Influence of Anthropogenic Activities and Major Natural Factors on Vegetation Changes in Global Alpine Regions
Abstract
:1. Introduction
2. Data
2.1. NDVI
2.2. Natural Factors
2.3. Land Use
2.4. Alpine Regions
3. Methods
3.1. NDVI Trend Analysis
3.2. Identification of Areas Significantly Affected by Anthropogenic Activities
3.3. Identification of Main Natural Factors in Areas Significantly Affected by Natural Factors
4. Results
4.1. Monthly Variation Trend of NDVI
4.2. Contribution of Anthropogenic Activities and Major Natural Factors to Areas with Significant Vegetation Changes
4.3. Dominant Factors Causing Significant Changes in Vegetation in the Major Natural Factors
5. Discussion
5.1. Variation Trend of Vegetation in Alpine Vegetation
5.2. What Is the Dominant Factor Causing Significant Changes in Alpine Vegetation?
5.3. Which of the Natural Factors Contribute the Most?
5.4. Limitations
6. Conclusions
- (1)
- Global alpine vegetation exhibited an overall browning trend from 1981 to 2015. However, a green trend was present during May-July during this period.
- (2)
- The considerable impact of the major natural factors on alpine region vegetation were greater than that of anthropogenic activities, and the positive impact of these natural factors was greater than the negative impact. However, anthropogenic activities had a greater impact on vegetation browning than the major natural factors during months 1, 3, 8, 9, and 11.
- (3)
- The contribution of albedo to significant changes in vegetation was greater than that of the other major natural factors.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Althuizen, I.H.J.; Lee, H.; Sarneel, J.M.; Vandvik, V. Long-Term Climate Regime Modulates the Impact of Short-Term Climate Variability on Decomposition in Alpine Grassland Soils. Ecosystems 2018, 21, 1580–1592. [Google Scholar] [CrossRef] [Green Version]
- Tello-Garcia, E.; Huber, L.; Leitinger, G.; Peters, A.; Newesely, C.; Ringler, M.E.; Tasser, E. Drought- and heat-induced shifts in vegetation composition impact biomass production and water use of alpine grasslands. Environ. Exp. Bot. 2020, 169, 103921. [Google Scholar] [CrossRef]
- Guo, N.; Degen, A.A.; Deng, B.; Shi, F.Y.; Bai, Y.F.; Zhang, T.; Long, R.J.; Shang, Z.H. Changes in vegetation parameters and soil nutrients along degradation and recovery successions on alpine grasslands of the Tibetan plateau. Agric. Ecosyst. Environ. 2019, 284, 106593. [Google Scholar] [CrossRef]
- Ni, J. Impacts of climate change on Chinese ecosystems: Key vulnerable regions and potential thresholds. Reg. Environ. Chang. 2011, 11, S49–S64. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.W.; Li, H.Q.; Wang, W.Y.; Li, Y.K.; Lin, L.; Guo, X.W.; Du, Y.G.; Li, Q.; Yang, Y.S.; Cao, G.M.; et al. Net radiation rather than surface moisture limits evapotranspiration over a humid alpine meadow on the northeastern Qinghai-Tibetan Plateau. Ecohydrology 2018, 11, e1925. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Wang, H.B. Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by Climate Change and Human Activities. Remote Sens. 2018, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Wang, X.Y.; Chen, G.S.; Yang, Q.C.; Wang, B.; Ma, Y.X.; Shen, M. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China. Sci. Total Environ. 2017, 593, 449–461. [Google Scholar] [CrossRef]
- Duan, H.C.; Xue, X.; Wang, T.; Kang, W.P.; Liao, J.; Liu, S.L. Spatial and Temporal Differences in Alpine Meadow, Alpine Steppe and All Vegetation of the Qinghai-Tibetan Plateau and Their Responses to Climate Change. Remote Sens. 2021, 13, 669. [Google Scholar] [CrossRef]
