Fluvial Sediment Yields in Hyper-Arid Areas, Exemplified by Nahal Nehushtan, Israel
Abstract
:1. Introduction
- To study the sedimentary sequence deposited during the past 60 years in the Nehushtan Reservoir,
- To calculate the overall and the event sediment yields.
- To compare these values to the scant information available on specific sediment yields from hyper-arid watersheds worldwide.
2. Materials and Methods
2.1. Study Site
2.2. Stratigraphic Characterization
2.3. Assessment of Sediment Yield
2.4. Characterization of the 2010 and 2015 Flood Events
3. Results
3.1. Reservoir Structure
3.2. Sediment Deposition in the Reservoir
3.3. Water Volume and Sediment in the 2010 and 2015 Flood Events
3.4. Event Layer Correlation and Sediment Yield
4. Discussion
4.1. Nahal Nehushtan Reservoir—60 Years of Sediment Record
4.2. Sediment Yield in Arid Environments, the Role of Watershed Area and the Frequency of Flow Events
Watershed | Area | Mean Rain | Duration | # of Events | Mean Annual Specific SY | Specific Event SY | Source |
---|---|---|---|---|---|---|---|
km2 | mm year−1 | years | t km−2 year−1 | t km−2 | |||
† Mojave Desert | 0.05 | 65–190 | 90 | 25 | 24 | 3 | [70] |
Yael | 0.5 | 25 | 10 | 4 | ‡ 127 | ‡ 318 | [48] |
Hatsera | 7.3 | 80 | 25–30 | 18 | 110–130 | 180 | [49] |
Nehushtan | 11.9 | 25 | 60 | 13 | 29.8 | 137 | current study |
Rahaf | 78 | 50–130 | 10 | 13 | 215 | 165 | [71] |
Wadi Asserin | 81.3 | 117 | 9 | 8 | 71 | 80 | [72,73] |
Heimar | 360 | 50–110 | 4 | 7 | 208 | 119 | [74] |
Neqarot- En Yahav reservoir | 984 | 40–100 | 20 | 8 | 71.8 | 180 | [13] |
Hiyyon- Eshet reservoir | 1260 | 30–50 | 9 | 5 | 38.6 | 69.5 | [13] |
Zin | 1400 | 50–100 | 3 | 4 | 107 | 21 | [75] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moral, F.J.; Rebollo, F.J.; Paniagua, L.L.; García-Martín, A.; Honorio, F. Spatial distribution and comparison of aridity indices in Extremadura, southwestern Spain. Theor. Appl. Climatol. 2016, 126, 801–814. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, G.; Zhang, Y.; Guan, X.; Wei, Y.; Guo, R. Global desertification vulnerability to climate change and human activities. Land. Degrad. Dev. 2020, 31, 1380–1391. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Nicolai, M.; Okem, A.; Petzold, J.; et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Kahana, R.; Ziv, B.; Enzel, Y.; Dayan, U. Synoptic climatology of major floods in the Negev Desert, Israel. Int. J. Climatol. 2002, 22, 867–882. [Google Scholar] [CrossRef]
- Smith, J.A.; Baeck, M.L.; Yang, L.; Signell, J.; Morin, E.; Goodrich, D.C. The paroxysmal precipitation of the desert: Flash floods in the southwestern United States. Water. Resour. Res. 2019, 55, 10218–10247. [Google Scholar] [CrossRef]
- Dayan, U.; Morin, E. Flash flood-producing rainstorms over the Dead Sea: A review. In New Frontiers in Dead Sea Paleoenvironmental Research; Enzel, Y., Agnon, A., Stein, M., Eds.; Special Paper of the Geological Society of America; Geological Society of America: McLean, VA, USA, 2006; Volume 401, pp. 53–62. [Google Scholar] [CrossRef]
- House, P.K.; Baker, V.R. Paleohydrology of flash floods in small desert watersheds in western Arizona. Water. Resour. Res. 2001, 37, 1825–1839. [Google Scholar] [CrossRef]
- Zituni, R.; Greenbaum, N.; Porat, N.; Benito, G. Magnitude, frequency and hazard assessment of the largest floods in steep, mountainous bedrock channels of the Southern Judean Desert, Israel. J. Hydrol. Reg. Stud. 2021, 37, 100886. [Google Scholar] [CrossRef]
