Evaluation for Appropriate Tillage of Sandy Land in Arid Sandy Area Based on Limitation Factor Exclusion Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Process
2.3. Evaluation Method
2.3.1. Clarity of Evaluation Object
2.3.2. Construction of the Evaluation Index System
- Land use types
- 2.
- Vegetation coverage
- 3.
- Ecological conditions
- 4.
- Irrigation conditions
- 5.
- Degree of salinization
2.3.3. Evaluate Appropriate Tillage Sandy
3. Results
3.1. Analysis of the Results of Suitable Arable Sandy Land from an Overall Perspective
3.2. Analysis of the Results of Suitable Arable Sandy Land from a Local Perspective
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, Y.; Wang, R.H.; Cai, Z.Y. Climate change and its influence on arid and semiarid area of China. J. Arid Land Resour. Environ. 2009, 23, 65–71. [Google Scholar]
- Zhang, H.B.; Peng, J.; Zhao, C.N.; Xu, Z.H.; Dong, J.Q.; Gao, Y. Wind speed in spring dominated the decrease in wind erosion across the Horqin Sandy Land in northern China. Ecol. Indic. 2021, 127, 107599. [Google Scholar] [CrossRef]
- Xu, D.Y.; Wang, Y.Q.; Wang, Z.Y. Linking priority areas and land restoration options to support desertification control in northern China. Ecol. Indic. 2022, 137, 108747. [Google Scholar] [CrossRef]
- Reed, M.S.; Fazey, I.; Stringer, L.C.; Raymond, C.M.; Akhtar-Schuster, M.; Begni, G.; Bigas, H.; Brehm, S.; Briggs, J.; Bryce, R.; et al. Knowledge management for land degradation monitoring and assessment: An analysis of contemporary thinking. Land Degrad. Dev. 2013, 24, 307–322. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, Y.; Li, S.; Motesharrei, S. Motesharrei Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.D.; Zheng, C.; Liu, X.H.; Lu, Y.D.; Chen, Y.F.; Wei, Y.; Ma, Y.D. NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecol. Indic. 2022, 137, 108745. [Google Scholar] [CrossRef]
- Pi, H.; Sharratt, B.; Feng, G.; Lei, J.Q. Evaluation of two empirical wind erosion models in arid and semi-arid regions of China and the USA. Environ. Model. Softw. 2017, 91, 28–46. [Google Scholar] [CrossRef] [Green Version]
- Van Pelt, R.S.; Hushmurodov, S.X.; Baumhardt, R.L.; Chappell, A.; Nearing, M.A.; Polyakov, V.O.; Strack, J.E. The reduction of partitioned wind and water erosion by conservation agriculture. Catena 2017, 148, 160–167. [Google Scholar] [CrossRef]
- Hu, Y.F.; Han, Y.Q.; Zhang, Y.Z. Land desertification and its influencing factors in Kazakhstan. J. Arid Environ. 2020, 180, 104203. [Google Scholar] [CrossRef]
- Li, X.L.; Gao, J.; Brierley, G.; Qiao, Y.M.; Zhang, J.; Yang, Y.W. Rangeland degradation on the Qinghai-Tibet plateau: Implications for rehabilitation. Land Degrad. Dev. 2013, 24, 72–80. [Google Scholar] [CrossRef]
- Wu, J.J.; Gao, Z.H.; Liu, Q.H.; Li, Z.Y.; Zhong, B. Methods for sandy land detection based on multispectral remote sensing data. Geoderma 2018, 316, 89–99. [Google Scholar] [CrossRef]
- Kong, Z.H.; Stinger, L.; Paavola, J.; Lu, Q. Situating China in the Global Effort to Combat Desertification. Land 2021, 10, 702. [Google Scholar] [CrossRef]
- Zhang, G.L.; Dong, J.W.; Xiao, X.M.; Hu, Z.M.; Sheldon, S. Effectiveness of ecological restoration projects in Horqin Sandy Land, China based on SPOT-VGT NDVI data. Ecol. Eng. 2012, 38, 20–29. [Google Scholar] [CrossRef]
- Wu, G.L.; Jia, C.; Huang, Z.; López-Vicentee, M.; Liu, Y. Plant litter crust appear as a promising measure to combat desertification in sandy land ecosystem. Catena 2021, 206, 105573. [Google Scholar] [CrossRef]
