Ecosystem Stability Assessment of Yancheng Coastal Wetlands, a World Natural Heritage Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Method
2.2.1. Soil Sampling and Analysis
2.2.2. Water Sampling and Analysis
2.3. Data Processing and Analysis
2.3.1. Construction of Ecosystem Stability Evaluation Index System
2.3.2. Methods and Data Sources
2.3.3. Evaluation Criteria and Grades for Coastal Wetland Ecosystem Stability
- (1)
- Selection of evaluation units
- (2)
- Evaluation grading standard
- (3)
- Grading evaluation of ecosystem stability
3. Results
3.1. General Ecosystem Stability Evaluation and Grading
3.2. Ecosystem Stability Evaluation in a Criterion Layer
3.3. Ecosystem Stability Evaluation in a Factor Layer
3.4. Ecosystem Stability Evaluation of Index Layer
4. Discussion
4.1. The Importance of Assessing the Stability of Coastal Wetland Ecosystems
4.2. Differences in Evaluation Results of Coastal Wetland Ecosystem Stability
4.3. Suggestions on the Stability of Coastal Wetland Ecosystems
4.4. Prospects for the Stability of Coastal Wetland Ecosystems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Indicator Layer | Calculation Method | Impact on Ecosystem Functioning |
---|---|---|
D1 | The change rate in the tidal flat area | Stabilize the shoreline, protect against storms, et al. |
D2 | The expansion rate of alien species (Spartina alterniflora) | Threats to native species diversity |
D3 | The proportion of regional construction land area in the total area. | Reduce ecological land and threaten ecosystem balance |
D4 | The fertilizer application within unit regional area | Contaminated soil and water quality |
D5 | The proportion of regional urban population in the total regional population | Urban sprawl destabilizes ecosystems |
D6 | The regional industrial wastewater discharge | Pollution of water and soil, threatening biological life |
D7 | The regional aquafarm area | Encroaching on ecological land |
D8 | The population distribution within unit area | Human activities disturb the natural environment |
D9 | The highway network route distribution within unit area | Road network construction interferes with the stability of the landscape |
D10 | The change rate in the regional area of aquafarms and dry ponds | Reclamation reduces natural wetland area |
D11 | Laboratory measurement | The content of nitrogen in the soil |
D12 | Laboratory measurement | The content of phosphorus in the soil |
D13 | Laboratory measurement | The content of potassium in the soil |
D14 | Laboratory measurement | The content of organic matter in the soil |
D15 | Laboratory measurement | Soil acid-base properties |
D16 | Laboratory measurement | Soil salinity properties |
D17 | Laboratory measurement | The content of organic pollutants in water |
D18 | Laboratory measurement | The degree of water pollution by nutrients |
D19 | Laboratory measurement | The degree of water pollution by nutrients |
D20 | Laboratory measurement | The degree of water pollution by nutrients |
D21 | Taking Phragmites australis, suaeda salsa and spartina alterniflora with larger coverages in Yancheng coastal wetland as the dominant species | The change of dominant species directly affects ecosystem stability |
D22 | The protection of regional habitats | Habitat assessment characterizes habitat quality |
D23 | The number of animal and plant species in records | Reflect the situation of biodiversity |
D24 | See Equation (1) | Reflect the integrity of the landscape pattern |
D25 | See Equation (2) | Reflect the sensitivity of the landscape to external disturbances |