- Belachsen, I.; Marra, F.; Peleg, N.; Morin, E. Convective rainfall in a dry climate: Relations with synoptic systems and flash-flood generation in the Dead Sea region. Hydrol. Earth. Syst. Sc. 2017, 21, 5165–5180. [Google Scholar] [CrossRef] [Green Version]
- Yair, A.; Sharon, D.; Lavee, H. Trends in runoff and erosion processes over an arid limestone hillside, northern Negev, Israel. Hydrol. Sci. B. 1980, 25, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Zoccatelli, D.; Marra, F.; Armon, M.; Rinat, Y.; Smith, J.A.; Morin, E. Contrasting rainfall-runoff characteristics of floods in desert and Mediterranean basins. Hydrol. Earth. Syst. Sci. 2019, 23, 2665–2678. [Google Scholar] [CrossRef] [Green Version]
- Bahat, Y.; Grodek, T.; Lekach, J.; Morin, E. Rainfall-runoff modeling in a small hyper-arid catchment. J. Hydrol. 2009, 373, 204–217. [Google Scholar] [CrossRef]
- Laronne, J.B.; Wilhelm, R. Shifting stage-volume curves: Predicting event sedimentation rate based on reservoir stratigraphy. In Applying Geomorphology to Environmental Management; Anthony, D.J., Ethridge, F., Harvey, M., Laronne, J.B., Mosley, M.P., Eds.; Water Resources Publ.: Highlands Ranch, CO, USA, 2001; pp. 33–54. [Google Scholar]
- Alexandrov, Y.; Laronne, J.B.; Reid, I. Suspended sediment concentration and its variation with water discharge in a dryland ephemeral channel, northern Negev, Israel. J. Arid. Environ. 2003, 53, 73–84. [Google Scholar] [CrossRef]
- Ta, W.; Wang, H.; Jia, X. The contribution of aeolian processes to fluvial sediment yield from a desert watershed in the Ordos Plateau, China. Hydrol. Process. 2015, 29, 80–89. [Google Scholar] [CrossRef]
- Lane, L.J.; Hernandez, M.; Nichols, M. Processes controlling sediment yield from watersheds as functions of spatial scale. Environ. Modell. Softw. 1997, 12, 355–369. [Google Scholar] [CrossRef]
- Nichols, M.H.; Nearing, M.A.; Polyakov, V.O.; Stone, J.J. A sediment budget for a small semiarid watershed in southeastern Arizona, USA. Geomorphology 2013, 180–181, 137–145. [Google Scholar] [CrossRef]
- Alexandrov, Y.; Cohen, H.; Laronne, J.B.; Reid, I. Suspended sediment load, bed load, and dissolved load yields from a semiarid drainage basin: A 15-year study. Water. Resour. Res. 2009, 45, 1–13. [Google Scholar] [CrossRef]
- Håkanson, L. Sedimentation processes in lakes. In Encyclopedia of Lakes and Reservoirs. Encyclopedia of Earth Sciences Series; Bengtsson, L., Herschy, R.W., Fairbridge, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Kang, R.S.; Chacko, E.; Kaur, D.; Viadero, R. Silting patterns in the reservoirs of small- and medium-sized earthen check dams in humid subtropical monsoon regions, Earth. Surf. Proc. Land. 2019, 44, 2638–2648. [Google Scholar] [CrossRef]
- Czymzik, M.; Dulski, P.; Plessen, B.; von Grafenstein, U.; Naumann, R.; Brauer, A. A 450 year record of spring-summer flood layers in annually laminated sediments from Lake Ammersee (southern Germany). Water. Resour. Res. 2010, 46, W11528. [Google Scholar] [CrossRef] [Green Version]
- Leeder, M.R. Sedimentology: Process and Product; Chapman and Hall: London, UK, 1982. [Google Scholar]
- Allen, J.R.L. Principles of Physical Sedimentology; Blackburn Press: Caldwell, NJ, USA, 2001; p. 272. [Google Scholar]
- Annandale, G.W. Reservoir Sedimentation. In Encyclopedia of Hydrological Sciences; Anderson, M.G., McDonnell, J.J., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2006. [Google Scholar]
