Land Use Impacts on Traffic Congestion Patterns: A Tale of a Northwestern Chinese City
Abstract
:1. Introduction
2. Conceptual Framework
3. Materials and Methods
3.1. Data Sources and Materials
3.2. Quantizing the Study Area into Grid Cells
3.3. Variable Definition and Quantification
3.4. Traffic Congestion Modeling
4. Results and Findings
4.1. Time-Variant Effects of Traffic Condition
4.2. Land Use Distribution Analysis
4.3. Spatial–Temporal Traffic Congestion Modeling
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, L.; Liang, Y.; He, B.; Lu, Y.; Gou, Z. COVID-19 effects on property markets: The pandemic decreases the implicit price of metro accessibility. Tunn. Undergr. Space Technol. 2022, 125, 104528. [Google Scholar] [CrossRef]
- Chang, Y.S.; Lee, Y.J.; Choi, S.S.B. Is there more traffic congestion in larger cities?-Scaling analysis of the 101 largest US urban centers. Transp. Policy 2017, 59, 54–63. [Google Scholar] [CrossRef]
- Yang, L.; Chau, K.W.; Szeto, W.Y.; Cui, X.; Wang, X. Accessibility to transit, by transit, and property prices: Spatially varying relationships. Transp. Res. Part D Transp. Environ. 2020, 85, 102387. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, H.; Feng, H.; Yu, Y.; Li, J.; Ning, E. The impacts of road traffic on urban air quality in Jinan based GWR and remote sensing. Sci. Rep. 2021, 11, 15512. [Google Scholar] [CrossRef] [PubMed]
- Kopf, D. The Countries with the Worst Traffic Congestion—And Ways to Reduce It. 2020. Available online: https://www.weforum.org/agenda/2020/07/cities-congestion-brazil-colombia-united-kingdom/ (accessed on 5 September 2022).
- Clifton, K.J.; Burnier, C.V.; Akar, G. Severity of injury resulting from pedestrian–vehicle crashes: What can we learn from examining the built environment? Transp. Res. Part D Transp. Environ. 2009, 14, 425–436. [Google Scholar] [CrossRef]
- Cao, X.J.; Næss, P.; Wolday, F. Examining the effects of the built environment on auto ownership in two Norwegian urban regions. Transp. Res. Part D Transp. Environ. 2019, 67, 464–474. [Google Scholar] [CrossRef]
- Wee, B.V.; Vos, J.D.; Maat, K. Impacts of the built environment and travel behaviour on attitudes: Theories underpinning the reverse causality hypothesis. J. Transp. Geogr. 2019, 80, 102540. [Google Scholar] [CrossRef]
- Yang, L.; Xu, C. Determinants of elderly mobility in Hong Kong: Implications for elderly-friendly transport. China City Plan. Rev. 2020, 29, 74–83. [Google Scholar]
- Chen, S.; Bao, Z.; Chen, J.; Yang, L.; Yang, L. Sustainable built environment for facilitating public health of older adults: Evidence from Hong Kong. Sustain. Dev. 2022, 30, 1086–1098. [Google Scholar] [CrossRef]
- Chen, S.; Wang, T.; Bao, Z.; Lou, V. A path analysis of the effect of neighborhood built environment on public health of older adults: A Hong Kong study. Front. Public Health 2022, 10, 861836. [Google Scholar] [CrossRef]
- Chen, S.; Bao, Z.; Lou, V. Assessing the impact of the built environment on healthy aging: A gender-oriented Hong Kong study. Environ. Impact Assess. Rev. 2022, 95, 106812. [Google Scholar] [CrossRef]