- Luo, L.H.; Ma, W.; Zhuang, Y.L.; Zhang, Y.N.; Yi, S.H.; Xu, J.W.; Long, Y.P.; Ma, D.; Zhang, Z.Q. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor. Ecol. Indic. 2018, 93, 24–35. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.Z.; Wu, J.S.; Ding, Q.N.; Niu, B.; He, Y.T. Declining human activity intensity on alpine grasslands of the Tibetan Plateau. J. Environ. Manag. 2021, 296, 113198. [Google Scholar] [CrossRef]
- Etzold, J.; Munzner, F.; Manthey, M. Sub-alpine and alpine grassland communities in the northeastern Greater Caucasus of Azerbaijan. Appl. Veg. Sci. 2016, 19, 316–335. [Google Scholar] [CrossRef]
- Mack, G.; Walter, T.; Flury, C. Seasonal alpine grazing trends in Switzerland: Economic importance and impact on biotic communities. Environ. Sci. Policy 2013, 32, 48–57. [Google Scholar] [CrossRef]
- Barros, A.; Aschero, V.; Mazzolari, A.; Cavieres, L.A.; Pickering, C.M. Going off trails: How dispersed visitor use affects alpine vegetation. J. Environ. Manag. 2020, 267, 110546. [Google Scholar] [CrossRef]
- Giaccone, E.; Luoto, M.; Vittoz, P.; Guisan, A.; Mariethoz, G.; Lambiel, C. Influence of microclimate and geomorphological factors on alpine vegetation in the Western Swiss Alps. Earth Surf. Process. Landf. 2019, 44, 3093–3107. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sun, J.; He, W.; Ye, C.C.; Liu, B.Y.; Chen, Y.C.; Zeng, T.; Ma, S.X.; Gan, X.Y.; Miao, C.Y.; et al. Migration of vegetation boundary between alpine steppe and meadow on a century-scale across the Tibetan Plateau. Ecol. Indic. 2022, 136, 108599. [Google Scholar] [CrossRef]
- Argenti, G.; Stagliano, N.; Bellini, E.; Messeri, A.; Targetti, S. Environmental and management drivers of alpine grassland vegetation types. Ital. J. Agron. 2020, 15, 156–164. [Google Scholar] [CrossRef]
- Guan, Y.L.; Lu, H.W.; Yin, C.; Xue, Y.X.; Jiang, Y.L.; Kang, Y.; He, L.; Heiskanen, J. Vegetation response to climate zone dynamics and its impacts on surface soil water content and albedo in China. Sci. Total Environ. 2020, 747, 141537. [Google Scholar] [CrossRef]
- Wang, M.J.; Fan, L.; Frappart, F.; Ciais, P.; Sun, R.; Liu, Y.; Li, X.J.; Liu, X.Z.; Moisy, C.; Wigneron, J.P. An alternative AMSR2 vegetation optical depth for monitoring vegetation at large scales. Remote Sens. Environ. 2021, 263, 112556. [Google Scholar] [CrossRef]
- Testolin, R.; Attorre, F.; Jimenez-Alfaro, B. Global distribution and bioclimatic characterization of alpine biomes. Ecography 2020, 43, 779–788. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Alpine Plant Life; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Eastman, J.R.; Sangermano, F.; Machado, E.A.; Rogan, J.; Anyamba, A. Global Trends in Seasonality of Normalized Difference Vegetation Index (NDVI), 1982–2011. Remote Sens. 2013, 5, 4799–4818. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Geng, X.L.; Chen, W.X.; Fang, L.; Yao, R.; Wang, X.R.; Zhou, X. Inconsistency of Global Vegetation Dynamics Driven by Climate Change: Evidences from Spatial Regression. Remote Sens. 2021, 13, 3442. [Google Scholar] [CrossRef]
- Li, W.T.; Migliavacca, M.; Forkel, M.; Walther, S.; Reichstein, M.; Orth, R. Revisiting Global Vegetation Controls Using Multi-Layer Soil Moisture. Geophys. Res. Lett. 2021, 48, e2021GL092856. [Google Scholar] [CrossRef]