- Clapp, E.M.; Bierman, P.R.; Schick, A.P.; Lekach, J.; Enzel, Y.; Caffee, M. Sediment yield exceeds sediment production in arid region drainage basins. Geology 2000, 28, 995–998. [Google Scholar] [CrossRef]
- El Haj El Tahir, M.; Kääb, A.; Xu, C.Y. Identification and mapping of soil erosion areas in the Blue Nile, Eastern Sudan using multispectral ASTER and MODIS satellite data and the SRTM elevation model. Hydrol. Earth. Syst. Sci. 2010, 14, 1167–1178. [Google Scholar] [CrossRef] [Green Version]
- Bahrawi, J.A.; Elhag, M.; Aldhebiani, A.Y.; Galal, H.K.; Hegazy, A.K.; Alghailani, E. Soil erosion estimation using remote sensing techniques in Wadi Yalamlam basin, Saudi Arabia. Adv. Mater. Sci. Eng. 2016, 2016, 9585962. [Google Scholar] [CrossRef] [Green Version]
- Şen, Z. Sediment yield estimation formulations for arid regions. Arab. J. Geosci. 2014, 7, 1627–1636. [Google Scholar] [CrossRef]
- Lekach, J.B.; Schick, P. Suspended sediment in desert floods in small catchments. Isr. J. Earth. Sci. 1982, 31, 144–156. [Google Scholar]
- Bunte, K.; Abt, S.R. Effect of sampling time on measured gravel bed load transport rates in a coarse-bedded stream. Water. Resour. Res. 2005, 41, W11405. [Google Scholar] [CrossRef] [Green Version]
- Reid, I.; Laronne, J.B.; Powell, D.M. Flood flows, sediment fluxes and reservoir sedimentation in upland desert rivers. In Hydrology in a Changing Environment; Wheater, H., Kirby, C., Eds.; John Wiley: New York, NY, USA, 1998; pp. 377–386. [Google Scholar]
- Lucía, A.; Recking, A.; Martín-Duque, J.F.; Storz-Peretz, Y.; Laronne, J.B. Continuous monitoring of bedload discharge in a small, steep sandy channel. J. Hydrol. 2013, 497, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Rickenmann, D.; Turowski, J.M.; Fritschi, B.; Wyss, C.; Laronne, J.; Barzilai, R.; Reid, I.; Kreisler, A.; Aigner, J.; Seitz, H.; et al. Bedload transport measurements with impact plate geophones: Comparison of sensor calibration in different gravel-bed streams. Earth Surf. Proc. Landf. 2014, 39, 928–942. [Google Scholar] [CrossRef]
- Geay, T.; Belleudy, P.; Gervaise, C.; Habersack, H.; Aigner, J.; Kreisler, A.; Seitz, H.; Laronne, J.B. Passive acoustic monitoring of bed load discharge in a large gravel bed river. J. Geophys. Res.-Earth. 2017, 122, 528–545. [Google Scholar] [CrossRef]
- Dietze, M.; Lagarde, S.; Halfi, E.; Laronne, J.B.; Turowski, J.M. Joint sensing of bedload flux and water depth by seismic data inversion. Water. Resour. Res. 2019, 55, 9892–9904. [Google Scholar] [CrossRef] [Green Version]
- Foster, I.D.L.; Dearing, J.A.; Grew, R.; Orend, K. The sedimentary data base: An appraisal of lake and reservoir sediment-based studies of sediment yield. Int. Assoc. Hydrol. Sci. 1990, 189, 19–43. [Google Scholar]
- Millares, A.; Moñino, A. Sediment yield and transport process assessment from reservoir monitoring in a semi-arid mountainous river. Hydrol. Process. 2018, 32, 2990–3005. [Google Scholar] [CrossRef]
- Lekach, J.; Enzel, Y. Flood-duration integrated stream power and frequency magnitude of >50- year-long sediment discharge out of a hyper arid watershed. Earth Surf. Proc. Land. 2021, 46, 1348. [Google Scholar] [CrossRef]
- Evans, M.; Church, M.A. Method for error analysis of sediment yields derived from estimates of lacustrine sediment accumulation. Earth Surf. Proc. Landf. 2000, 25, 1257–1267. [Google Scholar] [CrossRef]