- Papakonstantinou, I.; Siwe, A.T.; Madanat, S.M. Effects of sea level rise induced land use changes on traffic congestion. Transp. Res. Part D Transp. Environ. 2020, 87, 102515. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, L.; Yao, L.; Rong, J. Impact analysis of land use on traffic congestion using real-time traffic and POI. J. Adv. Transp. 2017, 2017, 7164790. [Google Scholar] [CrossRef] [Green Version]
- Ou, Y.; Zheng, J.; Nam, K.-M. Impacts of Urban Rail Transit on On-Road Carbon Emissions: A Structural Equation Modeling Approach. Atmosphere 2022, 13, 1783. [Google Scholar] [CrossRef]
- Sarzynski, A.; Wolman, H.L.; Galster, G.; Hanson, R. Testing the conventional wisdom about land use and traffic congestion: The more we sprawl, the less we move? Urban Stud. 2006, 43, 601–626. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Lu, Y.; Ao, Y.; Guo, Y.; Huang, W.; Zhao, R.; Wang, R. Global and local associations between urban greenery and travel propensity of older adults in Hong Kong. Sustain. Cities Soc. 2020, 63, 102442. [Google Scholar] [CrossRef]
- Yang, L.; Ao, Y.; Ke, J.; Lu, Y.; Liang, Y. To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults. J. Transp. Geogr. 2021, 94, 103099. [Google Scholar] [CrossRef]
- Litman, T. Land Use Impacts on Transport How Land Use Factors Affect Travel Behavior; Victoria Transport Policy Institute: Victoria, BC, Canada, 2008. [Google Scholar]
- Bian, C.; Yuan, C.; Kuang, W.; Wu, D. Evaluation, classification, and influential factors analysis of traffic congestion in Chinese cities using the online map data. Math. Probl. Eng. 2016, 2016, 1693729. [Google Scholar] [CrossRef] [Green Version]
- Wang, R. Measuring Urban Form and Examining Its Impact on Traffic Congestion in Florida; University of Florida: Gainesville, FL, USA, 2011. [Google Scholar]
- Cutsinger, J.; Galster, G.; Wolman, H.; Hanson, R.; Towns, D. Verifying the multi-dimensional nature of metropolitan land use: Advancing the understanding and measurement of sprawl. J. Urban Aff. 2005, 27, 235–259. [Google Scholar] [CrossRef]
- Pendall, R. The limitless city: A primer on the urban sprawl debate. American Planning Association. J. Am. Plan. Assoc. 2003, 69, 99. [Google Scholar]
- Ewing, R.; Hamidi, S.; Grace, J.B. Urban sprawl as a risk factor in motor vehicle crashes. Urban Stud. 2014, 53, 247–266. [Google Scholar] [CrossRef] [Green Version]
- Shen, T.; Hong, Y.; Thompson, M.M.; Liu, J.; Huo, X.; Wu, L. How does parking availability interplay with the land use and affect traffic congestion in urban areas? The case study of Xi’an, China. Sustain. Cities Soc. 2020, 57, 102126. [Google Scholar] [CrossRef]
- Hägcrstrand, T. What about people in regional science? Reg. Sci. Assoc. 1970, 24, 6–21. [Google Scholar] [CrossRef]
- Zawack, D.J.; Thompson, G.L. A dynamic space-time network flow model for city traffic congestion. Transp. Sci. 1987, 21, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Yue, Y.; Li, Q. Identifying Urban Traffic Congestion Pattern from Historical Floating Car Data. Procedia-Soc. Behav. Sci. 2013, 96, 2084–2095. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.; Sun, J.; Zhang, X. Study on traffic congestion patterns of large city in China taking Beijing as an example. Procedia-Soc. Behav. Sci. 2014, 138, 482–491. [Google Scholar] [CrossRef] [Green Version]
