The Impact of Cropland Use Changes on Terrestrial Ecosystem Services Value in Newly Added Cropland Hotspots in China during 2000–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Method of Analysis of Cropland Quantity Change
2.2.2. Method of Analysis of Cropland Use Conversion
2.2.3. Method of ESV Estimation
- Calculation of unit value of ecosystem services
Service Type Categories | Service Type Subcategories | Cropland | Forest | Grassland | River/Lake | Wetland | Desert |
---|---|---|---|---|---|---|---|
Provision services | FP | 1.00 | 0.33 | 0.43 | 0.53 | 0.36 | 0.02 |
RMP | 0.39 | 2.98 | 0.36 | 0.35 | 0.24 | 0.04 | |
Regulatory services | GR | 0.72 | 4.32 | 1.50 | 0.51 | 2.41 | 0.06 |
CR | 0.97 | 4.07 | 1.56 | 2.06 | 13.55 | 0.13 | |
HR | 0.77 | 4.09 | 1.52 | 18.77 | 13.44 | 0.07 | |
WD | 1.39 | 1.72 | 1.32 | 14.85 | 14.40 | 0.26 | |
Support services | SC | 1.47 | 4.02 | 2.24 | 0.41 | 1.99 | 0.17 |
BP | 1.02 | 4.51 | 1.87 | 3.43 | 3.69 | 0.40 | |
Cultural services | PAL | 0.17 | 2.08 | 0.87 | 4.44 | 4.69 | 0.24 |
Total | 7.90 | 28.12 | 11.67 | 45.35 | 54.77 | 1.39 |
- Calculation of ESV changes caused by cropland use conversion
2.3. Data Sources
3. Results
3.1. Change Characteristics of Cropland Quantity
3.1.1. Overall Characteristics
3.1.2. Regional Differences
3.2. Process of Cropland Use Conversion
3.2.1. Sources of the Newly Added Cropland
3.2.2. Destinations of Lost Cropland
3.3. Response of the TESV to Cropland Use Change
3.3.1. Response of the TESV to Cropland Use Change in Xinjiang Scale
3.3.2. Response of the TESV to Cropland Use Change in Xinjiang’s Prefectures Scale
4. Discussion
4.1. Key Characteristics and Causes of Changes in Cropland Use in Xinjiang
4.2. Effect of Cropland Conversion on the Regional TESV in Xinjiang
4.3. Limitation and Future Work
5. Conclusions
- In terms of change in the cropland amount, the cropland area in Xinjiang grew from 6.5682 million ha in 2000 to 8.9874 million ha in 2020, with an average annual expansion rate of 1.84%, undergoing four stages: rapid expansion (2000–2005), steady expansion (2005–2010), rapid expansion (2010–2015) and relative stability (2015–2020). Although the cropland quantity of all prefectures in Xinjiang displayed a trend of expansion, nearly 71% of the cropland expansion mainly occurred in ASAO, KSAO and BYAP in southern Xinjiang, as well as in TCAO and ATAO in northern Xinjiang, and the cropland expansion demonstrated a significant spatial concentration distribution feature.
- In terms of cropland use conversion, although Xinjiang is a hotspot for newly added cropland in China, a sharp mutual conversion trend was observed between cultivating cropland and other types of land use in Xinjiang from 2000 to 2020. In particular, grassland and unused land are the main sources of cropland expansion in Xinjiang, while lost cropland in Xinjiang is mainly returned to grassland and occupied by construction space. The mutual conversion between cropland and other types of land use is relatively weak.
