Assessment of Relationship between Climate Change, Drought, and Land Use and Land Cover Changes in a Semi-Mountainous Area of the Vietnamese Mekong Delta
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Drought Analysis
2.3. Climate Change Scenarios
2.4. Land Use and Land Cover Change
3. Results and Discussion
3.1. Current Drought Assessment
3.2. Future Drought Assessment
3.2.1. Climate Change
3.2.2. Future Drought Assessment (SPI 3, SPI 6, SPI 9 Patterns)
3.3. Land Use Land Cover Change from 2010 to 2020
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Categories | SSP 1_2.6 | SSP 2_4.5 | SSP5_8.5 | ||||||
---|---|---|---|---|---|---|---|---|---|
SPI 3 | SPI 6 | SPI 9 | SPI 3 | SPI 6 | SPI 9 | SPI 3 | SPI 6 | SPI 9 | |
Extreme drought | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Severe drought | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
Moderate drought | 41 | 18 | 0 | 36 | 20 | 0 | 36 | 19 | 0 |
Slight drought | 99 | 91 | 30 | 94 | 87 | 23 | 108 | 83 | 34 |
Very slight drought | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Very slightly wet | 29 | 68 | 91 | 17 | 56 | 85 | 30 | 84 | 75 |
Slightly wet | 55 | 119 | 63 | 64 | 126 | 72 | 73 | 106 | 46 |
Moderately wet | 64 | 24 | 6 | 58 | 30 | 9 | 61 | 6 | 2 |
Severely wet | 25 | 2 | 1 | 30 | 5 | 1 | 15 | 2 | 0 |
Extremely wet | 7 | 0 | 0 | 9 | 0 | 0 | 1 | 0 | 0 |
References
- Keshavarz, M.; Maleksaeidi, H.; Karami, E. Livelihood Vulnerability to Drought: A Case of Rural Iran. Int. J. Disaster Risk Reduct. 2017, 21, 223–230. [Google Scholar] [CrossRef]
- Thao, N.T.T.; Khoi, D.N.; Xuan, T.T.; Tychon, B. Assessment of Livelihood Vulnerability to Drought: A Case Study in Dak Nong Province, Vietnam. Int. J. Disaster Risk Sci. 2019, 10, 604–615. [Google Scholar] [CrossRef] [Green Version]
- Reed, M.S.; Podesta, G.; Fazey, I.; Geeson, N.; Hessel, R.; Hubacek, K.; Letson, D.; Nainggolan, D.; Prell, C.; Rickenbach, M. Combining Analytical Frameworks to Assess Livelihood Vulnerability to Climate Change and Analyse Adaptation Options. Ecol. Econ. 2013, 94, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Angassa, A.; Oba, G. Herder Perceptions on Impacts of Range Enclosures, Crop Farming, Fire Ban and Bush Encroachment on the Rangelands of Borana, Southern Ethiopia. Hum. Ecol. 2008, 36, 201–215. [Google Scholar] [CrossRef]
- Keshavarz, M.; Karami, E. Farmers’ Decision-Making Process under Drought. J. Arid Environ. 2014, 108, 43–56. [Google Scholar] [CrossRef]
- Tfwala, C.; Mengistu, A.; Seyama, E.; Mosia, M.; van Rensburg, L.; Mvubu, B.; Mbingo, M.; Dlamini, P. Nationwide Temporal Variability of Droughts in the Kingdom of Eswatini: 1981–2018. Heliyon 2020, 6, e05707. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Liu, H.; Hu, H.; Khan, M.Y.A.; Wen, J.; Chen, L.; Tian, F. Future Projection of Seasonal Drought Characteristics Using CMIP6 in the Lancang-Mekong River Basin. J. Hydrol. 2022, 610, 127815. [Google Scholar] [CrossRef]
- Barbosa, P.; Masante, D.; Arias Muñoz, C.; Cammalleri, C.; De Jager, A.; Magni, D.; Mazzeschi, M.; McCormick, N.; Naumann, G.; Spinoni, J. JRC Technical Report, Droughts in Europe and Worldwide 2019–2020; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Vicente-Serrano, S.M.; Quiring, S.M.; Pena-Gallardo, M.; Yuan, S.; Dominguez-Castro, F. A Review of Environmental Droughts: Increased Risk under Global Warming? Earth-Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