- Inoue, R.; Miyashita, A.; Sugita, M. Mining spatio-temporal patterns of congested traffic in urban areas from traffic sensor data. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016. [Google Scholar]
- Song, J.; Zhao, C.; Zhong, S.; Nielsen, T.A.S.; Prishchepov, A.V. Mapping spatio-temporal patterns and detecting the factors of traffic congestion with multi-source data fusion and mining techniques. Comput. Environ. Urban Syst. 2019, 77, 101364. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, B.; Zegras, C. Sustainable built environment and travel behavior: New perspectives, new data, and new methods. Transp. Res. Part D Transp. Environ. 2021, 97, 102966. [Google Scholar] [CrossRef]
- Yamada, T.; Hayashida, T. Analysis of shopping behavior characteristics in the Keihanshin metropolitan area in Japan based on a person trip survey. Geo-Spat. Inf. Sci. 2020, 23, 305–315. [Google Scholar] [CrossRef]
- Tayarani, M.; Baghestani, A.; Allahviranloo, M.; Gao, H.O. Spatial/temporal variability in transportation emissions and air quality in NYC cordon pricing. Transp. Res. Part D Transp. Environ. 2020, 89, 102620. [Google Scholar] [CrossRef]
- Tomer, A.; Kane, J.; Vey, J.S. Connecting People and Places: Exploring New Measures of Travel Behavior; Brookings Institution: Washington, DC, USA, 2020. [Google Scholar]
- Di, X.; Xiao, Y.; Zhu, C.; Deng, Y.; Zhao, Q.; Rao, W. Traffic congestion prediction by spatiotemporal propagation patterns. In Proceedings of the 2019 20th IEEE International Conference on Mobile Data Management (MDM), Hong Kong, China, 10–13 June 2019. [Google Scholar]
- SBX. The Permanent Population and Urbanization Rate of Each County and District in Xining City in 2019; Xining Municipal Bureau of Statistics: Xining, China, 2020.
- Tencent-News. Xining’s Urbanization Rate Will Reach about 75% in 2020. Available online: https://new.qq.com/omn/20190729/20190729A060L400.html?pc (accessed on 5 September 2022).
- Sohu-News. In 2020, the GDP of Qinghai’s Cities and Prefectures, Xining Ranks First, and Huangnan Prefecture Has the Fastest Nominal Growth Rate. Available online: https://www.sohu.com/a/476681302_100182943 (accessed on 5 September 2022).
- CMAB. Greater Bay Area: Foshan. Available online: https://www.bayarea.gov.hk/en/about/foshan.html (accessed on 5 September 2022).
- Brenner, N. Implosions/Explosions; Jovis: Berlin, Germany, 2014. [Google Scholar] [CrossRef]
- Frick, S.A.; Rodríguez-Pose, A. Big or small cities? On city size and economic growth. Growth Chang. 2017, 49, 4–32. [Google Scholar] [CrossRef]
- Dijkstra, L.; Hamilton, E.; Lall, S.; Wahba, S. How do we define cities, towns, and rural areas. Sustain. Cities 2020. Available online: https://blogs.worldbank.org/sustainablecities/how-do-we-define-cities-towns-and-rural-areas (accessed on 5 September 2022).
- Nam, K.; Ou, Y. Estimating Functional Urban and Regional Boundaries from Road Networks: The Case of South Korea. In Proceedings of the Association of Collegiate Schools of Planning (ACSP) Annual Conference, Greenville, SC, USA, 24–27 October 2019. [Google Scholar]
- Xinhua-Net. “Great Xining” Construction Has New Moves This Year, Qinghai Daily. Available online: http://m.xinhuanet.com/qh/2020-07/09/c_1126215714.htm (accessed on 5 September 2022).