D26 | See Equation (3) | Reflect the adaptability of the landscape to external disturbances |
D27 | See Equation (4) | Reflect the degree of external disturbance to the landscape |
D28 | The change rate in the regional natural wetland area | The ability to exert the ecological functions of natural wetlands |
D29 | The change rate in the regional artificial wetland area | Artificial wetlands encroach on natural wetlands |
D30 | Evaluated by experts scoring the regional wetland management status and the management team in the conservation area | The management level of coastal wetlands directly affects the normal performance of ecological functions |
D31 | The proportion of regional population accepting above middle school education in the total regional population | The quality of the surrounding population directly affects the protection of coastal wetlands |
D32 | The regional capital input into natural reserves | Capital investment is linked to the construction and protection of coastal wetlands |
D33 | The comprehensive utilization rate of regional industrial solid wastes | Industrial waste harms soil and water quality |
Main Indicators | Extremely Dangerous (1) | Dangerous (2) | Early Warning (3) | Relatively Stable (4) | Stable (5) |
---|---|---|---|---|---|
D1 (%) | <−40 | −20~−40 | −20~−10 | −10~0 | >0 |
D2 (%) | >30 | 20~30 | 10~20 | 5~10 | <5 |
D3 (%) | >20 | 15~20 | 10~15 | 5~10 | <5 |
D4 (%) | >350 | 300~350 | 250~300 | 200~250 | <200 |
D5 (10,000 tons) | >1000 | 800~1000 | 600~800 | 500~600 | <500 |
D6 (%) | <10 | 10~20 | 30~40 | 40~50 | >50 |
D7 (km2) | >400 | 350~400 | 200~350 | 0~200 | <0 |
D8 (10,000 people/square kilometer) | >1.5 | 1~1.5 | 0.5~1 | 0~0.5 | <0 |
D9 (km/km2) | >200 | 150~200 | 100~150 | 50~100 | <50 |
D10 (%) | >200 | 150~200 | 100~150 | 50~100 | <50 |
D11 (mg/kg) | <5 | 5~10 | 10~15 | 15~20 | >20 |
D12 (mg/kg) | <5 | 5~10 | 10~20 | 20~40 | >40 |
D13 (mg/kg) | <100 | 100~200 | 200~300 | 300~350 | >350 |
D14 (g/kg) | <10 | 10~20 | 20~30 | 30~40 | >40 |
D15 | >9.5 | 9~9.5 | 8.5~9 | 8~8.5 | <8 |
D16 (mg/kg) | >250 | 200~250 | 180~200 | 150~180 | <150 |
D17 (mg/L) | >2.5 | 2~2.5 | 1.5~2 | 1~1.5 | <1 |
D18 (mg/L) | >1.5 | 1~1.5 | 0.5~1 | 0.2~0.5 | <0.2 |
D19 (mg/L) | >2 | 1.5~2 | 1~1.5 | 0.5~1 | <0.5 |
D20 (mg/L) | >200 | 100~200 | 50~100 | 15~50 | <15 |
D21 (%) | <0.06 | 0.06~0.08 | 0.08~0.1 | 0.1~0.2 | >0.2 |
D22 | There are serious human activities such as reclamation, mowing, fishing and hunting in the area | Excessive human activities such as reclamation, mowing, fishing and hunting exist in the area | Excessive human activities such as reclamation, mowing, fishing and hunting exist in some parts of the area | There are moderate human activities such as reclamation, mowing, fishing and hunting in the area | There are no human activities such as reclamation, mowing, fishing and hunting in the area |
D23 (%) | <10 | 10~20 | 20~30 | 30~40 | >40 |
D24 | >0.02 | 0.015~0.02 | 0.012~0.015 | 0.01~0.012 | <0.01 |
D25 | >0.02 | 0.015~0.02 | 0.012~0.015 | 0.01~0.012 | <0.01 |
D26 | >50 | 30~50 | 10~30 | 0~10 | <0 |
D27 | >10 | 7~10 | 5~7 | 3~5 | <3 |
D28 | No management mechanism, no management team | Poor management and low quality of team personnel | Existence of management bodies and lack of theoretical and practical training | Reasonable management mechanism and high level of management team | Advanced management concept, sufficient and high-level team members, reasonable configuration |
D29 (%) | <2 | 2~3 | 3~5 | 5~10 | >10 |
D30 (%) | <80 | 80~85 | 85~90 | 90~95 | >95 |
D31 (10,000 yuan) | <20 | 20~30 | 30~40 | 40~50 | >50 |