- Verstraeten, G.; Poesen, J. Using sediment deposits in small ponds to quantify sediment yield from small catchments: Possibilities and limitations. Earth Surf. Proc. Landf. 2002, 27, 1425–1439. [Google Scholar] [CrossRef]
- Hereford, R. Sediment-yield history of a small basin in southern Utah, 1937-1976: Implications for land management and geomorphology. Geology 1987, 15, 954–957. [Google Scholar] [CrossRef]
- Geilhausen, M.; Otto, J.C.; Morche, D.; Schrott, L. Decadal sediment yield from an Alpine proglacial zone inferred from reservoir sedimentation (Pasterze, Hohe Tauern, Austria). In Erosion and Sediment Yields in the Changing Environment; Collins, A.L., Golosov, V., Horrowitz, A.J., Lu, X., Stone, M., Walling, D.E., Zhang, X., Eds.; IAHS Press: Wallingford, UK, 2012; pp. 161–172. [Google Scholar]
- Brune, G.M. Trap efficiency of reservoirs. EOS 1953, 34, 407–418. [Google Scholar] [CrossRef]
- Reinwarth, B.; Riddell, E.S.; Glotzbach, C.; Baade, J. Estimating the sediment trap efficiency of intermittently dry reservoirs: Lessons from the Kruger National Park, South Africa. Earth Surf. Proc. Landf. 2018, 43, 463–481. [Google Scholar] [CrossRef]
- Morris, G.L.; Annandale, G.; Hotchkiss, R. Reservoir Sedimentation. In Sedimentation Engineering: Processes, Measurements, Modeling, and Practice; García, M.H., Ed.; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 579–612. [Google Scholar]
- Heinemann, H.G. A new sediment trap efficiency curve for small reservoirs. J. Am. Water. Resour. As. 1981, 17, 825–830. [Google Scholar] [CrossRef]
- Laronne, J.B. Event-based deposition in the ever-emptying Yatir Reservoir, Israel. In The Hydrology-Geomorphology Interface: Rainfall, Floods, Sedimentation, Land Use; Hassan, M.A., Slaymaker, O., Berkowicz, S.M., Eds.; IAHS Press: Wallingford, UK, 2000; pp. 285–302. [Google Scholar]
- Lambert, A.; Hsu, K.J. Non-annual cycles of varve-like sedimentation in Walensee, Switzerland. Sedimentology 1979, 26, 453–461. [Google Scholar] [CrossRef]
- Schick, A.P.; Lekach, J. An evaluation of two ten-year sediment budgets, Nahal Yael, Israel. Phys. Geogr. 1993, 14, 225–238. [Google Scholar] [CrossRef]
- Schwartz, U.; Greenbaum, N. Extremely high sediment yield from a small arid catchment-Giv’at Hayil, northwestern Negev, Israel. Isr. J. Earth Sci. 2008, 57, 167–175. [Google Scholar] [CrossRef]
- Wolman, M.G.; Miller, J.P. Magnitude and frequency of forces in geomorphic processes. J. Geol. 1960, 68, 54–74. [Google Scholar] [CrossRef] [Green Version]
- Laronne, J.B.; Reid, L. Very high rates of bedload sediment transport by ephemeral desert rivers. Nature 1993, 366, 148–150, (and 113). [Google Scholar] [CrossRef]
- Walling, D.E.; Kleo, A.H.A. Sediment yields of rivers in areas of low precipitation: A global view. In The Hydrology of Areas of Low Precipitation; IAHS, Ed.; IAHS-AISH Publication 128: Wallingford, UK, 1979; pp. 479–493. [Google Scholar]
- Sharma, K.D. Soil erosion and sediment yield in the Indian arid zone. In Erosion and Sediment Yield: Global and Regional Perspectives; Walling, D.E., Webb, B.W., Eds.; IAHS Press: Wallingford, UK, 1996; pp. 175–182. [Google Scholar]
- Storz-Peretz, Y.; Laronne, J.B. The morpho-textural signature of large bedforms in ephemeral gravel-bed channels of various planforms. Hydrol. Process. 2018, 32, 617–635. [Google Scholar] [CrossRef]
- Sharma, K.D.; Vangani, N.S.; Choudhari, J.S. Sediment transport characteristics of the desert streams in India. J. Hydrol. 1984, 67, 261–272. [Google Scholar] [CrossRef]
