Anthropogenic and Lightning Fire Incidence and Burned Area in Europe
Abstract
:1. Introduction
2. Data and Methods
2.1. Reference Data of Anthropogenic and Lightning Fires and Burned Area
2.2. Anthropogenic Fire Drivers
2.3. Climatic Fire Drivers
2.4. Landscape Fire Drivers
2.5. Statistical Analyses
2.5.1. Transformation for Compositional Data
2.5.2. Correlations
2.5.3. Random Forest Model
3. Results and Discussion
3.1. Variable Correlations
3.2. Random Forest Models
3.3. Model Performance
3.4. Implications and Directions for Future Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Code | Country | From | To | Notes |
---|---|---|---|---|
AL | Albania | - | - | |
AT | Austria | - | - | |
BE | Belgium | - | - | |
BG | Bulgaria | 2005 | 2019 | |
CH | Switzerland | 2001 | 2018 | |
CY | Cyprus | 2001 | 2016 | Only Greek part of CY |
CZ | Czech Republic | 2004 | 2019 | |
DE | Germany | 2001 | 2018 | Some NUTS regions missing |
DK | Denmark | - | - | |
EE | Estonia | 2005 | 2018 | |
EL | Greece | 2001 | 2011 | Some NUTS regions missing |
ES | Spain | 2001 | 2015 | Some NUTS regions missing |
FI | Finland | 2005 | 2019 | |
FR | France | 2001 | 2018 | |
HR | Croatia | 2001 | 2019 | |
HU | Hungary | 2002 | 2019 | |
IE | Ireland | - | - | |
IT | Italy | 2001 | 2015 | Autonomous regions (e.g., Sicily, Sardinia) often missing |
LT | Lithuania | 2004 | 2018 | |
LI | Liechtenstein | - | - | |
LV | Latvia | 2004 | 2018 | |
ME | Montenegro | - | - | |
MK | North Macedonia | - | - | |
MT | Malta | - | - | |
NL | Netherlands | 2017 | 2018 | |
NO | Norway | - | - | |
PL | Poland | 2001 | 2018 | |
PT | Portugal | 2001 | 2018 | |
RO | Romania | 2004 | 2018 | |
RS | Serbia | - | - | |
SE | Sweden | 2001 | 2018 | 1242 fires (451 ha) added to “Unknown code” category, as local and EU codes are mutually inconsistent |
SI | Slovenia | 2001 | 2019 | |
SK | Slovakia | 2004 | 2018 | |
TR | Turkey | 2005 | 2013 | 2009 and 2011 missing |
UK | United Kingdom | - | - |
References
- Bond, W.J.; Woodward, F.I.; Midgley, G.F. The global distribution of ecosystems in a world without fire. New Phytol. 2005, 165, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Veraverbeke, S.; Rogers, B.M.; Goulden, M.L.; Jandt, R.R.; Miller, C.E.; Wiggins, E.B.; Randerson, J.T. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Chang. 2017, 7, 529–534. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Dupuy, J.-L.; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate change impact on future wildfire danger and activity in southern Europe: A review. Ann. For. Sci. 2020, 77, 35. [Google Scholar] [CrossRef]
- Flannigan, M.; Stocks, B.; Turetsky, M.; Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Mouillot, F.; Rambal, S.; Joffre, R. Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Glob. Chang. Biol. 2002, 8, 423–437. [Google Scholar] [CrossRef]
- Cattau, M.E.; Wessman, C.; Mahood, A.; Balch, J.K. Anthropogenic and lightning-started fires are becoming larger and more frequent over a longer season length in the U.S.A. Glob. Ecol. Biogeogr. 2020, 29, 668–681. [Google Scholar] [CrossRef]
- Parks, S.A.; Abatzoglou, J.T. Warmer and Drier Fire Seasons Contribute to Increases in Area Burned at High Severity in Western US Forests From 1985 to 2017. Geophys. Res. Lett. 2020, 47, e2020GL089858. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abatzoglou, J.T.; Kolden, C.A.; Balch, J.K.; Bradley, B.A. Controls on interannual variability in lightning-caused fire activity in the western US. Environ. Res. Lett. 2016, 11, 045005. [Google Scholar] [CrossRef]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parente, J.; Pereira, M.G.; Amraoui, M.; Tedim, F. Negligent and intentional fires in Portugal: Spatial distribution characterization. Sci. Total Environ. 2018, 624, 424–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.M.; Vacik, H.; Diendorfer, G.; Arpaci, A.; Formayer, H.; Gossow, H. Analysis of lightning-induced forest fires in Austria. Theor. Appl. Climatol. 2013, 111, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Larjavaara, M.; Kuuluvainen, T.; Rita, H. Spatial distribution of lightning-ignited forest fires in Finland. For. Ecol. Manag. 2005, 208, 177–188. [Google Scholar] [CrossRef]