D32 (%) | <−0.5 | −0.5~−0.1 | −0.1~−0.01 | −0.01~0.01 | >0.01 |
D33 (%) | >1 | 0.5~1 | 0.1~0.5 | 0.01~0.1 | <0.01 |
Grade | Yancheng | Xiangshui | Binhai | Sheyang | Dafeng | Dongtai |
---|---|---|---|---|---|---|
1 | D1, D2, D5, D7, D8, D10, D17, D18, D19, D20, D26, D27 | D2, D16, D17, D18, D21, D25, D31 | D2, D8, D16, D21, D25, D31 | D1, D4, D5, D16, D18, D19, D20 | D1, D2, D5, D7, D8, D10, D16, D17, D18, D19, D20, D26, D32, D33 | D1, D2, D17, D18, D32, D33 |
2 | D9, D14, D16, D32, D33 | D4, D5, D8, D9, D14, D22, D23, D28, D29 | D4, D9, D14, D22, D23, D24, D28, D29 | D7, D10, D17, D25, D26, D32, D33 | D9, D14, D27 | D5, D7, D9, D10, D14, D16, D21, D22, D26 |
3 | D4, D21, D22, D23, D28, D29, D31 | D1, D10, D19, D20, D26, D32, D33 | D5, D11, D13, D18 | D8, D9, D13, D14, D29 | D3, D4, D13, D21, D22, D29, D30, D31 | D8, D20, D23, D24, D25, D28, D29, D30, D31 |
4 | D11, D13, D15, D24, D30 | D7, D11, D12, D15, D27, D30 | D3, D12, D15, D17, D19, D20, D26, D27, D30, D32, D33 | D2, D11, D12, D15, D21, D22, D24, D27, D31 | D11, D15, D23, D24, D28 | D15, D27 |
5 | D3, D6, D12, D25 | D3, D6, D13, D24 | D1, D6, D7, D10 | D3, D6, D23, D28, D30 | D6, D12, D25 | D3, D4, D6, D11, D12, D13, D19 |
References
- Hautier, Y.; Tilman, D.; Isbell, F.; Seabloom, E.W.; Borer, E.T.; Reich, P.B. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 2015, 348, 336–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bláha, M.; Grabicova, K.; Shaliutina, O.; Kubec, J.; Randák, T.; Zlabek, V.; Buřič, M.; Veselý, L. Foraging behaviour of top predators mediated by pollution of psychoactive pharmaceuticals and effects on ecosystem stability. Sci. Total Environ. 2019, 662, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Baggethun, E.; Tudor, M.; Doroftei, M.; Covaliov, S.; Năstase, A.; Onără, D.-F.; Mierlă, M.; Marinov, M.; Doroșencu, A.-C.; Lupu, G. Changes in ecosystem services from wetland loss and restoration: An ecosystem assessment of the Danube Delta (1960–2010). Ecosyst. Serv. 2019, 39, 100965. [Google Scholar] [CrossRef]
- Sun, T.; Lin, W.; Chen, G.; Guo, P.; Zeng, Y. Wetland ecosystem health assessment through integrating remote sensing and inventory data with an assessment model for the Hangzhou Bay, China. Sci. Total Environ. 2016, 566, 627–640. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Li, J.; Sun, C.; Xu, W.; Zhao, B. Trajectory of coastal wetland vegetation in Xiangshan Bay, China, from image time series. Mar. Pollut. Bull. 2020, 160, 111697. [Google Scholar] [CrossRef]
- Sato, C.F.; Lindenmayer, D.B. Meeting the global ecosystem collapse challenge. Conserv. Lett. 2018, 11, e12348. [Google Scholar] [CrossRef] [Green Version]
- Zelnik, Y.R.; Arnoldi, J.-F.; Loreau, M. The impact of spatial and temporal dimensions of disturbances on ecosystem stability. Front. Ecol. Evol. 2018, 6, 224. [Google Scholar] [CrossRef] [Green Version]
- Tian, P.; Li, J.; Cao, L.; Pu, R.; Gong, H.; Liu, Y.; Zhang, H.; Chen, H. Impacts of reclamation derived land use changes on ecosystem services in a typical gulf of eastern China: A case study of Hangzhou bay. Ecol. Indic. 2021, 132, 108259. [Google Scholar] [CrossRef]
- Kim, D.; Ko, J.; Jo, J.; Ryu, J.; Choi, K. Decoupling natural and man-made impacts on the morphologic and sedimentologic changes in the tidal flats, Saemangeum area, west coast of Korea: Implications for benthic ecosystem stability. Sci. Total Environ. 2022, 807, 151779. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, X.; Yang, Q.; Meng, Y.; Zhu, L.; Zou, X. Quantifying the spatiotemporal characteristics of multi-dimensional karst ecosystem stability with Landsat time series in southwest China. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102575. [Google Scholar] [CrossRef]