- Martínez, L.M.; Viegas, J.M.; Silva, E.A. A traffic analysis zone definition: A new methodology and algorithm. Transportation 2009, 36, 581–599. [Google Scholar] [CrossRef]
- Salomons, E.M.; Pont, M.B. Urban traffic noise and the relation to urban density, form, and traffic elasticity. Landsc. Urban Plan. 2012, 108, 2–16. [Google Scholar] [CrossRef]
- Kwan, M.-P.; Weber, J. Scale and accessibility: Implications for the analysis of land use–travel interaction. Appl. Geogr. 2008, 28, 110–123. [Google Scholar] [CrossRef]
- Mendel, B.; Schwemmer, P.; Peschko, V.; Müller, S.; Schwemmer, H.; Mercker, M.; Garthe, S. Operational offshore wind farms and associated ship traffic cause profound changes in distribution patterns of Loons (Gavia spp.). J. Environ. Manag. 2019, 231, 429–438. [Google Scholar] [CrossRef]
- Liu, D.; Chen, J.; Li, S. Collaborative operation and real-time control of roller fleet for asphalt pavement compaction. Autom. Constr. 2019, 98, 16–29. [Google Scholar] [CrossRef]
- Chen, J.; Lu, W.; Xue, F. “Looking beneath the surface”: A visual-physical feature hybrid approach for unattended gauging of construction waste composition. J. Environ. Manag. 2021, 286, 112233. [Google Scholar] [CrossRef]
- Chen, J.; Lu, W.; Yuan, L.; Wu, Y.; Xue, F. Estimating construction waste truck payload volume using monocular vision. Resour. Conserv. Recycl. 2022, 177, 106013. [Google Scholar] [CrossRef]
- Liu, D.; Xia, X.; Chen, J.; Li, S. Integrating Building Information Model and Augmented Reality for Drone-Based Building Inspection. J. Comput. Civ. Eng. 2021, 35, 04020073. [Google Scholar] [CrossRef]
- Spears, S.; Houston, D.; Boarnet, M.G. Illuminating the unseen in transit use: A framework for examining the effect of attitudes and perceptions on travel behavior. Transp. Res. Part A Policy Pract. 2013, 58, 40–53. [Google Scholar] [CrossRef]
- Zhao, P.; Hu, H. Geographical patterns of traffic congestion in growing megacities: Big data analytics from Beijing. Cities 2019, 92, 164–174. [Google Scholar] [CrossRef]
- Du, J.; Rakha, H.A.; Filali, F.; Eldardiry, H. COVID-19 pandemic impacts on traffic system delay, fuel consumption and emissions. Int. J. Transp. Sci. Technol. 2021, 10, 184–196. [Google Scholar] [CrossRef]
- Purwanto, A.; Asbari, M.; Cahyono, Y.; Fahlevi, M. Impact of work from home (WFH) on Indonesian teachers performance during the COVID-19 pandemic: An exploratory study. Int. J. Adv. Sci. Technol. 2020, 29, 6235–6244. [Google Scholar]
- Liu, J.; Shi, W.; Chen, P. Exploring Travel Patterns during the Holiday Season—A Case Study of Shenzhen Metro System During the Chinese Spring Festival. ISPRS Int. J. Geo-Inf. 2020, 9, 651. [Google Scholar] [CrossRef]
- Bjorklund, E.M. The Danwei: Socio-spatial characteristics of work units in China’s urban society. Econ. Geogr. 1986, 62, 19–29. [Google Scholar] [CrossRef]