- Jones, P.A.; Loughran, R.J.; Elliott, G.L. Sedimentation in a semi-arid zone reservoir in Australia determined by 137Cs. Acta Geol. Hisp. 2000, 35, 329–338. [Google Scholar]
- Totin, H.S.V.; Zannou, A.; Amoussou, E.; Afouda, A.; Boko, M. Progressive aridity impact on the hydrological regime in the Volta River basin in Benin (West Africa). In Hydrology in a Changing World: Environmental and Human Dimensions; Daniell, T.M., Van Lanen, H.A.J., Demuth, S., Laaha, G., Servat, E., Mahé, G., Boyer, J.-F., Paturel, J.-E., Dezetter, A., Ruelland, D., Eds.; IAHS Press: Wallingford, UK, 2014; pp. 17–22. [Google Scholar]
- Ahmed, K.; Shahid, S.; Wang, X.; Nawaz, N.; Khan, N. Spatiotemporal changes in aridity of Pakistan during 1901–2016. Hydrol. Earth. Syst. Sci. 2019, 23, 3081–3096. [Google Scholar] [CrossRef] [Green Version]
- Berdugo, M.; Delgado-Baquerizo, M.; Soliveres, S.; Hernández-Clemente, R.; Zhao, Y.; Gaitán, J.J.; Gross, N.; Saiz, H.; Maire, V.; Lehman, A.; et al. Global ecosystem thresholds driven by aridity. Science 2020, 367, 787–790. [Google Scholar] [CrossRef] [Green Version]
- Israel Meteorological Service Data Base, Eilat Station 1949–2022. Available online: https://ims.data.gov.il/he/ims-results (accessed on 4 July 2022).
- Beyth, M.; Segev, A.; Ginat, H. Stratigraphy and structure of the Timna Valley and adjacent ancient mining areas. In Mining for Ancient Copper: Essays in Memory of Beno Rothenberg; Ben-Yosef, E., Ed.; The Institute of Archaeology of Tel Aviv University: Tel Aviv, Israel, 2018; pp. 3–20. [Google Scholar]
- Abdulrazzak, M.J.; Sorman, A.U. Transmission losses from ephemeral streams in arid region. J. Irrig. Drain. E 1994, 120, 669–675. [Google Scholar] [CrossRef]
- Shentsis, I.; Meirovich, L.; Ben-Zvi, A.; Rosenthal, E. Assessment of transmission losses and groundwater recharge from runoff events in a wadi under shortage of data on lateral inflow, Negev, Israel. Hydrol. Process. 1999, 13, 1649–1663. [Google Scholar] [CrossRef]
- Dahan, O.; Tatarsky, B.; Enzel, Y.; Kulls, C.; Seely, M.; Benito, G. Dynamics of flood water infiltration and ground water recharge in hyperarid desert. Ground Water 2008, 46, 450–461. [Google Scholar] [CrossRef]
- Wolman, M.G.; Gerson, R. Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surf. Process. 1978, 3, 189–208. [Google Scholar] [CrossRef]
- Gellis, A.C.; Elliott, J.G.; Pavich, M. Geomorphic processes responsible for decadal-scale arroyo changes, Rio Puerco, New Mexico. GSA Bull. 2017, 129, 1660–1680. [Google Scholar] [CrossRef]
- Tooth, S. Dryland fluvial environments: Assessing distinctiveness and diversity from a global perspective. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: San Diego, CA, USA, 2013; Volume 9, pp. 612–644. [Google Scholar] [CrossRef]
- Langbein, W.B.; Schumm, S.A. Yield of sediment in relation to mean annual precipitation. Eos 1958, 39, 1076–1084. [Google Scholar] [CrossRef] [Green Version]
- Mosley, M.P. Bedload transport and sediment yield in the Onyx River, Antarctica. Earth Surf. Proc. Landf. 1988, 13, 51–67. [Google Scholar] [CrossRef]
- Griffiths, P.G.; Hereford, R.; Webb, R.H. Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A. Geomorphology 2006, 74, 232–244. [Google Scholar] [CrossRef]
- Munwes, Y. Record of Event Sedimentation in a Mining Pit in Nahal Rahaf, South of the Dead Sea; Seminar Report Submitted to the Department of Geography & Environmental Development, Ben Gurion University; Ben Gurion University: Beer Sheva, Israel, 2008. (In Hebrew) [Google Scholar]