- Reineking, B.; Weibel, P.; Conedera, M.; Bugmann, H. Environmental determinants of lightning- v. human-induced forest fire ignitions differ in a temperate mountain region of Switzerland. Int. J. Wildland Fire 2010, 19, 541–557. [Google Scholar] [CrossRef]
- Adámek, M.; Jankovská, Z.; Hadincová, V.; Kula, E.; Wild, J. Drivers of forest fire occurrence in the cultural landscape of Central Europe. Landsc. Ecol. 2018, 33, 2031–2045. [Google Scholar] [CrossRef]
- Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ. 2011, 409, 3472–3481. [Google Scholar] [CrossRef]
- Chuvieco, E.; Pettinari, M.L.; Koutsias, N.; Forkel, M.; Hantson, S.; Turco, M. Human and climate drivers of global biomass burning variability. Sci. Total Environ. 2021, 779, 146361. [Google Scholar] [CrossRef]
- Ganteaume, A.; Guerra, F. Explaining the spatio-seasonal variation of fires by their causes: The case of southeastern France. Appl. Geogr. 2018, 90, 69–81. [Google Scholar] [CrossRef]
- Ganteaume, A.; Jappiot, M. What causes large fires in Southern France. For. Ecol. Manag. 2013, 294, 76–85. [Google Scholar] [CrossRef] [Green Version]
- San-Miguel-Ayanz, J.; Schulte, E.; Schmuck, G.; Camia, A. The European Forest Fire Information System in the context of environmental policies of the European Union. For. Policy Econ. 2013, 29, 19–25. [Google Scholar] [CrossRef]
- Camia, A.; Durrant, T.; San-Miguel-Ayanz, J. The European Fire Database: Technical Specifications and Data Submission; EUR 26546; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- Camia, A.; Durrant, T.; San-Miguel-Ayanz, J. Harmonized Classification Scheme of fire causes in the EU adopted for the European Fire Database of EFFIS; EUR 25923; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Jacobson, A.P.; Riggio, J.; Tait, A.M.; Baillie, J.E.M. Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Sci. Rep. 2019, 9, 14179. [Google Scholar] [CrossRef]
- Cecil, D.J.; Buechler, D.E.; Blakeslee, R.J. Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res. 2014, 135–136, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); Open-File Report 2011-1073; U.S. Geological Survey: Reston, VA, USA, 2011.
- European-Environment-Agency. High Resolution Layer: Tree Cover Density (TCD) 2018; European-Environment-Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Chen, Y.; Romps, D.M.; Seeley, J.T.; Veraverbeke, S.; Riley, W.J.; Mekonnen, Z.A.; Randerson, J.T. Future increases in Arctic lightning and fire risk for permafrost carbon. Nat. Clim. Chang. 2021, 11, 404–410. [Google Scholar] [CrossRef]
- Ramo, R.; Roteta, E.; Bistinas, I.; van Wees, D.; Bastarrika, A.; Chuvieco, E.; van der Werf, G.R. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. USA 2021, 118, e2011160118. [Google Scholar] [CrossRef]
- Badia, A.; Serra, P.; Modugno, S. Identifying dynamics of fire ignition probabilities in two representative Mediterranean wildland-urban interface areas. Appl. Geogr. 2011, 31, 930–940. [Google Scholar] [CrossRef]
- Vilar, L.; Woolford, D.; Martell, D.; Martín, M. A model for predicting human-caused wildfire occurrence in the region of Madrid, Spain. Int. J. Wildland Fire 2010, 19, 325–337. [Google Scholar] [CrossRef]
