustenborg neighbourhood | √ | − | √ | − | − | √ | √ | − | − | − | √ | − | √ | √ | − |
Taasinge Square | √ | √ | √ | √ | − | − | √ | √ | − | √ | − | √ | √ | √ | − |
Benthemplein Square | √ | √ | √ | √ | − | − | √ | √ | √ | √ | − | √ | √ | − | − |
Potsdamer Platz | √ | − | − | √ | √ | √ | √ | − | √ | √ | √ | √ | √ | √ | √ |
Granary Square- King’s Cross | √ | − | − | − | − | √ | − | − | − | − | √ | − | √ | − | − |
Place de la République | √ | − | √ | √ | − | √ | √ | − | − | √ | √ | √ | √ | √ | − |
Gorla Maggiore water park | √ | √ | √ | √ | √ | − | √ | − | √ | − | √ | √ | √ | √ | − |
Pavlos Melas metropolitan park | √ | √ | √ | − | √ | − | √ | − | √ | √ | − | √ | √ | √ | − |
Bon Pastor neighbourhood | √ | − | √ | − | − | − | √ | √ | − | − | − | − | √ | √ | − |
Monsanto green corridor | − | √ | − | √ | − | √ | − | − | − | − | √ | − | √ | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricart, S.; Berizzi, C.; Saurí, D.; Terlicher, G.N. The Social, Political, and Environmental Dimensions in Designing Urban Public Space from a Water Management Perspective: Testing European Experiences. Land 2022, 11, 1575. https://doi.org/10.3390/land11091575
Ricart S, Berizzi C, Saurí D, Terlicher GN. The Social, Political, and Environmental Dimensions in Designing Urban Public Space from a Water Management Perspective: Testing European Experiences. Land. 2022; 11(9):1575. https://doi.org/10.3390/land11091575
Chicago/Turabian StyleRicart, Sandra, Carlo Berizzi, David Saurí, and Gaia Nerea Terlicher. 2022. "The Social, Political, and Environmental Dimensions in Designing Urban Public Space from a Water Management Perspective: Testing European Experiences" Land 11, no. 9: 1575. https://doi.org/10.3390/land11091575
APA StyleRicart, S., Berizzi, C., Saurí, D., & Terlicher, G. N. (2022). The Social, Political, and Environmental Dimensions in Designing Urban Public Space from a Water Management Perspective: Testing European Experiences. Land, 11(9), 1575. https://doi.org/10.3390/land11091575