- Duan, H.; Wang, T.; Xue, X.; Liu, S.; Guo, J. Dynamics of aeolian desertification and its driving forces in the Horqin sandy land, northern China. Environ. Monit. Assess. 2014, 186, 6083–6096. [Google Scholar] [CrossRef]
- Wang, Y.S.; Liu, Y.S. New material for transforming degraded sandy land into productive farmland. Land Use Policy 2020, 92, 104477. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xu, D.Y.; Wang, Z.Y.; Zhang, Y. Balance of water supply and consumption during ecological restoration in arid regions of Inner Mongolia, China. J. Arid Environ. 2021, 186, 104406. [Google Scholar] [CrossRef]
- D’Odorico, P.; Bhattachan, A.; Davis, K.F.; Ravi, S.; Runyan, C. Global desertification: Drivers and feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- Schwieger, D.A.M.; Mbidzo, M. Socio-historical and structural factors linked to land degradation and desertification in Namibia’s former Herero ‘homelands’. J. Arid Environ. 2020, 178, 104151. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Chen, X.L.; Zhang, Z.; Zhou, Y.Y. Exploring an efficient sandy barren index for rapid mapping of sandy barren land from Landsat TM/OLI images. Int. J. Appl. Earth Obs. 2019, 80, 38–46. [Google Scholar] [CrossRef]
- Fan, J.Q.; Wang, L.; Qin, J.X.; Zhang, F.R.; Xu, Y. Evaluating cultivated land stability during the growing season based on precipitation in the Horqin Sandy Land, China. J. Environ. Manag. 2020, 276, 111269. [Google Scholar] [CrossRef]
- Ibáñez, J.; Valderrama, J.M.; Puigdefábregas, J. Assessing desertification risk using system stability condition analysis. Ecol. Model. 2008, 213, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Joseph, O.; Gbenga, A.E.; Langyit, D.G. Desertification risk analysis and assessment in Northern Nigeria. Remote Sens. Appl. 2018, 11, 70–82. [Google Scholar] [CrossRef]
- Akbari, M.; Shalamzari, M.J.; Memarian, H.; Gholami, A. Monitoring desertification processes using ecological indicators and providing management programs in arid regions of Iran. Ecol. Indic. 2020, 111, 106011. [Google Scholar] [CrossRef]
- Meng, X.Y.; Gao, X.; Li, S.; Li, S.Y.; Lei, J.Q. Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecol. Indic. 2021, 129, 107908. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Huisingh, D. Combating desertification in China: Monitoring, control, management and revegetation. J. Clean. Prod. 2018, 182, 765–775. [Google Scholar] [CrossRef]
- Touré, A.A.; Tidjani, A.D.; Rajot, J.L.; Marticorena, B.; Bergametti, G.; Bouet, C.; Ambouta, K.J.M.; Garba, Z. Dynamics of wind erosion and impact of vegetation cover and land use in the Sahel: A case study on sandy dunes in southeastern Niger. Catena 2019, 177, 272–285. [Google Scholar] [CrossRef]
- Kurmangozhinov, A.; Xue, W.; Li, X.Y.; Zeng, F.J.; Sabit, R.; Tusun, T. High biomass production with abundant leaf litterfall is critical to ameliorating soil quality and productivity in reclaimed sandy desertification land. J. Environ. Manag. 2020, 263, 110373. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Zhang, J.Q.; Tong, S.Q.; Guo, E.L. Monitoring the trends of aeolian desertified lands based on time-series remote sensing data in the Horqin Sandy Land, China. Catena 2017, 157, 286–298. [Google Scholar] [CrossRef]
- Feng, K.; Wang, T.; Liu, S.L.; Yan, C.Z.; Kang, W.P.; Chen, X.; Guo, Z.C. Path analysis model to identify and analyse the causes of aeolian desertification in Mu Us Sandy Land, China. Ecol. Indic. 2021, 124, 107386. [Google Scholar] [CrossRef]