- In terms of the TESV response, the values of change in the total TESV caused by cropland conversion in Xinjiang were −1066.65, −588.08, −1015.75 and 51.98 million USD during the four periods from 2000 to 2020, respectively. Although the intensive expansion of cropland and the conversion of cropland mainly at the expense of ecological land in Xinjiang have significantly enhanced the provision services of the terrestrial ecosystem (539.49 million USD), regulation services (−1508.47 million USD), support services (−1084.47 million USD) and cultural services (−565.05 million USD) experienced greater losses. Ultimately, how to coordinate the contradiction between Xinjiang’s agricultural development and ecological security, as well as how to control the appropriateness of cropland amount, are urgent issues that must be addressed to ensure sustainable management of natural resources in Xinjiang.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Costanza, R.; d’Arge, R.; Groot, R.d.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Li, S.; Xie, A.; Lyu, C.; Guo, X. Research progress and prospect for land ecosystem services. China Land Sci. 2018, 32, 82–89. (In Chinese) [Google Scholar]
- Chen, W.; Chi, G.; Li, J. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Bhatt, S.; Rahmat, S.; Paul, S.K.; Sen, S. Estimating global ecosystem service values and its response to land surface dynamics during 1995–2015. J. Environ. Manag. 2018, 223, 115–131. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Li, Y.; Tan, M.; Hao, H. The impact of global cropland changes on terrestrial ecosystem services value, 1992–2015. J. Geogr. Sci. 2019, 29, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Deng, X.; Yuan, Y.; Wang, Z.; Li, Z. Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecol. Model 2015, 318, 245–253. [Google Scholar] [CrossRef]
- Ramankutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 2008, 22, GB1003. [Google Scholar] [CrossRef]
- Cai, T.; Zhang, X.; Xia, F.; Lu, D. Function evolution of oasis cultivated land and its trade-off and synergy relationship in Xinjiang, China. Land 2022, 11, 1399. [Google Scholar] [CrossRef]
- Ramankutty, N.; Mehrabi, Z.; Waha, K.; Jarvis, L.; Kremen, C.; Herrero, M.; Rieseberg, L.H. Trends in global agricultural land use: Implications for environmental health and food security. Annu. Rev. Plant Biol. 2018, 69, 789–815. [Google Scholar] [CrossRef] [PubMed]
- Laurance, W.F.; Jeffrey, S.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Barthel, S.; Isendahl, C.; Vis, B.N.; Drescher, A.; Evans, D.L.; van Timmeren, A. Global urbanization and food production in direct competition for land: Leverage places to mitigate impacts on SDG2 and on the Earth System. Anthr. Rev. 2019, 6, 71–97. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Z.; He, C.; Gou, S.; Bai, Y.; Wang, Y.; Shen, M. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 2020, 15, 084037. [Google Scholar] [CrossRef] [Green Version]
- Alexander, P.; Rounsevell, M.D.A.; Dislich, C.; Dodson, J.R.; Engström, K.; Moran, D. Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Glob. Environ. Chang. 2015, 35, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [Green Version]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Zalles, V.; Hansen, M.C.; Potapov, P.V.; Parker, D.; Stehman, S.V.; Pickens, A.H.; Parente, L.L.; Ferreira, L.G.; Song, X.-P.; Hernandez-Serna, A.; et al. Rapid expansion of human impact on natural land in South America since 1985. Sci. Adv. 2021, 7, 14. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Z.; Zhao, X.; Wang, X.; Zuo, L.; Wen, Q.; Yi, L.; Xu, J.; Hu, S.; Liu, B. Chinese cropland losses due to urban expansion in the past four decades. Sci. Total Environ. 2019, 650, 847–857. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Tian, H.; Shi, H.; Dong, J.; Song, C.; Li, X.; Du, G.; Hou, Y.; Lu, D.; et al. Cropland redistribution to marginal lands undermines environmental sustainability. Natl. Sci. Rev. 2021, 9, nwab091. [Google Scholar] [CrossRef] [PubMed]
- Kuang, W.; Zhang, S.; Du, G.; Yan, C.; Wu, S.; Li, R.; Lu, D.; Pan, T.; Ning, J.; Guo, C.; et al. Remotely sensed mapping and analysis of spatio-temporal patterns of land use change across China in 2015–2020. Acta Geogr. Sin. 2022, 77, 1056–1071. (in Chinese). [Google Scholar]
- Huang, H.; Wen, L.; Kong, X.; Chen, W.; Sun, X. The impact of spatial pattern evolution of cultivated land on cultivated land suitability in China and its policy implication. China Land Sci. 2021, 35, 61–70. (In Chinese) [Google Scholar]