- Saber, M.; Kantoush, S.; Sumi, T.; Ogiso, Y. Reservoir sedimentation at Wadi System: Challenges and management strategies. Disaster Prev. Res. Inst. Annu. 2019, 62, 689–699. [Google Scholar]
- Al-Harrasi, T.; Kantoush, S.A.; Sumi, T.; Saber, M. Assessment of sedimentation using field investigation and UVA imaging at Asserin upstream dam, Wadi Mijlass, Oman. In Proceedings of the Fifth International Symposium on Flash Floods in Wadi Systems, ISFF 2020, Kyoto University, Kyoto, Japan, 25–28 February 2020; p. 70. [Google Scholar]
- Laronne, J.B.; Cohen, H. Optimization of Mining of Alluvial Material and Calculation of the Infilling of Reservoirs in the Southwestern Coast of the Dead Sea—A Summary of a 3-Year Research; Report submitted to the Dead Sea Works; Ben Gurion University: Beer Sheva, Israel, 1999. (In Hebrew) [Google Scholar]
- Taig, M. The use of sediment accumulating in flood reservoirs. In Reservoirs as a Source of Water to the Negev Desert; Laronne, J.B., Ed.; Ben-Gurion University: Beer Sheva, Israel, 1996; pp. 25–30. (In Hebrew) [Google Scholar]
- Ginat, H.; Shlomi, Y.; Batarseh, S.; Vogel, J. Reduction in precipitation levels in the Arava Valley (Southern Israel and Jordan), 1949–2009. J. Dead-Sea Arav. Res. 2011, 1, 1–7. [Google Scholar]
- Katz, T.; Ginat, H.; Eyal, G.; Steiner, Z.; Braun, Y.; Shalev, S.; Goodman-Tchernov, B.N. Desert flash floods form hyperpycnal flows in the coral-rich Gulf of Aqaba, Red Sea. Earth Planet. Sci. Lett. 2015, 417, 87–98. [Google Scholar] [CrossRef]
- Ryb, U.; Matmon, A.; Erel, Y.; Haviv, I.; Benedetti, L.; Hidy, A.J. Styles and rates of long-term denudation in carbonate terrains under a Mediterranean to hyper-arid climatic gradient. Earth Planet. Sci. Lett. 2014, 406, 142–152. [Google Scholar] [CrossRef]
- Yair, A.; Klein, M. The influence of surface properties on flow and erosion processes on debris covered slopes in an arid area. Catena 1973, 1, 1–18. [Google Scholar] [CrossRef]
- Cohen, H.; Laronne, J.B. High rates of sediment transport by flashfloods in the southern Judean Desert, Israel. Hydrol. Process. 2005, 19, 1687–1702. [Google Scholar] [CrossRef]
Flood Event | ||
---|---|---|
18 January 2010 | 25 October 2015 | |
Rain depth (mm) | 23–40 | 32–50 |
Flood volume (m3) | 36,100 | 77,100 |
Sediment volume (m3) | 2300 | 4770 |
Sediment yield (t) | 3250 | 6650 |
Specific sediment yield (t km−2) | 270 | 560 |
Sediment concentration * (%) | 9.0 | 8.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armoza-Zvuloni, R.; Shlomi, Y.; Abadi, I.; Shem-Tov, R.; Laronne, J.B. Fluvial Sediment Yields in Hyper-Arid Areas, Exemplified by Nahal Nehushtan, Israel. Land 2022, 11, 1050. https://doi.org/10.3390/land11071050
Armoza-Zvuloni R, Shlomi Y, Abadi I, Shem-Tov R, Laronne JB. Fluvial Sediment Yields in Hyper-Arid Areas, Exemplified by Nahal Nehushtan, Israel. Land. 2022; 11(7):1050. https://doi.org/10.3390/land11071050
Chicago/Turabian StyleArmoza-Zvuloni, Rachel, Yanai Shlomi, Itay Abadi, Rachamim Shem-Tov, and Jonathan B. Laronne. 2022. "Fluvial Sediment Yields in Hyper-Arid Areas, Exemplified by Nahal Nehushtan, Israel" Land 11, no. 7: 1050. https://doi.org/10.3390/land11071050
APA StyleArmoza-Zvuloni, R., Shlomi, Y., Abadi, I., Shem-Tov, R., & Laronne, J. B. (2022). Fluvial Sediment Yields in Hyper-Arid Areas, Exemplified by Nahal Nehushtan, Israel. Land, 11(7), 1050. https://doi.org/10.3390/land11071050