- Tadesse, L.; Suryabhagavan, K.V.; Sridhar, G.; Leggesse, G. Land use and land cover changes and Soil erosion in Yezat Watershed, North Western Ethiopia. ISWCR 2017, 5, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Guan, C.K.; Ma, X.L.; Shi, X.P. The impact of collective and individual drip irrigation systems on fertilizer use intensity and land productivity: Evidence from rural Xinjiang, China. Water Res. Econ. 2022, 38, 100196. [Google Scholar] [CrossRef]
- Liu, Y.X.; Liu, S.L.; Sun, Y.X.; Wang, F.F.; Li, M.Q. Driving forces of cultivated land evolution in agro-pastoral areas on the Qinghai-Tibet Plateau based on ecological niche theory. J. Clean. Prod. 2021, 313, 127899. [Google Scholar] [CrossRef]
- Shang, Z.H.; Cao, J.J.; Degen, A.A.; Zhang, D.W.; Long, R.J. A four year study in a desert land area on the effect of irrigated, cultivated land and abandoned cropland on soil biological, chemical and physical properties. Catena 2019, 175, 1–8. [Google Scholar] [CrossRef]
- Kairis, O.; Karamanos, A.; Voloudakis, D.; Kapsomenakis, J.; Aratzioglou, C.; Zerefos, C.; Kosmas, C. Identifying Degraded and Sensitive to Desertification Agricultural Soils in Thessaly, Greece, under Simulated Future Climate Scenarios. Land 2022, 11, 395. [Google Scholar] [CrossRef]
- Kang, W.P.; Liu, S.L.; Chen, X.; Feng, K.; Guo, Z.C.; Wang, T. Evaluation of ecosystem stability against climate changes via satellite data in the eastern sandy area of northern China. J. Environ. Manag. 2022, 308, 114596. [Google Scholar] [CrossRef]
- Jiang, P.H.; Cheng, L.; Li, M.C.; Zhao, R.F.; Duan, Y.W. Impacts of LUCC on soil properties in the riparian zones of desert oasis with remote sensing data: A case study of the middle Heihe River basin, China. Sci. Total Environ. 2015, 506–507, 257–279. [Google Scholar] [CrossRef]
- Lv, N.N.; Lu, H.Y.; Pan, W.; Meadows, M.E. Factors controlling spatio-temporal variations of sandy deserts during the past 110 Years in Xinjiang, Northwestern China. J. Arid Environ. 2022, 201, 104749. [Google Scholar] [CrossRef]
- Duan, H.C.; Wang, T.; Xue, X.; Yan, C.Z. Dynamic monitoring of aeolian desertification based on multiple indicators in Horqin Sandy Land, China. Sci. Total Environ. 2019, 650, 2374–2388. [Google Scholar] [CrossRef]
- Huang, S.; Siegert, F. Land cover classification optimized to detect areas at risk of desertification in North China based on SPOT VEGETATION imagery. J. Arid Environ. 2006, 67, 308–327. [Google Scholar] [CrossRef]
- Chen, A.; Yang, X.C.; Guo, J.; Xing, X.Y.; Yang, D.; Xu, B. Synthesized remote sensing-based desertification index reveals ecological restoration and its driving forces in the northern sand-prevention belt of China. Ecol. Indic. 2021, 131, 108230. [Google Scholar] [CrossRef]
- Yu, X.W.; Zhuo, Y.; Liu, H.M.; Wang, Q.; Wen, L.; Li, Z.Y.; Liang, C.Z.; Wang, L.X. Degree of desertification based on normalized landscape index of sandy lands in inner Mongolia, China. Glob. Ecol. Conserv. 2020, 23, e01132. [Google Scholar] [CrossRef]
- Cheng, H.R.; Zhu, L.K.; Meng, J.J. Fuzzy evaluation of the ecological security of land resources in mainland China based on the Pressure-State-Response framework. Sci. Total Environ. 2022, 804, 150053. [Google Scholar] [CrossRef]
- He, L.; Liang, H.R.; Li, G.T.; Liu, X.F.; Qi, R.L.; Yang, W.B. Analysis on the characteristics and driving force of vegetation cover change in Hangjin Banner in recent 20 years. J. Ecol. Rural Environ. 2017, 35, 587–596. [Google Scholar]
- Jin, H.Y.; Chen, X.H.; Wang, Y.M.; Zhong, R.D.; Zhao, T.T.G.; Liu, Z.Y.; Tu, X.J. Spatio-temporal distribution of NDVI and its influencing factors in China. J. Hydrol. 2021, 603, 127129. [Google Scholar] [CrossRef]
Limited Evaluation Index | Inappropriate Tillage |
---|---|