- Basin, M.R. Mekong River Commission Drought Management Strategy for the Lower Mekong Basin 2020–2025; Mekong River Commission Secretariat: Quai Fa Ngum, Vietnam, 2019. [Google Scholar]
- Te, N. Drought Management in the Lower Mekong Basin. In Proceedings of the 3rd South Asia Water Forum, Kuala Lumpur, Malaysia, 22–26 October 2007; pp. 13–15. [Google Scholar]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K. Global Data Assessment and Analysis of Drought Characteristics Based on CMIP6. J. Hydrol. 2021, 596, 126091. [Google Scholar] [CrossRef]
- Chen, F.; Gao, Y.; Wang, Y.; Li, X. A Downscaling-Merging Method for High-Resolution Daily Precipitation Estimation. J. Hydrol. 2020, 581, 124414. [Google Scholar] [CrossRef]
- Zhao, N.; Jiao, Y.; Zhang, L. Projections of Precipitation Change from CMIP6 Based on a New Downscaling Method in the Poyang Lake Basin, China. J. Hydrol. Reg. Stud. 2022, 42, 101138. [Google Scholar] [CrossRef]
- Rivera, J.A.; Arnould, G. Evaluation of the Ability of CMIP6 Models to Simulate Precipitation over Southwestern South America: Climatic Features and Long-Term Trends (1901–2014). Atmos. Res. 2020, 241, 104953. [Google Scholar] [CrossRef]
- Andersson, E.; Bauer, P.; Beljaars, A.; Chevallier, F.; Hólm, E.; Janisková, M.; Kållberg, P.; Kelly, G.; Lopez, P.; Mcnally, A. Assimilation and Modeling of the Atmospheric Hydrological Cycle in the ECMWF Forecasting System. Bull. Am. Meteorol. Soc. 2005, 86, 387–402. [Google Scholar] [CrossRef] [Green Version]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. The IPCC finalized the first part of the Sixth Assessment Report, Climate Change 2021. In Proceedings of the Physical Science Basis, the Working Group I contribution to the Sixth Assessment Report on 6 August 2021 during the 14th Session of Working Group I and 54th Session of the IPCC, Cambridge, UK and New York, NY, USA, 26 July–6 August 2021; Volume 16, p. 2. [Google Scholar]
- Pascale, S.; Lucarini, V.; Feng, X.; Porporato, A. Analysis of Rainfall Seasonality from Observations and Climate Models. Clim. Dyn. 2015, 44, 3281–3301. [Google Scholar] [CrossRef] [Green Version]
- Deininger, M.; McDermott, F.; Cruz, F.W.; Bernal, J.P.; Mudelsee, M.; Vonhof, H.; Millo, C.; Spötl, C.; Treble, P.C.; Pickering, R. Inter-Hemispheric Synchroneity of Holocene Precipitation Anomalies Controlled by Earth’s Latitudinal Insolation Gradients. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://wedocs.unep.org/20.500.11822/9814 (accessed on 9 June 2022).
- Pokhrel, Y.; Felfelani, F.; Satoh, Y.; Boulange, J.; Burek, P.; Gädeke, A.; Gerten, D.; Gosling, S.N.; Grillakis, M.; Gudmundsson, L. Global Terrestrial Water Storage and Drought Severity under Climate Change. Nat. Clim. Change 2021, 11, 226–233. [Google Scholar] [CrossRef]
- Irannezhad, M.; Minaei, M.; Ahmadian, S.; Chen, D. Impacts of Changes in Climate and Land Cover-Land Use on Flood Characteristics in Gorganrood Watershed (Northeastern Iran) during Recent Decades. Geogr. Ann. Ser. Phys. Geogr. 2018, 100, 340–350. [Google Scholar] [CrossRef]
- Irannezhad, M.; Liu, J. Evaluation of Six Gauge-Based Gridded Climate Products for Analyzing Long-Term Historical Precipitation Patterns across the Lancang-Mekong River Basin. Geogr. Sustain. 2022, 3, 85–103. [Google Scholar] [CrossRef]