- Hu, S.; Cao, Y.; Zhang, J.; Kong, W.; Yang, K.; Zhang, Y.; Li, X. More discussions for granger causality and new causality measures. Cogn. Neurodynamics 2012, 6, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Pearl, J.; Mackenzie, D. The Book of Why: The New Science of Cause and Effect; Basic Books: New York, NY, USA, 2018. [Google Scholar]
- Rothman, L.; Buliung, R.; Howard, A.; Macarthur, C.; Macpherson, A. The school environment and student car drop-off at elementary schools. Travel Behav. Soc. 2017, 9, 50–57. [Google Scholar] [CrossRef]
- Sun, W.; Guo, D.; Li, Q.; Fang, H. School runs and urban traffic congestion: Evidence from China. Reg. Sci. Urban Econ. 2021, 86, 103606. [Google Scholar] [CrossRef]
- Peng, Y.; Tian, C.; Wen, H. How does school district adjustment affect housing prices: An empirical investigation from Hangzhou, China. China Econ. Rev. 2021, 69, 101683. [Google Scholar] [CrossRef]
- Wang, M.; Kexin, L. Transportation model application for the planning of low carbon city–take Xining city in China as example. Procedia Comput. Sci. 2013, 19, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.; Lu, W.; Chi, B.; Yuan, H.; Hao, J. Procurement innovation for a circular economy of construction and demolition waste: Lessons learnt from Suzhou, China. Waste Manag. 2019, 99, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Lu, W.; Hao, J. Tackling the “last mile” problem in renovation waste management: A case study in China. Sci. Total Environ. 2021, 790, 148261. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Laovisutthichai, V.; Tan, T.; Wang, Q.; Lu, W. Design for manufacture and assembly (DfMA) enablers for offsite interior design and construction. Build. Res. Inf. 2022, 50, 325–338. [Google Scholar] [CrossRef]
Variables | Mean | St. Dev. | Maximum | Minimum |
---|---|---|---|---|
Land Use (Independent Variables) | ||||
Catering | 15.4 | 37.5 | 235.6 | 0 |
Shopping | 31.6 | 75.2 | 479.7 | 0 |
Life services | 15.0 | 38.2 | 248.6 | 0 |
Sports | 2.0 | 5.4 | 34.5 | 0 |
Healthcare | 5.0 | 12.7 | 76.8 | 0 |
Hospitality | 4.1 | 13.1 | 101.8 | 0 |
Tourism | 0.5 | 1.1 | 6.2 | 0 |
Residence | 3.4 | 7.8 | 49.7 | 0 |
Government | 4.1 | 10.4 | 73.3 | 0 |
Education | 3.7 | 9.0 | 62.4 | 0 |
Financial | 1.9 | 5.8 | 38.1 | 0 |
Company | 7.0 | 13.4 | 76.4 | 0 |
Traffic condition (Dependent variables) | ||||
MTS * | 1.03 | 0.10 | 3.75 | 1.00 |
Wd-mn-Peak (8:00 am) | Wd-en-Peak (19:00 pm) | Wd-en-Peak (21:00 pm) | |||||||
Coefficient | Sig. | R2 | Coefficient | Sig. | R2 | Coefficient | Sig. | R2 | |
Dcat | −1.514 | 0.046 | 0.586 | −1.685 | 0.007 | 0.748 | −0.805 | 0.335 | 0.442 |
Dshp | −0.485 | 0.121 | −0.582 | 0.024 | 0.223 | 0.517 | |||
Dlif | 0.685 | 0.506 | 2.455 | 0.004 | 0.388 | 0.733 | |||
Dspt | −0.044 | 0.917 | −0.204 | 0.565 | 0.799 | 0.096 | |||
Dhea | 1.543 | 0.089 | −0.516 | 0.485 | 1.327 | 0.185 | |||
Dhop | −0.68 | 0.074 | 0.000 | 1.000 | −0.704 | 0.094 | |||
Dtou | 0.059 | 0.790 | 0.001 | 0.996 | 0.417 | 0.093 | |||