- Li, Q.P.; Ma, M.G.; Wu, X.D.; Yang, H. Snow Cover and Vegetation-Induced Decrease in Global Albedo From 2002 to 2016. J. Geophys. Res. Atmos. 2018, 123, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; He, B.; Yuan, W.P.; Guo, L.L.; Zhang, Y.F. Increasing interannual variability of global vegetation greenness. Environ. Res. Lett. 2019, 14, 124005. [Google Scholar] [CrossRef]
- Mallick, J.; AlMesfer, M.K.; Singh, V.P.; Falqi, I.I.; Singh, C.K.; Alsubih, M.; Ben Kahla, N. Evaluating the NDVI-Rainfall Relationship in Bisha Watershed, Saudi Arabia Using Non-Stationary Modeling Technique. Atmosphere 2021, 12, 593. [Google Scholar] [CrossRef]
- Pei, H.W.; Liu, M.Z.; Jia, Y.G.; Zhang, H.J.; Li, Y.L.; Xiao, Y.X. The trend of vegetation greening and its drivers in the Agro-pastoral ecotone of northern China, 2000–2020. Ecol. Indic. 2021, 129, 108004. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ye, A.Z. Quantitatively distinguishing the impact of climate change and human activities on vegetation in mainland China with the improved residual method. Gisci. Remote Sens. 2021, 58, 235–260. [Google Scholar] [CrossRef]
- Xie, X.M.; He, B.; Guo, L.L.; Huang, L.; Hao, X.M.; Zhang, Y.F.; Liu, X.B.; Tang, R.; Wang, S.F. Revisiting dry season vegetation dynamics in the Amazon rainforest using different satellite vegetation datasets. Agric. For. Meteorol. 2022, 312, 108704. [Google Scholar] [CrossRef]
- Chen, T.; Xia, J.; Zou, L.; Hong, S. Quantifying the Influences of Natural Factors and Human Activities on NDVI Changes in the Hanjiang River Basin, China. Remote Sens. 2020, 12, 3780. [Google Scholar] [CrossRef]
- Ding, Z.; Peng, J.; Qiu, S.; Zhao, Y. Nearly Half of Global Vegetated Area Experienced Inconsistent Vegetation Growth in Terms of Greenness, Cover, and Productivity. Earth’s Future 2020, 8, e2020EF001618. [Google Scholar] [CrossRef]
- Piao, S.L.; Wang, X.H.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.P.; Ciais, P.; Tommervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Zhou, L.M.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. Atmos. 2001, 106, 20069–20083. [Google Scholar] [CrossRef]
- Ju, J.C.; Masek, J.G. The vegetation greenness trend in Canada and US Alaska from 1984-2012 Landsat data. Remote Sens. Environ. 2016, 176, 1–16. [Google Scholar] [CrossRef]
- Park, T.; Ganguly, S.; Tommervik, H.; Euskirchen, E.S.; Hogda, K.A.; Karlsen, S.R.; Brovkin, V.; Nemani, R.R.; Myneni, R.B. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 2016, 11, 084001. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.H.; Piao, S.L.; Xu, B.D.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Piao, S.; Wang, S.H.; Ciais, P.; Zeng, Z.Z.; Lu, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Li, S.C.; Motesharrei, S. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef] [Green Version]
- Salick, J.; Ghimire, S.K.; Fang, Z.D.; Dema, S.; Konchar, K.M. Himalayan alpine vegetation, climate change and mitigation. J. Ethnobiol. 2014, 34, 276–293. [Google Scholar] [CrossRef] [Green Version]
- Vanneste, T.; Michelsen, O.; Graae, B.J.; Kyrkjeeide, M.O.; Holien, H.; Hassel, K.; Lindmo, S.; Kapas, R.E.; De Frenne, P. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 2017, 32, 579–593. [Google Scholar] [CrossRef]
- Sun, J.; Hou, G.; Liu, M.; Fu, G.; Zhan, T.Y.; Zhou, H.K.; Tsunekawa, A.; Haregeweyn, N. Effects of climatic and grazing changes on desertification of alpine grasslands, Northern Tibet. Ecol. Indic. 2019, 107. [Google Scholar] [CrossRef]