- Ge, F.; Zhu, S.; Luo, H.; Zhi, X.; Wang, H. Future Changes in Precipitation Extremes over Southeast Asia: Insights from CMIP6 Multi-Model Ensemble. Environ. Res. Lett. 2021, 16, 024013. [Google Scholar] [CrossRef]
- Supharatid, S.; Nafung, J.; Aribarg, T. Projected Changes in Temperature and Precipitation over Mainland Southeast Asia by CMIP6 Models. J. Water Clim. Change 2022, 13, 337–356. [Google Scholar] [CrossRef]
- Khoi, D.N.; Sam, T.T.; Chi, N.T.T.; Linh, D.Q.; Nhi, P.T.T. Impact of Future Climate Change on River Discharge and Groundwater Recharge: A Case Study of Ho Chi Minh City, Vietnam. J. Water Clim. Change 2022, 13, 1313–1325. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. Drought Monitoring with Multiple Time Scales; Applied Climatology, American Meteorological Society: Dallas, TX, USA, 1995; pp. 233–236. [Google Scholar]
- Hong, N.V.; Tho, P.T.; Giai, N.S. The Ability to Use SPI Index in Assessing the Effects of Dry and Wet Conditions on Rice Yield in the Can Tho—Hau Giang Region. J. Sci. Clim. Change 2018, 5, 36–42. [Google Scholar]
- Caloiero, T.; Sirangelo, B.; Coscarelli, R.; Ferrari, E. Occurrence Probabilities of Wet and Dry Periods in Southern Italy through the SPI Evaluated on Synthetic Monthly Precipitation Series. Water 2018, 10, 336. [Google Scholar] [CrossRef] [Green Version]
- Danandeh Mehr, A.; Sorman, A.U.; Kahya, E.; Hesami Afshar, M. Climate Change Impacts on Meteorological Drought Using SPI and SPEI: Case Study of Ankara, Turkey. Hydrol. Sci. J. 2020, 65, 254–268. [Google Scholar] [CrossRef]
- Abbasi, A.; Khalili, K.; Behmanesh, J.; Shirzad, A. Drought Monitoring and Prediction Using SPEI Index and Gene Expression Programming Model in the West of Urmia Lake. Theor. Appl. Climatol. 2019, 138, 553–567. [Google Scholar] [CrossRef]
- Yahaya, T.I.; Muhammed, M. Assessing Rainfall Variability Impacts Using Agricultural Index (ARI) on Cassava Growth in Ilorin Area of Kwara State, Nigenia. Int. J. Environ. Policy Issues. Geo-Stud. Forum 2013, 6, 158–170. [Google Scholar]
- Won, J.; Choi, J.; Lee, O.; Kim, S. Copula-Based Joint Drought Index Using SPI and EDDI and Its Application to Climate Change. Sci. Total Environ. 2020, 744, 140701. [Google Scholar] [CrossRef]
- Sierra-Soler, A.; Adamowski, J.; Malard, J.; Qi, Z.; Saadat, H.; Pingale, S. Assessing Agricultural Drought at a Regional Scale Using LULC Classification, SPI, and Vegetation Indices: Case Study in a Rainfed Agro-Ecosystem in Central Mexico. Geomat. Nat. Hazards Risk 2016, 7, 1460–1488. [Google Scholar] [CrossRef] [Green Version]
- McNicoll, G. Regions at Risk: Comparisons of Threatened Environments. Popul. Dev. Rev. 1996, 22, 380–381. [Google Scholar] [CrossRef]
- Veldkamp, A.; Lambin, E.F. Predicting Land-Use Change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [Google Scholar] [CrossRef]
- TT Duong, M.; Samsura, D.; van der Krabben, E. Land Conversion for Tourism Development under Vietnam’s Ambiguous Property Rights over Land. Land 2020, 9, 204. [Google Scholar] [CrossRef]
- Appelt, J.L.; Garcia Rojas, D.C.; Verburg, P.H.; van Vliet, J. Socioeconomic Outcomes of Agricultural Land Use Change in Southeast Asia. Ambio 2022, 51, 1094–1109. [Google Scholar] [CrossRef] [PubMed]
- Andrianto, A.; Komarudin, H.; Pacheco, P. Expansion of Oil Palm Plantations in Indonesia’s Frontier: Problems of Externalities and the Future of Local and Indigenous Communities. Land 2019, 8, 56. [Google Scholar] [CrossRef] [Green Version]