Land use type | Other land use types except very-low-coverage grasslands (natural pastures and artificial pastures), other grasslands with very-low-coverage, saline-alkali land, inland tidal flats, semifixed dunes, and fixed dunes |
Vegetation coverage | Degree of vegetation cover in land use type |
Ecological conditions | In ecological reserves, or development may lead to land degradation |
Irrigation conditions | The natural precipitation is less than or equal to 350 mm and there is no irrigation condition, which cannot meet the requirements of crop growth |
Degree of salinization | The degree of soil salinization is more than severe |
Type of Sandy Land | Source of Land Type | Appropriate Sandy Land | Evaluation Object | Decrease Range (%) | ||
---|---|---|---|---|---|---|
Area (hm2) | Proportion (%) | Area (hm2) | Proportion (%) | |||
Recessive suitable ploughing sandy land | Cultivated land | 65,020.87 | 66.65 | 65,020.87 | 5.63 | 0.00 |
Inland tidal flats | 2010.90 | 2.06 | 3492.98 | 0.29 | 42.43 | |
Other grasslands | 1291.96 | 1.32 | 31,087.27 | 2.55 | 95.84 | |
Saline-alkali land | 214.03 | 0.22 | 314.54 | 0.03 | 31.95 | |
Natural grassland and artificial grassland | 5668.12 | 5.81 | 513,457.85 | 42.05 | 98.90 | |
Explicit suitable ploughing sandy land | Sandy land | 23,344.2 | 23.93 | 542,514.34 | 44.42 | 95.70 |
Total | 97,550.08 | 100.00 | 1,155,887.9 | 100.00 | 91.56 |
Source of Land Type | Balagong | Duguitala | Huhemudu | Jirigalangtu | Xini | Yihewususumu | Total | |
---|---|---|---|---|---|---|---|---|
Cultivated land | Area (hm2) | 5035.82 | 20,924.19 | 9918.49 | 21,500.25 | 0.00 | 7642.12 | 65,020.87 |
Proportion (%) | 7.74 | 32.18 | 15.25 | 33.07 | 0.00 | 11.75 | 100.00 | |
Low coverage grassland | Area (hm2) | 591.50 | 1612.45 | 536.39 | 11.85 | 625.6 | 2290.3 | 5668.12 |
Proportion (%) | 10.41 | 28.49 | 9.47 | 0.20 | 11.06 | 40.34 | 100.00 | |
Inland beach | Area (hm2) | 97.65 | 871.08 | 177.96 | 37.15 | 350.42 | 476.62 | 2010.9 |
Proportion (%) | 4.85 | 43.31 | 8.84 | 1.84 | 17.42 | 23.7 | 100.00 | |
Other grassland | Area (hm2) | 125.88 | 282.56 | 739.71 | 85.24 | 47.33 | 11.22 | 1291.96 |
Proportion (%) | 9.74 | 21.87 | 57.25 | 6.59 | 3.66 | 0.86 | 100.00 | |
Sandy land | Area (hm2) | 2203.13 | 12,034.83 | 3305.64 | 2795.02 | 238.31 | 2767.24 | 23,344.20 |
Proportion (%) | 9.43 | 51.55 | 14.16 | 11.97 | 1.02 | 11.85 | 100.00 | |
Saline-alkali land | Area (hm2) | 7.05 | 3.34 | 139.41 | 64.21 | 0.00 | 0.00 | 214.03 |
Proportion (%) | 3.29 | 1.56 | 65.13 | 30.00 | 0.00 | 0.00 | 100.00 | |
Total | Area (hm2) | 8061.03 | 35,728.45 | 14,817.60 | 24,493.72 | 1261.66 | 13,187.50 | 97,550.08 |
Proportion (%) | 8.26 | 36.63 | 15.19 | 25.11 | 1.29 | 13.52 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Cai, Z.; Wang, K.; Zhang, Y.; Zhang, F. Evaluation for Appropriate Tillage of Sandy Land in Arid Sandy Area Based on Limitation Factor Exclusion Method. Land 2022, 11, 807. https://doi.org/10.3390/land11060807
Xu Y, Cai Z, Wang K, Zhang Y, Zhang F. Evaluation for Appropriate Tillage of Sandy Land in Arid Sandy Area Based on Limitation Factor Exclusion Method. Land. 2022; 11(6):807. https://doi.org/10.3390/land11060807
Chicago/Turabian StyleXu, Yan, Zhaoyang Cai, Kaige Wang, Yuwei Zhang, and Fengrong Zhang. 2022. "Evaluation for Appropriate Tillage of Sandy Land in Arid Sandy Area Based on Limitation Factor Exclusion Method" Land 11, no. 6: 807. https://doi.org/10.3390/land11060807
APA StyleXu, Y., Cai, Z., Wang, K., Zhang, Y., & Zhang, F. (2022). Evaluation for Appropriate Tillage of Sandy Land in Arid Sandy Area Based on Limitation Factor Exclusion Method. Land, 11(6), 807. https://doi.org/10.3390/land11060807