- Chen, X. Physical Geography of Arid Areas in China; Science Press: Beijing, China, 2010. [Google Scholar]
- Li, T.; Long, H.; Zhang, Y.; Tu, S.; Ge, D.; Li, Y.; Hu, B. Analysis of the spatial mismatch of grain production and farmland resources in China based on the potential crop rotation system. Land Use Policy 2017, 60, 26–36. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Tan, M.; Wang, X.; Xin, L. The impact of cultivated land spatial shift on food crop production in China, 1990–2010. Land Degrad Dev. 2018, 29, 1652–1659. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Cultivated land conversion and potential agricultural productivity in China. Land Use Policy 2006, 23, 372–384. [Google Scholar] [CrossRef]
- Cai, T.; Zhang, X.; Xia, F.; Zhang, Z.; Yin, J.; Wu, S. The process-mode-driving force of cropland expansion in arid regions of China based on the land use remote sensing monitoring data. Remote Sens. 2021, 13, 2949. [Google Scholar] [CrossRef]
- Chen, H.; Wu, S.; Feng, X. Study on the changes of cultivated land and the driving factorsin Xinjiang based on RS and GIS. J. Nat. Resour. 2010, 25, 614–624. (In Chinese) [Google Scholar]
- Wang, D.; Wu, S.; Zhang, S. Expansion of both cultivated and construction land in Xinjiang since the late 1980s. Arid Land Geogr. 2017, 40, 188–196. (In Chinese) [Google Scholar]
- Chen, X.; Chang, C.; Bao, A.; Wu, S.; Luo, G. Spatial pattern and characteristics of land cover change in Xinjiang since past 40 years of the economic reform and opening up. Arid Land Geogr. 2020, 43, 1–11. (In Chinese) [Google Scholar]
- Liu, Q.; Yang, Z.; Wang, C.; Han, F. Temporal-spatial variations and influencing factor of land use change in Xinjiang, Central Asia, from 1995 to 2015. Sustainability 2019, 11, 696. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xia, F.; Yang, D.; Huo, J.; Wang, G.; Chen, H. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826. [Google Scholar] [CrossRef]
- Mamat, A.; Halik, Ü.; Rouzi, A. Variations of ecosystem service value in response to land-use change in the Kashgar Region, Northwest China. Sustainability 2018, 10, 200. [Google Scholar] [CrossRef] [Green Version]
- Ling, H.; Yan, J.; Xu, H.; Guo, B.; Zhang, Q. Estimates of shifts in ecosystem service values due to changes in key factors in the Manas River basin, northwest China. Sci. Total Environ. 2019, 659, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yushanjiang, A.; Jing, Y. Assessing and predicting changes of the ecosystem service values based on land use/cover change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Ma, Y.; Gong, L. Response of ecosystem service value to land use/cover change in the northern slope economic belt of the Tianshan Mountains, Xinjiang, China. J. Arid Land 2021, 13, 1026–1040. [Google Scholar] [CrossRef]
- Turner, K.G.; Anderson, S.; Gonzales-Chang, M.; Costanza, R.; Courville, S.; Dalgaard, T.; Dominati, E.; Kubiszewski, I.; Ogilvy, S.; Porfirio, L. A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecol. Model 2016, 319, 190–207. [Google Scholar] [CrossRef]
- Lu, X.; Shi, Y.; Chen, C.; Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province. Land Use Policy 2017, 69, 25–40. [Google Scholar] [CrossRef]
- Chen, J.; Yu, L.; Yan, F.; Zhang, S. Ecosystem service loss in response to agricultural expansion in the Small Sanjiang Plain, Northeast China: Process, driver and management. Sustainability 2020, 12, 2430. [Google Scholar] [CrossRef] [Green Version]
- Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial Differentiation and Driving Mechanisms in Ecosystem Service Value of Arid Region: A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Yasuda, H.; Shimizu, K.; Kawai, T.; Ebabu, K.; Berihun, M.L.; Sultan, D.; et al. Cropland expansion outweighs the monetary effect of declining natural vegetation on ecosystem services in sub-Saharan Africa. Ecosyst. Serv. 2020, 45, 101154. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. (In Chinese) [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. (In Chinese) [Google Scholar]
- Song, X. Global estimates of ecosystem service value and change: Taking into account uncertainties in satellite-based land cover data. Ecol. Econ. 2018, 143, 227–235. [Google Scholar] [CrossRef]
- Statistics Bureau of Xinjiang Uygur Autonomous Region. Xinjiang Statistical Yearbook; Chinese Statistics Press: Beijing, China, 2021.
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. (In Chinese) [Google Scholar]
- Rural Social and Economic Investigation Department of the National Bureau of Statistics. China Yearbook of Agricultural Price Survey; China Statistics Press: Beijing, China, 2021.