- Ivits, E.; Horion, S.; Erhard, M.; Fensholt, R. Assessing European ecosystem stability to drought in the vegetation growing season. Glob. Ecol. Biogeogr. 2016, 25, 1131–1143. [Google Scholar] [CrossRef]
- Feghhi, J.; Teimouri, S.; Makhdoum, M.; Erfanifard, Y.; Tehrani, N.A. The assessment of degradation to sustainability in an urban forest ecosystem by GIS. Urban For. Urban Green. 2017, 27, 383–389. [Google Scholar] [CrossRef]
- Ekumah, B.; Armah, F.A.; Afrifa, E.K.; Aheto, D.W.; Odoi, J.O.; Afitiri, A.-R. Geospatial assessment of ecosystem health of coastal urban wetlands in Ghana. Ocean. Coast. Manag. 2020, 193, 105226. [Google Scholar] [CrossRef]
- Valbonesi, P.; Profita, M.; Vasumini, I.; Fabbri, E. Contaminants of emerging concern in drinking water: Quality assessment by combining chemical and biological analysis. Sci. Total Environ. 2021, 758, 143624. [Google Scholar] [CrossRef] [PubMed]
- Gwinnett, C.; Miller, R.Z. Are we contaminating our samples? A preliminary study to investigate procedural contamination during field sampling and processing for microplastic and anthropogenic microparticles. Mar. Pollut. Bull. 2021, 173, 113095. [Google Scholar] [CrossRef]
- Mugo, R.; Waswa, R.; Nyaga, J.W.; Ndubi, A.; Adams, E.C.; Flores-Anderson, A.I. Quantifying land use land cover changes in the Lake Victoria basin using satellite remote sensing: The trends and drivers between 1985 and 2014. Remote Sens. 2020, 12, 2829. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Jafarzadeh, H.; Granger, J.E.; Mohammadimanesh, F.; Brisco, B.; Salehi, B.; Homayouni, S.; Weng, Q. A large-scale change monitoring of wetlands using time series Landsat imagery on Google Earth Engine: A case study in Newfoundland. GISci. Remote Sens. 2020, 57, 1102–1124. [Google Scholar] [CrossRef]
- Obermeier, W.A.; Lehnert, L.W.; Pohl, M.; Gianonni, S.M.; Silva, B.; Seibert, R.; Laser, H.; Moser, G.; Müller, C.; Luterbacher, J. Grassland ecosystem services in a changing environment: The potential of hyperspectral monitoring. Remote Sens. Environ. 2019, 232, 111273. [Google Scholar] [CrossRef]
- Qin, J.; Hao, X.; Hua, D.; Hao, H. Assessment of ecosystem resilience in Central Asia. J. Arid Environ. 2021, 195, 104625. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, Q.; Jin, Y.; Shen, J.; Li, C. Application of combined model of stepwise regression analysis and artificial neural network in data calibration of miniature air quality detector. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Sun, B.; Tang, J.; Yu, D.; Song, Z.; Wang, P. Ecosystem health assessment: A PSR analysis combining AHP and FCE methods for Jiaozhou Bay, China. Ocean. Coast. Manag. 2019, 168, 41–50. [Google Scholar] [CrossRef]
- Mosaffaie, J.; Jam, A.S.; Tabatabaei, M.R.; Kousari, M.R. Trend assessment of the watershed health based on DPSIR framework. Land Use Policy 2021, 100, 104911. [Google Scholar] [CrossRef]
- Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection–A case of Weifang City, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- Ward, D.F.; Melbourne-Thomas, J.; Johnson, C.R.; Wotherspoon, S.J. Trophic mediation and ecosystem stability: An assessment using qualitative network models. Limnol. Oceanogr. 2021, 67, S146–S162. [Google Scholar] [CrossRef]
- Jijing, C.; Lei, Z.; Yong-gang, C. Review on Research of Spatial Pattern and Influencing Mechanisms of Terrestrial Ecosystem Stability. Chin. J. Agrometeorol. 2021, 42, 552. [Google Scholar]