- Lognonné, P.; Banerdt, W.B.; Pike, W.; Giardini, D.; Christensen, U.; Garcia, R.F.; Kawamura, T.; Kedar, S.; Knapmeyer-Endrun, B.; Margerin, L. Constraints on the Shallow Elastic and Anelastic Structure of Mars from InSight Seismic Data. Nat. Geosci. 2020, 13, 213–220. [Google Scholar] [CrossRef]
- Benevenuto, R.F.; Agapito-Tenfen, S.Z.; Vilperte, V.; Wikmark, O.-G.; van Rensburg, P.J.; Nodari, R.O. Molecular Responses of Genetically Modified Maize to Abiotic Stresses as Determined through Proteomic and Metabolomic Analyses. PLoS ONE 2017, 12, e0173069. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.A.; Akbar, A.; Askari, S.H.; Iqbal, M.; Rasheed, R.; Hussain, I. Recent Advances in Abiotic Stress Tolerance of Plants through Chemical Priming: An Overview. Adv. Seed Priming 2018, 51–79. [Google Scholar]
- Department of Agriculture and Rural Development An Giang. Report on the Results of Agricultural Production in 2020 on the Agricultural Production Development Plan in 2021; Department of Agriculture and Rural Development An Giang: Long Xuyen, An Giang, Vietnam, 2021; p. 35. [Google Scholar]
- General Statistical Office of Vietnam (GSO). Statistical Yearbook of An Giang 2020; An Giang Statistical Office: Long Xuyen, An Giang, Vietnam, 2020. [Google Scholar]
- General Statistics Office Of Vietnam (GSO). Statistical Year Book of Vietnam 2019; General Statistics Office Of Vietnam: Ha Noi, Vietnam, 2019. [Google Scholar]
- Minh, H.V.T.; van Ty, T.; Avtar, R.; Kumar, P.; Le, K.N.; Ngan, N.V.C.; Khanh, L.H.; Nguyen, N.C.; Downes, N.K. Implications of Climate Change and Drought on Water Requirements in a Semi-Mountainous Region of the Vietnamese Mekong Delta. Environ. Monit. Assess. 2022, 194, 766. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Agnew, C. Using the SPI to Identify Drought. Natl. Drought Mitig. Cent. Univ. Neb. Linc. 2000, 1, 6–12. [Google Scholar]
- Soleimani, H.; Ahmadi, H.; Zehtabian, G. Comparison of Temporal and Spatial Trend of SPI, DI and CZI as Important Drought Indices to Map Using IDW Method in Taleghan Watershed. Ann. Biol. Res. 2013, 4, 46–55. [Google Scholar]
- Ty, T.V.; Hoai, D.T.T.H.; Minh, H.V.T. Mapping Meteorological Drought in the Mekong Delta under Climate Change. Can. Tho. Univ. J. Sci. 2015, 2025, 226–233. [Google Scholar]
- Vicente-Serrano, S.M. Differences in Spatial Patterns of Drought on Different Time Scales: An Analysis of the Iberian Peninsula. Water Resour. Manag. 2006, 20, 37–60. [Google Scholar] [CrossRef]
- Thang, N.V.; Khiem, M.V. The Assessment and Estimate Dry Condition by SPI Indicator for the VMD Bu Using the SPI Index. Vietnam J. Hydrometeorol. 2017, 6, 1–9. [Google Scholar]
- Minh, H.V.T.; Lavane, K.; Ty, T.V.; Downes, N.K.; Hong, T.T.K.; Kumar, P. Evaluation of the Impact of Drought and Saline Water Intrusion on Rice Yields in the Mekong Delta, Vietnam. Water 2022, 14, 3499. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Try, S.; Tanaka, S.; Tanaka, K.; Sayama, T.; Khujanazarov, T.; Oeurng, C. Comparison of CMIP5 and CMIP6 GCM Performance for Flood Projections in the Mekong River Basin. J. Hydrol. Reg. Stud. 2022, 40, 101035. [Google Scholar] [CrossRef]