- Deng, M. Three Water Lines” strategy: Its spatial patterns and effects on water resources allocation in northwest China. Acta Geogr. Sin. 2018, 73, 1189–1203. (In Chinese) [Google Scholar]
- Zhu, H.; Li, Y. An empirical analysis of the causes of farmland expansion in northwest China. Prog. Geogr. 2011, 30, 615–620. (In Chinese) [Google Scholar]
- Xue, J.; Gui, D.; Lei, J.; Sun, H.; Zeng, F.; Mao, D.; Jin, Q.; Liu, Y. Oasification: An unable evasive process in fighting against desertification for the sustainable development of arid and semiarid regions of China. Catena 2019, 179, 197–209. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, F.; Tseng, T.H.; Carver, S.; Chen, X.; Zhao, J.; Yu, L.; Li, F.; Zhao, Z.; Yang, R. Identifying ecosystem service value and potential loss of wilderness areas in China to support post-2020 global biodiversity conservation. Sci. Total Environ. 2022, 846, 157348. [Google Scholar] [CrossRef]
- Schild, J.E.M.; Vermaat, J.E.; van Bodegom, P.M. Differential effects of valuation method and ecosystem type on the monetary valuation of dryland ecosystem services: A quantitative analysis. J. Arid Environ. 2018, 159, 11–21. [Google Scholar] [CrossRef]
- Cheng, L.; Guo, H.; Lu, Q. Review on the valuation of desert ecosystem service values. J. Desert Res. 2013, 33, 281–287. (In Chinese) [Google Scholar]
- Li, T.; Cui, L.; Zhu, J.; Chen, S.; Dong, Z.; Cui, X.; Liu, Y.; Wang, Y.; Ning, Y. Multi-function of grassland ecosystem and realization of sustainable development goals. Chin. J. Nat. 2021, 43, 149–156. (In Chinese) [Google Scholar]
Service Type Categories | Service Type Subcategories | Cropland | Forest | Grassland | River/Lake | Wetland | Desert |
---|---|---|---|---|---|---|---|
Provision services | FP | 340.73 | 112.44 | 146.51 | 180.59 | 122.66 | 6.81 |
RMP | 132.88 | 1015.38 | 122.66 | 119.26 | 81.78 | 13.63 | |
Regulatory services | GR | 245.33 | 1471.95 | 511.10 | 173.77 | 821.16 | 20.44 |
CR | 330.51 | 1386.77 | 531.54 | 701.90 | 4616.89 | 44.29 | |
HR | 262.36 | 1393.59 | 517.91 | 6395.50 | 4579.41 | 23.85 | |
WD | 473.61 | 586.06 | 449.76 | 5059.84 | 4906.51 | 88.59 | |
Support services | SC | 500.87 | 1369.73 | 763.24 | 139.70 | 678.05 | 57.92 |
BP | 347.54 | 1536.69 | 637.17 | 1168.70 | 1257.29 | 136.29 | |
Cultural services | PAL | 57.92 | 708.72 | 296.44 | 1512.84 | 1598.02 | 81.78 |
Total | 2691.77 | 9581.33 | 3976.32 | 15,452.11 | 18,661.78 | 473.61 |
Ecosystem Type | Land Use Secondary Classification of Chinese Academy of Sciences |
---|---|
Cropland ecosystem | 11 paddy field; 12 dry land |
Woodland ecosystem | 21 forest land; 22 shrub land; 23 sparse woodland; 24 other woodland |
Grassland ecosystem | 31 high coverage grassland; 32 medium coverage grassland; 33 low coverage grassland |
Wetland ecosystem | 44 glacier and firn; 46 beach land; 64 marshland |
River/lake ecosystem Desert ecosystem | 41 river and canal; 42 lake; 43 water reservoir, pit and pod 61 sandy land; 62 gobi land; 63 saline and alkaline land; 65 bare land; 66 bare rock land; 67 others unused land |