Dres | 0.572 | 0.363 | 1.878 | 0.000 | −0.555 | 0.425 | |||
Dgov | −0.987 | 0.032 | −1.845 | 0.000 | −1.125 | 0.028 | |||
Dedu | 1.056 | 0.007 | 1.110 | 0.001 | 0.685 | 0.112 | |||
Dfin | −0.531 | 0.289 | −0.827 | 0.045 | −0.935 | 0.093 | |||
Dcom | 0.545 | 0.021 | 0.504 | 0.009 | 0.408 | 0.116 | |||
pWe-mn-peak (8:00 am) | pWe-en-peak (19:00 pm) | pWe-en-peak (21:00 pm) | |||||||
Coefficient | Sig. | R2 | Coefficient | Sig. | R2 | Coefficient | Sig. | R2 | |
Dcat | −1.906 | 0.004 | 0.707 | −1.464 | 0.021 | 0.736 | −2.226 | 0.003 | 0.608 |
Dshp | −0.774 | 0.005 | −0.526 | 0.045 | −0.178 | 0.559 | |||
Dlif | 1.388 | 0.124 | 2.246 | 0.010 | 0.206 | 0.838 | |||
Dspt | −0.580 | 0.126 | 0.205 | 0.570 | 1.266 | 0.003 | |||
Dhea | 0.268 | 0.734 | −0.447 | 0.554 | 2.547 | 0.005 | |||
Dhop | −0.040 | 0.903 | −0.032 | 0.920 | −0.747 | 0.045 | |||
Dtou | −0.288 | 0.141 | 0.298 | 0.112 | 0.612 | 0.006 | |||
Dres | 2.141 | 0.000 | 1.284 | 0.016 | −0.044 | 0.943 | |||
Dgov | −0.882 | 0.029 | −1.738 | 0.000 | −1.709 | 0.000 | |||
Dedu | 1.038 | 0.003 | 0.847 | 0.010 | 1.090 | 0.005 | |||
Dfin | −0.589 | 0.179 | −1.010 | 0.017 | −1.007 | 0.041 | |||
Dcom | 0.498 | 0.016 | 0.641 | 0.001 | 0.408 | 0.076 | |||
We-mn-peak (8:00 am) | We-en-peak (19:00 pm) | We-en-peak (21:00 pm) | |||||||
Coefficient | Sig. | R2 | Coefficient | Sig. | R2 | Coefficients | Sig. | R2 | |
Dcat | 1.607 | 0.058 | 0.425 | −1.112 | 0.124 | 0.632 | −0.281 | 0.758 | 0.186 |
Dshp | 0.427 | 0.221 | −0.290 | 0.331 | −0.008 | 0.982 | |||
Dlif | −2.667 | 0.022 | 0.886 | 0.369 | −0.019 | 0.988 | |||
Dspt | 0.318 | 0.509 | 0.480 | 0.246 | −0.105 | 0.840 | |||
Dhea | 1.413 | 0.162 | 0.221 | 0.797 | −0.219 | 0.841 | |||
Dhop | −0.530 | 0.210 | −0.226 | 0.532 | 0.081 | 0.859 | |||
Dtou | 0.299 | 0.231 | 0.447 | 0.038 | −0.081 | 0.764 | |||
Dres | −1.675 | 0.018 | 0.871 | 0.149 | 0.381 | 0.617 | |||
Dgov | −0.247 | 0.629 | −1.929 | 0.000 | −0.277 | 0.617 | |||
Dedu | 1.539 | 0.001 | 0.990 | 0.009 | 0.309 | 0.511 | |||
Dfin | −0.479 | 0.391 | −0.500 | 0.297 | −0.125 | 0.836 | |||
Dcom | 0.031 | 0.906 | 0.394 | 0.080 | 0.312 | 0.270 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Z.; Ou, Y.; Chen, S.; Wang, T. Land Use Impacts on Traffic Congestion Patterns: A Tale of a Northwestern Chinese City. Land 2022, 11, 2295. https://doi.org/10.3390/land11122295
Bao Z, Ou Y, Chen S, Wang T. Land Use Impacts on Traffic Congestion Patterns: A Tale of a Northwestern Chinese City. Land. 2022; 11(12):2295. https://doi.org/10.3390/land11122295
Chicago/Turabian StyleBao, Zhikang, Yifu Ou, Shuangzhou Chen, and Ting Wang. 2022. "Land Use Impacts on Traffic Congestion Patterns: A Tale of a Northwestern Chinese City" Land 11, no. 12: 2295. https://doi.org/10.3390/land11122295
APA StyleBao, Z., Ou, Y., Chen, S., & Wang, T. (2022). Land Use Impacts on Traffic Congestion Patterns: A Tale of a Northwestern Chinese City. Land, 11(12), 2295. https://doi.org/10.3390/land11122295