- Riahi, K.; Krey, V.; Rao, S.; Chirkov, V.; Fischer, G.; Kolp, P.; Kindermann, G.; Nakicenovic, N.; Rafai, P. RCP-8.5: Exploring the Consequence of High Emission Trajectories. Clim. Change 2011, 10, 1007. [Google Scholar]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E. RCP4. 5: A Pathway for Stabilization of Radiative Forcing by 2100. Clim. Change 2011, 109, 77–94. [Google Scholar] [CrossRef]
- Hay, L.E.; Wilby, R.L.; Leavesley, G.H. A Comparison of Delta Change and Downscaled GCM Scenarios for Three Mountainous Basins in the United States 1. JAWRA J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Ines, A.V.; Hansen, J.W. Bias Correction of Daily GCM Rainfall for Crop Simulation Studies. Agric. For. Meteorol. 2006, 138, 44–53. [Google Scholar] [CrossRef]
Drought Levels | SPI Values | Drought Levels | SPI Values |
---|---|---|---|
Normal | 0–0.24 | Normal | (−0.24)–0 |
Very slightly wet | 0.25–0.49 | Very slight drought | (−49)–(−0.25) |
Slightly wet | 0.5–0.99 | Slight drought | (−0.99)–(−0.5) |
Moderately wet | 1–1.44 | Moderate drought | (−1.44)–(−1) |
Severely wet | 1.5–1.99 | Severe drought | (−1.99)–(−1.5) |
Extremely wet | >2 | Extreme drought | <(−2) |
Chau Doc | |||
---|---|---|---|
Characteristics | 3-month | 6-month | 9-month |
Number of SPI −0.25 | 129 | 91 | 72 |
The first longest duration/occurrence times of drought (month) | 15–16/2 | 21/1 | 25/1 |
Time period, first longest duration | 2012–2014, 2014–2015 | 1991–1993 | 2013–2016, |
The second longest duration of drought (month) | 11–12/2 | 19/2 | 21–23/2 |
Time period, second longest duration | 1990–1991, 2001–2003 | 2012–2014, 2014–2016, | 1989–1991, 1991–1993 |
The third longest duration of drought (month) | 8–9/3 | 15/1 | 14–16/2 |
Time period, third longest duration | 1989–1990, 1992–1993, 2009–2010 | 2002–2003 | 2002–2003, 2012–2014 |
Number of SPI 0.25 | 135 | 133 | 123 |
The longest duration of wet | 10 | 15/1 | 33 |
Time period, first longest duration (month) | 2016–2017, | 1988–1989 | 1998–2001, |
The second longest duration of wet (month) | 9 | 13/1 | 12–13/2 |
Time period, second longest duration | 2008–2009 | 2007–2009 | 2007–2009, 2010–2011 |
The third longest duration of wet (month) | 8 | 12/2 | 10/2 |
Time period, third longest duration | 1999–2000 | 1999–2000, 2010–2011 | 1981–1982, 2016–2017 |
Tri Ton | |||
---|---|---|---|
Characteristics | 3-month | 6-month | 9-month |
Number of SPI −0.25 | 116 | 73 | 34 |
The first longest duration/occurrence times of drought (month) | 11/1 | 14–15/2 | 16–17/2 |
Time occurrence first longest duration | 1985–1986, | 2003–2005, 2012–2013, | 2003–2005, 2012–2014, |
The second longest duration of drought (month) | 8–9/2 | 12–13/2 | 14–15/2 |
Time occurrence second longest duration | 1991–1992, 2003–2004, | 1984–1986, 2009–2010 | 2014–2016, |
The third longest duration of drought (month) | 7/3 | 8–9/3 | 11–12/3 |
Time occurrence third longest duration | 1989–1990, 2012–2013, 2015–2016, | 2001–2002, 2011–2012, 2014–2016 | 1984–1986, 2009–2010, 2013–2015 |
Number of SPI 0.25 | 122 | 109 | 96 |
The longest duration of wet | 10/1 | 15/1 | 19/1 |
Time occurrence first longest duration (month) | 1987–1988 | 1980–1981 | 1998–2000 |
The second longest duration of wet (month) | 9/1 | 10/1 | 18/1 |
Time occurrence second long duration | 1998–1999 | 1998–1999 | 1980–1982, |
The third longest duration of wet (month) | 7/2 | 9/3 | 12/1 |
Time occurrence third longest duration | 1980–1981, 2000–2001 | 1981–1983, 1987–1988, 2000–2001 | 1986–1988 |