Year | Area of Cropland (104 ha) | Period | NCAC (104 ha) | ACRC (%/yr) |
---|---|---|---|---|
2000 | 656.82 | 2000–2005 | 90.54 | 2.76 |
2005 | 747.36 | 2005–2010 | 58.98 | 1.58 |
2010 | 806.35 | 2010–2015 | 89.80 | 2.23 |
2015 | 896.15 | 2015–2020 | 2.59 | 0.06 |
2020 | 898.74 | 2000–2020 | 241.92 | 1.84 |
Name | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2000–2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
NCAC (104 ha) | ACRC (%) | NCAC (104 ha) | ACRC (%) | NCAC (104 ha) | ACRC (%) | NCAC (104 ha) | ACRC (%) | NCAC (104 ha) | ACRC (%) | |
ASAO | 10.58 | 1.99 | 11.54 | 1.97 | 22.51 | 3.50 | 0.16 | 0.02 | 44.79 | 2.11 |
KSAO | 4.55 | 0.87 | 10.36 | 1.91 | 19.96 | 3.35 | 0.07 | 0.01 | 34.93 | 1.68 |
TCAO | 27.56 | 6.30 | 6.94 | 1.21 | 8.56 | 1.40 | 0.15 | 0.02 | 43.21 | 2.47 |
CHAP | 6.74 | 1.52 | 6.27 | 1.31 | 5.15 | 1.01 | −0.18 | −0.03 | 17.98 | 1.01 |
IKAP | 8.07 | 1.93 | 2.53 | 0.55 | 3.76 | 0.80 | −0.20 | −0.04 | 14.15 | 0.85 |
BYAP | 6.47 | 2.56 | 7.84 | 2.75 | 12.66 | 3.90 | 0.01 | 0.00 | 26.97 | 2.67 |
ATAO | 8.65 | 5.45 | 3.75 | 1.86 | 7.40 | 3.35 | 2.49 | 0.96 | 22.30 | 3.51 |
HTAO | 2.12 | 1.28 | 2.14 | 1.21 | 5.07 | 2.71 | 0.44 | 0.21 | 9.76 | 1.47 |
BTAP | 5.97 | 5.81 | 2.16 | 1.62 | 3.33 | 2.32 | −0.07 | −0.05 | 11.38 | 2.77 |
HAMC | 2.36 | 3.63 | 1.87 | 2.44 | 0.23 | 0.26 | −0.01 | −0.01 | 4.45 | 1.71 |
KKAP | 0.86 | 1.64 | 0.42 | 0.74 | 1.75 | 2.99 | −0.01 | −0.01 | 3.02 | 1.45 |
TUPC | 0.53 | 0.86 | 0.39 | 0.61 | −0.31 | −0.46 | −0.00 | −0.01 | 0.62 | 0.25 |
KRMC | 5.30 | 29.92 | 1.75 | 3.97 | 0.98 | 1.85 | −0.02 | −0.03 | 8.02 | 11.32 |
UMQC | 0.78 | 1.44 | 1.03 | 1.76 | −1.23 | −1.94 | −0.22 | −0.39 | 0.35 | 0.16 |
Period | Woodland (WL) | Grassland (GL) | Water Body (WB) | Built-Up Land (BL) | Unused Land (UL) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area | Percent | Area | Percent | Area | Percent | Area | Percent | Area | Percent | |
(103 ha) | (%) | (103 ha) | (%) | (103 ha) | (%) | (103 ha) | (%) | (103 ha) | (%) | |
2000–2005 | 5.36 | 0.56 | 848.36 | 89.43 | 4.54 | 0.48 | 3.61 | 0.38 | 86.77 | 9.15 |
2005–2010 | 3.97 | 0.66 | 523.80 | 87.25 | 2.49 | 0.42 | 0.00 | 0.00 | 70.10 | 11.68 |
2010–2015 | 29.15 | 2.70 | 849.25 | 78.70 | 4.64 | 0.43 | 7.19 | 0.67 | 188.83 | 17.50 |
2015–2020 | 3.59 | 4.44 | 24.29 | 30.08 | 2.26 | 2.80 | 7.32 | 9.07 | 43.31 | 53.62 |
Period | Woodland (WL) | Grassland (GL) | Water Body (WB) | Built-Up Land (BL) | Unused Land (UL) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area | Percent | Area | Percent | Area | Percent | Area | Percent | Area | Percent | |
(103 ha) | (%) | (103 ha) | (%) | (103 ha) | (%) | (103 ha) | (%) | (103 ha) | (%) | |
2000–2005 | 0.68 | 1.58 | 26.67 | 61.82 | 1.53 | 3.54 | 13.22 | 30.64 | 1.04 | 2.42 |
2005–2010 | 0.21 | 1.99 | 5.26 | 49.94 | 0.37 | 3.55 | 4.50 | 42.73 | 0.19 | 1.79 |
2010–2015 | 4.46 | 2.46 | 103.02 | 56.91 | 1.12 | 0.62 | 67.02 | 37.02 | 5.41 | 2.99 |
2015–2020 | 3.25 | 5.90 | 22.25 | 40.38 | 2.99 | 5.43 | 20.77 | 37.70 | 5.83 | 10.59 |