- Li, A.N.; Deng, W.; Liang, S.L.; Huang, C.Q. Investigation on the Patterns of Global Vegetation Change Using a Satellite-Sensed Vegetation Index. Remote Sens. 2010, 2, 1530–1548. [Google Scholar] [CrossRef] [Green Version]
- Salick, J.; Fang, Z.D.; Byg, A. Eastern Himalayan alpine plant ecology, Tibetan ethnobotany, and climate change. Glob. Environ. Change Hum. Policy Dimens. 2009, 19, 147–155. [Google Scholar] [CrossRef]
- Zhou, S.; Peng, L. Applying Bayesian Belief Networks to Assess Alpine Grassland Degradation Risks: A Case Study in Northwest Sichuan, China. Front. Plant Sci. 2021, 12, 773759. [Google Scholar] [CrossRef] [PubMed]
- Hao, A.H.; Duan, H.C.; Wang, X.F.; You, Q.G.; Peng, F.; Du, H.Q.; Zhao, G.H.; Liu, F.Y.; Li, C.Y.; Lai, C.M.; et al. Different response of alpine meadow and alpine steppe to climatic and anthropogenic disturbance on the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 2021, 27, e01512. [Google Scholar] [CrossRef]
- Sun, J.; Qin, X.J.; Yang, J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Environ. Monit. Assess. 2016, 188, 20. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.P.; Bai, H.Y.; Deng, C.H.; Wu, T. Sensitivity of Vegetation on Alpine and Subalpine Timberline in Qinling Mountains to Temperature Change. Forests 2019, 10, 1105. [Google Scholar] [CrossRef] [Green Version]
- Weijers, S.; Pape, R.; Loffler, J.; Myers-Smith, I.H. Contrasting shrub species respond to early summer temperatures leading to correspondence of shrub growth patterns. Environ. Res. Lett. 2018, 13, 034005. [Google Scholar] [CrossRef]
Category | Index | Spatial Resolution | Time Resolution | References |
---|---|---|---|---|
GIMMS NDVI | NDVI | 1/12° | Half a month | Eastman, et al. [21] |
ERA | Temperature | 0.25° | One month | Zhang, et al. [22] |
Precipitation | 0.25° | One month | Guan, Lu, Yin, Xue, Jiang, Kang, He and Heiskanen [17] | |
Soil Moisture | 0.25° | One month | Li, et al. [23] | |
Albedo | 0.75° | One month | Li, et al. [24] | |
Sunshine Duration | 0.75° | One month | Wang, Fan, Frappart, Ciais, Sun, Liu, Li, Liu, Moisy and Wigneron [18] | |
MODIS land cover type product | Vegetation | 0.5° | One year | Chen, et al. [25] |
Alpine regions | Alpine regions | 30 m | - | Testolin, Attorre and Jimenez-Alfaro [19] |
SlopeOB | Driver | Driver Division | Contribution Rate (%) | ||
---|---|---|---|---|---|
SlopeNI | SlopeAI | NI | AI | ||
>0 | NI & AI | >0 | >0 | SlopeNI/SlopeOB | SlopeAI/SlopeOB |
NI | >0 | <0 | 100 | 0 | |
AI | <0 | >0 | 0 | 100 | |
<0 | NI & AI | <0 | <0 | SlopeNI/SlopeOB | SlopeAI/SlopeOB |
NI | <0 | >0 | 100 | 0 | |
AI | >0 | <0 | 0 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Sun, J.; Lu, Y.; Song, X. Influence of Anthropogenic Activities and Major Natural Factors on Vegetation Changes in Global Alpine Regions. Land 2022, 11, 1084. https://doi.org/10.3390/land11071084
Zhang Y, Sun J, Lu Y, Song X. Influence of Anthropogenic Activities and Major Natural Factors on Vegetation Changes in Global Alpine Regions. Land. 2022; 11(7):1084. https://doi.org/10.3390/land11071084
Chicago/Turabian StyleZhang, Yuxin, Juying Sun, Yafeng Lu, and Xueqian Song. 2022. "Influence of Anthropogenic Activities and Major Natural Factors on Vegetation Changes in Global Alpine Regions" Land 11, no. 7: 1084. https://doi.org/10.3390/land11071084
APA StyleZhang, Y., Sun, J., Lu, Y., & Song, X. (2022). Influence of Anthropogenic Activities and Major Natural Factors on Vegetation Changes in Global Alpine Regions. Land, 11(7), 1084. https://doi.org/10.3390/land11071084