Categories | SSP 1_2.6 | SSP 2_4.5 | SSP5_8.5 | ||||||
---|---|---|---|---|---|---|---|---|---|
SPI 3 | SPI 6 | SPI 9 | SPI 3 | SPI 6 | SPI 9 | SPI 3 | SPI 6 | SPI 9 | |
Extreme drought | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Severe drought | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 |
Moderate drought | 41 | 18 | 0 | 41 | 18 | 0 | 41 | 18 | 0 |
Slight drought | 99 | 91 | 30 | 99 | 91 | 30 | 99 | 91 | 30 |
Very slight drought | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Very slightly wet | 29 | 68 | 91 | 29 | 68 | 91 | 29 | 68 | 91 |
Slightly wet | 55 | 119 | 63 | 55 | 119 | 63 | 55 | 119 | 63 |
Moderately wet | 64 | 24 | 6 | 64 | 24 | 6 | 64 | 24 | 6 |
Severe wet | 25 | 2 | 1 | 25 | 2 | 1 | 25 | 2 | 1 |
Extreme wet | 7 | 0 | 0 | 7 | 0 | 0 | 7 | 0 | 0 |
Year 2010 Year 2020 | Non- Agricultural | Unused Land | Water Surfaces | Forestry | Rice Crops | Upland Rice | Cash Crops | Perennial Crops | Others Agricultural | Area 2010 (ha) |
---|---|---|---|---|---|---|---|---|---|---|
Non-Agricultural | 26,118.8 | 8.6 | 1531.7 | 137.8 | 1464.8 | 94.5 | 432.4 | 1240.0 | 7.8 | 31,036.4 |
Unused Land | 112.3 | 689.6 | 20.2 | 453.5 | 546.4 | 16.9 | 12.2 | 98.9 | - | 1949.9 |
Water Surfaces | 3504.7 | 180.2 | 21,184.9 | 97.8 | 5570.2 | 61.1 | 736.6 | 849.5 | 15.1 | 32,200.1 |
Forestry | 408.4 | 83.5 | 95.6 | 10,436.6 | 1726.1 | 117.7 | 322.8 | 684.6 | - | 13,875.2 |
Rice crops | 5253.0 | 0.8 | 5941.0 | 160.2 | 22,5931.6 | 1495.6 | 5376.9 | 8621.3 | 51.9 | 252,832.3 |
Upland rice | 397.9 | 10.4 | 66.2 | 77.1 | 1807.8 | 2469.0 | 524.6 | 296.7 | 7.4 | 5657.2 |
Cash crops | 720.6 | 28.2 | 759.6 | 36.2 | 1510.8 | 54.6 | 3932.9 | 2278.0 | - | 9320.9 |
Perennial crops | 1463.4 | 0.9 | 189.8 | 249.2 | 471.7 | 148.8 | 442.2 | 3530.0 | 10.7 | 6506.7 |
Others agricultural | 9.7 | 1.4 | 2.1 | 0.5 | 47.4 | - | - | 5.2 | 84.7 | 151.0 |
Year 2020 (ha) | 37,988.8 | 1003.5 | 29,791.1 | 11,649.0 | 239,076.5 | 4458.0 | 11,780.6 | 17,604.3 | 177.7 | 353,529.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ty, T.V.; Lavane, K.; Nguyen, P.C.; Downes, N.K.; Nam, N.D.G.; Minh, H.V.T.; Kumar, P. Assessment of Relationship between Climate Change, Drought, and Land Use and Land Cover Changes in a Semi-Mountainous Area of the Vietnamese Mekong Delta. Land 2022, 11, 2175. https://doi.org/10.3390/land11122175
Ty TV, Lavane K, Nguyen PC, Downes NK, Nam NDG, Minh HVT, Kumar P. Assessment of Relationship between Climate Change, Drought, and Land Use and Land Cover Changes in a Semi-Mountainous Area of the Vietnamese Mekong Delta. Land. 2022; 11(12):2175. https://doi.org/10.3390/land11122175
Chicago/Turabian StyleTy, Tran Van, Kim Lavane, Phan Chi Nguyen, Nigel K. Downes, Nguyen Dinh Giang Nam, Huynh Vuong Thu Minh, and Pankaj Kumar. 2022. "Assessment of Relationship between Climate Change, Drought, and Land Use and Land Cover Changes in a Semi-Mountainous Area of the Vietnamese Mekong Delta" Land 11, no. 12: 2175. https://doi.org/10.3390/land11122175
APA StyleTy, T. V., Lavane, K., Nguyen, P. C., Downes, N. K., Nam, N. D. G., Minh, H. V. T., & Kumar, P. (2022). Assessment of Relationship between Climate Change, Drought, and Land Use and Land Cover Changes in a Semi-Mountainous Area of the Vietnamese Mekong Delta. Land, 11(12), 2175. https://doi.org/10.3390/land11122175