- Li, H.; Li, L.; Su, F.; Wang, T.; Gao, P. Ecological stability evaluation of tidal flat in coastal estuary: A case study of Liaohe estuary wetland, China. Ecol. Indic. 2021, 130, 108032. [Google Scholar] [CrossRef]
- Mirzaei, A.; Azarm, H.; Layani, G. Prioritize the factors affecting the sustainability of Shadegan Wetland Ecosystem Stability Index. J. Wetl. Ecobiol. 2019, 10, 69–80. [Google Scholar]
- Irfan, M.; Elavarasan, R.M.; Ahmad, M.; Mohsin, M.; Dagar, V.; Hao, Y. Prioritizing and overcoming biomass energy barriers: Application of AHP and G-TOPSIS approaches. Technol. Forecast. Soc. Change 2022, 177, 121524. [Google Scholar] [CrossRef]
- Shafaghat, A.; Ying, O.J.; Keyvanfar, A.; Jamshidnezhad, A.; Ferwati, M.S.; Ahmad, H.; Khorami, M. A treatment wetland park assessment model for evaluating urban ecosystem stability using analytical hierarchy process (AHP). J. Environ. Treat. Tech. 2019, 7, 81–91. [Google Scholar]
- Accatino, F.; Tonda, A.; Dross, C.; Léger, F.; Tichit, M.J.A.S. Trade-offs and synergies between livestock production and other ecosystem services. Agric. Syst. 2019, 168, 58–72. [Google Scholar] [CrossRef]
- Tian, P.; Cao, L.; Li, J.; Pu, R.; Shi, X.; Wang, L.; Liu, R.; Xu, H.; Tong, C.; Zhou, Z. Landscape grain effect in Yancheng coastal wetland and its response to landscape changes. Int. J. Environ. Res. Public Health 2019, 16, 2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, M.; Wang, L.; Wen, B.; Zou, W.; Ou, W.; Qu, Z. Land Consolidation Zoning in Coastal Tidal Areas Based on Landscape Security Pattern: A Case Study of Dafeng District, Yancheng, Jiangsu Province, China. Land 2021, 10, 145. [Google Scholar] [CrossRef]
- Zang, Z.; Zou, X.; Song, Q.; Yao, Y. Analysis of the spatiotemporal correlation between vegetation pattern and human activity intensity in Yancheng coastal wetland, China. Anthr. Coasts 2019, 2, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Tian, P.; Li, J.; Cao, L.; Pu, R.; Gong, H. Correlation Analysis of Landscape Patterns with Surface Water Quality in Yancheng Coastal Wetland, Jiangsu, China. Pol. J. Environ. Stud. 2021, 30, 4731–4746. [Google Scholar] [CrossRef]
- Yao, X. Evaluation of the Stability of the Yellow River Delta Wetland Ecosystem; Shandong Agricultural University: Shandong, China, 2013. [Google Scholar]
- Geng, S.; Shi, P.; Song, M.; Zong, N.; Zu, J.; Zhu, W. Diversity of vegetation composition enhances ecosystem stability along elevational gradients in the Taihang Mountains, China. Ecol. Indic. 2019, 104, 594–603. [Google Scholar] [CrossRef]
- Ganjurjav, H.; Zhang, Y.; Gornish, E.S.; Hu, G.; Li, Y.; Wan, Y.; Gao, Q. Differential resistance and resilience of functional groups to livestock grazing maintain ecosystem stability in an alpine steppe on the Qinghai-Tibetan Plateau. J. Environ. Manag. 2019, 251, 109579. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Huang, L.; Lin, F.; Li, Y. Canopy spectral characteristics of typical invasive and native plants in the coastal wetland of Yancheng City, China. Acta Ecol. Sin. 2021, 41, 631–637. [Google Scholar] [CrossRef]
- Wang, C.; Wang, G.; Dai, L.; Liu, H.; Li, Y.; Qiu, C.; Zhou, Y.; Chen, H.; Dong, B.; Zhao, Y. Study on the effect of habitat function change on waterbird diversity and guilds in Yancheng coastal wetlands based on structure–function coupling. Ecol. Indic. 2021, 122, 107223. [Google Scholar] [CrossRef]