- Dickson, B.G.; Prather, J.W.; Xu, Y.; Hampton, H.M.; Aumack, E.N.; Sisk, T.D. Mapping the probability of large fire occurrence in northern Arizona, USA. Landsc. Ecol. 2006, 21, 747–761. [Google Scholar] [CrossRef]
- Nunes, A.N. Regional variability and driving forces behind forest fires in Portugal an overview of the last three decades (1980–2009). Appl. Geogr. 2012, 34, 576–586. [Google Scholar] [CrossRef]
- Riley, S.; Degloria, S.; Elliot, S.D. A Terrain Ruggedness Index That Quantifies Topographic Heterogeneity. Int. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Stat. Soc. Ser. B 1982, 44, 139–177. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Li, S. Multiple linear regression with compositional response and covariates. J. Appl. Stat. 2017, 44, 2270–2285. [Google Scholar] [CrossRef]
- van den Boogaart, K.G.; Filzmoser, P.; Hron, K.; Templ, M.; Tolosana-Delgado, R. Classical and Robust Regression Analysis with Compositional Data. Math. Geosci. 2021, 53, 823–858. [Google Scholar] [CrossRef]
- Corsmeier, U.; Kalthoff, N.; Barthlott, C.; Aoshima, F.; Behrendt, A.; Di Girolamo, P.; Dorninger, M.; Handwerker, J.; Kottmeier, C.; Mahlke, H.; et al. Processes driving deep convection over complex terrain: A multi-scale analysis of observations from COPS IOP 9c. Q. J. R. Meteorol. Soc. 2011, 137, 137–155. [Google Scholar] [CrossRef]
- Harrison, S.P.; Prentice, I.C.; Bloomfield, K.J.; Dong, N.; Forkel, M.; Forrest, M.; Ningthoujam, R.K.; Pellegrini, A.; Shen, Y.; Baudena, M.; et al. Understanding and modelling wildfire regimes: An ecological perspective. Environ. Res. Lett. 2021, 16, 125008. [Google Scholar] [CrossRef]
- Conedera, M.; Cesti, G.; Pezzatti, G.B.; Zumbrunnen, T.; Spinedi, F. Lightning-induced fires in the Alpine region: An increasing problem. For. Ecol. Manag. 2006, 234, S68. [Google Scholar] [CrossRef]
- Fernandez-Anez, N.; Krasovskiy, A.; Müller, M.; Vacik, H.; Baetens, J.; Hukić, E.; Kapovic Solomun, M.; Atanassova, I.; Glushkova, M.; Bogunović, I.; et al. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air Soil Water Res. 2021, 14, 11786221211028185. [Google Scholar] [CrossRef]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
Independent Variable | Source | Min | Max | ||
---|---|---|---|---|---|
Population density [people per km2] | Eurostat | 1.98 | 8927 | 235.9 | 538.7 |
Human land impact [%] | Jacobsen et al., 2019 [26] | 1.0 | 100.0 | 80 | 18 |
Lightning flashes per km2 yr−1 | Cecil et al., 2014 [27] | 0.13 | 21.32 | 4.36 | 2.78 |
Burned area coefficient of variation [-] | Giglio et al., 2018 [28] | 0.53 | 12.67 | 4.43 | 4.18 |
Altitude [m] | Danielson & Gesch, 2011 [29] | −1.22 | 2266.0 | 354.9 | 368.71 |
Terrain Ruggedness Index [-] | Danielson & Gesch, 2011 [29] | 1.37 | 965.04 | 155.77 | 165.66 |
Tree cover density [%] | Copernicus Land Monitoring Service [30] | 0 | 64 | 24 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dijkstra, J.; Durrant, T.; San-Miguel-Ayanz, J.; Veraverbeke, S. Anthropogenic and Lightning Fire Incidence and Burned Area in Europe. Land 2022, 11, 651. https://doi.org/10.3390/land11050651
Dijkstra J, Durrant T, San-Miguel-Ayanz J, Veraverbeke S. Anthropogenic and Lightning Fire Incidence and Burned Area in Europe. Land. 2022; 11(5):651. https://doi.org/10.3390/land11050651
Chicago/Turabian StyleDijkstra, Jasper, Tracy Durrant, Jesús San-Miguel-Ayanz, and Sander Veraverbeke. 2022. "Anthropogenic and Lightning Fire Incidence and Burned Area in Europe" Land 11, no. 5: 651. https://doi.org/10.3390/land11050651
APA StyleDijkstra, J., Durrant, T., San-Miguel-Ayanz, J., & Veraverbeke, S. (2022). Anthropogenic and Lightning Fire Incidence and Burned Area in Europe. Land, 11(5), 651. https://doi.org/10.3390/land11050651