Conversion Type | Period | Change in TESV (Million USD) | ||||
---|---|---|---|---|---|---|
Provision Services | Regulatory Services | Support Services | Cultural Services | Total TESV | ||
CL is converted to other land use types | 2000–2005 | −11.98 | 22.02 | 5.27 | 8.55 | 23.86 |
2005–2010 | −3.21 | 3.04 | −0.36 | 1.74 | 1.21 | |
2010–2015 | −52.21 | 33.86 | 9.50 | 28.18 | 19.33 | |
2015–2020 | −15.44 | 33.79 | 0.11 | 11.34 | 29.80 | |
Other land use types are converted to CL | 2000–2005 | 216.15 | −637.46 | −442.83 | −226.37 | −1090.51 |
2005–2010 | 136.76 | −338.14 | −254.32 | −133.59 | −589.29 | |
2010–2015 | 243.30 | −622.63 | −413.48 | −242.27 | −1035.08 | |
2015–2020 | 26.11 | −2.94 | 11.64 | −12.63 | 22.18 |
Name of District | Change in TESV (Million USD) | |||||||
---|---|---|---|---|---|---|---|---|
CL Is Converted to Other Land Use Types | Other Land Use Types Are Converted to CL | |||||||
2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | |
ASAO | 4.70 | −0.02 | −3.25 | 15.92 | −144.49 | −148.80 | −307.82 | −8.38 |
KSAO | 4.11 | −1.73 | −8.46 | 8.68 | −80.49 | −122.34 | −226.15 | −8.09 |
TCAO | −3.02 | 0.74 | −2.25 | 1.54 | −245.12 | −31.44 | −111.98 | 2.39 |
CHAP | 3.81 | 2.21 | −10.63 | 0.24 | −86.63 | −61.55 | −102.33 | −4.86 |
IKAP | 13.15 | 0.14 | −3.82 | −1.75 | −167.72 | −32.58 | −97.64 | −6.43 |
BYAP | 0.72 | 0.19 | 18.50 | 3.87 | −52.35 | −70.51 | −102.05 | −4.10 |
ATAO | 1.73 | 0.51 | 11.64 | 4.66 | −114.44 | −34.41 | 7.10 | 50.76 |
HTAO | −0.98 | −0.53 | 40.29 | 2.73 | −24.43 | −23.73 | −23.81 | 4.06 |
BTAP | 0.83 | −0.43 | −2.09 | −1.65 | −72.46 | −20.52 | −31.19 | −1.31 |
HAMC | −0.74 | 0.34 | −5.64 | −0.29 | −19.02 | −16.36 | −6.51 | 0.24 |
KKAP | 0.68 | −0.13 | 1.46 | 1.62 | −2.29 | 0.03 | −15.33 | −1.66 |
TUPC | 0.11 | 0.50 | 1.33 | −0.12 | −1.44 | 2.19 | −0.78 | 0.33 |
KRMC | −0.47 | 0.00 | 2.48 | 0.09 | −69.16 | −16.18 | −11.09 | −0.52 |
UMQC | −0.75 | −0.59 | −20.21 | −5.72 | −10.43 | −13.10 | −5.52 | −0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, T.; Luo, X.; Fan, L.; Han, J.; Zhang, X. The Impact of Cropland Use Changes on Terrestrial Ecosystem Services Value in Newly Added Cropland Hotspots in China during 2000–2020. Land 2022, 11, 2294. https://doi.org/10.3390/land11122294
Cai T, Luo X, Fan L, Han J, Zhang X. The Impact of Cropland Use Changes on Terrestrial Ecosystem Services Value in Newly Added Cropland Hotspots in China during 2000–2020. Land. 2022; 11(12):2294. https://doi.org/10.3390/land11122294
Chicago/Turabian StyleCai, Tianyi, Xueyuan Luo, Liyao Fan, Jing Han, and Xinhuan Zhang. 2022. "The Impact of Cropland Use Changes on Terrestrial Ecosystem Services Value in Newly Added Cropland Hotspots in China during 2000–2020" Land 11, no. 12: 2294. https://doi.org/10.3390/land11122294
APA StyleCai, T., Luo, X., Fan, L., Han, J., & Zhang, X. (2022). The Impact of Cropland Use Changes on Terrestrial Ecosystem Services Value in Newly Added Cropland Hotspots in China during 2000–2020. Land, 11(12), 2294. https://doi.org/10.3390/land11122294