- Bogovac, L.; Butula, S.; Andlar, G.; Tomić Reljić, D. Approaches to landscape evaluation: Questioning examining landscape vulnerability and sensitivity of the Island of Rab. Geoadria 2021, 26, 35–58. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Li, J.; Lu, W.; Wei, X.; Sun, C. Evolution of landscape ecological risk at the optimal scale: A case study of the open coastal wetlands in Jiangsu, China. Int. J. Environ. Res. Public Health 2018, 15, 1691. [Google Scholar] [CrossRef] [Green Version]
- Yancheng Bureau of Statistics, Jiangsu Province. Yancheng Statistical Yearbook (2019); China Statistics Press: Yancheng, China, 2019. [Google Scholar]
- Guardia-Puebla, Y.; Llanes-Cedeño, E.; Rodríguez-Pérez, S.; Arias-Cedeño, Q.; Sánchez-Girón, V.; Morscheck, G.; Eichler-Löbermann, B. Sustainable management of wastewater: Theoretical design of combined upflow anaerobic reactors and artificial wetlands systems. J. Water Land Dev. 2020, 47, 66–76. [Google Scholar]
- Tiemann, A.; Ring, I. Towards ecosystem service assessment: Developing biophysical indicators for forest ecosystem services. Ecol. Indic. 2022, 137, 108704. [Google Scholar] [CrossRef]
- Kang, W.; Liu, S.; Chen, X.; Feng, K.; Guo, Z.; Wang, T. Evaluation of ecosystem stability against climate changes via satellite data in the eastern sandy area of northern China. J. Environ. Manag. 2022, 308, 114596. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H. Research on the Health Assessment and Protection Countermeasures of the Coastal Wetland Ecosystem in Yancheng, Jiangsu; Zhejiang Normal University: Zhejiang, China, 2012. [Google Scholar]
Ecosystem Stability Criteria | Stable | Relatively Stable | Early Warning | Dangerous | Extremely Dangerous |
---|---|---|---|---|---|
Grading value | (4.0~5.0] | (3.0~4.0] | (2.0~3.0] | (1.0~2.0] | (0.0~1.0] |
Indicator Layers | Yancheng | Xiangshui | Binhai | Sheyang | Dafeng | Dongtai |
---|---|---|---|---|---|---|
Resource Pressure (C1) | 1.92 | 3.22 | 4.28 | 2.28 | 1.46 | 1.92 |
Environmental Pressure (C2) | 3.48 | 3.68 | 3.99 | 3.23 | 3.48 | 4.04 |
Socioeconomic Pressure (C3) | 1.45 | 2.64 | 3.29 | 2.54 | 1.45 | 2.09 |
Soil State (C4) | 2.82 | 2.64 | 2.44 | 2.96 | 2.58 | 2.95 |
Water Quality State (C5) | 1.00 | 1.72 | 3.83 | 1.47 | 1.00 | 2.07 |
Biological State (C6) | 3.00 | 1.89 | 1.89 | 4.58 | 3.58 | 2.58 |
Landscape State (C7) | 3.10 | 3.91 | 2.55 | 3.38 | 3.29 | 3.02 |
Wetland Ecological Protection Response (C8) | 3.06 | 2.12 | 2.25 | 3.93 | 2.90 | 2.75 |
Ecosystem Stability Pressure (B1) | 2.02 | 2.97 | 3.57 | 2.69 | 1.97 | 2.58 |
Ecosystem Stability State (B2) | 2.29 | 2.37 | 2.81 | 2.84 | 2.35 | 2.60 |
Ecosystem Stability Response (B3) | 3.06 | 2.47 | 2.72 | 3.93 | 2.71 | 2.56 |
Ecosystem Stability (A) | 2.27 | 2.67 | 3.15 | 2.93 | 2.24 | 2.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, P.; Cao, L.; Li, J.; Pu, R.; Liu, Y.; Zhang, H.; Wang, C. Ecosystem Stability Assessment of Yancheng Coastal Wetlands, a World Natural Heritage Site. Land 2022, 11, 564. https://doi.org/10.3390/land11040564
Tian P, Cao L, Li J, Pu R, Liu Y, Zhang H, Wang C. Ecosystem Stability Assessment of Yancheng Coastal Wetlands, a World Natural Heritage Site. Land. 2022; 11(4):564. https://doi.org/10.3390/land11040564
Chicago/Turabian StyleTian, Peng, Luodan Cao, Jialin Li, Ruiliang Pu, Yongchao Liu, Haitao Zhang, and Caiyi Wang. 2022. "Ecosystem Stability Assessment of Yancheng Coastal Wetlands, a World Natural Heritage Site" Land 11, no. 4: 564. https://doi.org/10.3390/land11040564
APA StyleTian, P., Cao, L., Li, J., Pu, R., Liu, Y., Zhang, H., & Wang, C. (2022). Ecosystem Stability Assessment of Yancheng Coastal Wetlands, a World Natural Heritage Site. Land, 11(4), 564. https://doi.org/10.3390/land11040564