Cation Exchange Resins for Predicting Available K on K-Deficient Soils: Extraction Capacity among Different Soil K Pools and First Insights on the Contribution of K Solubilized by Rhizosphere Microbes
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Selection and Greenhouse Pot Experiment
2.2. Resins Experiment with Soil Pots and Their Use as Soil Extractants
2.3. Determination of K Solubilizing Rhizosphere Microbial Population
2.4. Statistical Analysis
3. Results
3.1. Soil Characteristics, Distribution of Soil K Pools, and Amounts of Soil K Extracted by Different Extraction Methods
3.2. Distribution of Population of K Solubilizing Rhizosphere Microbes among Soils
3.3. Interrelationships between K Utake, Basic Soil Properties, and Soil K Pools
3.4. Performance of Cation Exchange Resins to Predict K Uptake by Plants
3.5. Participation of Soil K Pools on the Extraction Capacity of Cation Exchange Resins: First Insights on the Contribution of K Solubilized by Rhizosphere Microbes
r2 = 0.89, p ≤ 0.001
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in Agriculture—Status and Perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Sarikhani, M.R.; Oustan, S.; Ebrahimi, M.; Aliasgharzad, N. Isolation and Identification of Potassium-releasing Bacteria in Soil and Assessment of Their Ability to Release Potassium for Plants. Eur. J. Soil Sci. 2018, 69, 1078–1086. [Google Scholar] [CrossRef]
- Bilias, F.; Barbayiannis, N. Evaluation of Sodium Tetraphenylboron (NaBPh4) as a Soil Test of Potassium Availability. Arch. Agron. Soil Sci. 2017, 63, 468–476. [Google Scholar] [CrossRef]
- Bilias, F.; Barbayiannis, N. Potassium Availability: An Approach Using Thermodynamic Parameters Derived from Quantity-Intensity Relationships. Geoderma 2019, 338, 355–364. [Google Scholar] [CrossRef]
- Bilias, F.; Barbayiannis, N. Potassium-Fixing Clay Minerals as Parameters That Define K Availability of K-Deficient Soils Assessed with a Modified Mitscherlich Equation Model. J. Soil Sci. Plant Nutr. 2019, 19, 830–840. [Google Scholar] [CrossRef]
- FAO. World Fertilizer Trends and Outlook to 2020; FAO: Rome, Italy, 2017. [Google Scholar]
- Bell, M.J.; Ransom, M.D.; Thompson, M.L.; Hinsinger, P.; Florence, A.M.; Moody, P.W.; Guppy, C.N. Considering Soil Potassium Pools with Dissimilar Plant Availability. In Improving Potassium Recommendations for Agricultural Crops; Murrell, T.S., Mikkelsen, R.L., Sulewski, G., Norton, R., Thompson, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 163–190. [Google Scholar]
- Khan, S.A.; Mulvaney, R.L.; Ellsworth, T.R. The Potassium Paradox: Implications for Soil Fertility, Crop Production and Human Health. Renew. Agric. Food Syst. 2014, 29, 3–27. [Google Scholar] [CrossRef]
- Hinsinger, P. Potassium. In Encyclopedia of Soil Science; Lal, R., Ed.; Marcel Dekker: New York, NY, USA, 2002; pp. 1035–1039. [Google Scholar]
- Hinsinger, P. Plant-induced changes of soil processes and properties. In Soil Conditions and Plant Growth, 1st ed.; Gregory, P.J., Nortcliff, S., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 323–365. ISBN 978-1-4051-9770-0. [Google Scholar]
- Etesami, H.; Emami, S.; Alikhani, H.A. Potassium Solubilizing Bacteria (KSB): Mechanisms, Promotion of Plant Growth, and Future Prospects: A Review. J. Soil Sci. Plant Nutr. 2017, 17, 897–911. [Google Scholar] [CrossRef]
- Meena, V.S.; Maurya, B.R.; Verma, J.P. Does a Rhizospheric Microorganism Enhance K+ Availability in Agricultural Soils? Microbiol. Res. 2014, 169, 337–347. [Google Scholar] [CrossRef]
- Zarjani, J.K.; Aliasgharzad, N.; Oustan, S.; Emadi, M.; Ahmadi, A. Isolation and Characterization of Potassium Solubilizing Bacteria in Some Iranian Soils. Arch. Agron. Soil Sci. 2013, 59, 1713–1723. [Google Scholar] [CrossRef]
- Breker, J.S.; DeSutter, T.; Rakkar, M.K.; Chatterjee, A.; Sharma, L.; Franzen, D.W. Potassium Requirements for Corn in North Dakota: Influence of Clay Mineralogy. Soil Sci. Soc. Am. J. 2019, 83, 429–436. [Google Scholar] [CrossRef]
- Moody, P.W.; Bell, M.J. Availability of Soil Potassium and Diagnostic Soil Tests. Soil Res. 2006, 44, 265. [Google Scholar] [CrossRef]
- Islam, A.; Karim, A.J.M.S.; Solaiman, A.R.M.; Islam, M.S.; Saleque, M.A. Eight-Year Long Potassium Fertilization Effects on Quantity/Intensity Relationship of Soil Potassium under Double Rice Cropping. Soil Tillage Res. 2017, 169, 99–117. [Google Scholar] [CrossRef]
- Jalali, M. A Study of the Quantity/Intensity Relationships of Potassium in Some Calcareous Soils of Iran. Arid. Land Res. Manag. 2007, 21, 133–141. [Google Scholar] [CrossRef]
- Evangelou, V.P.; Wang, J.; Phillips, R.E. New developments and perspectives on soil potassium quantity/intensity relationships. Adv. Agron. 1994, 52, 173–227. [Google Scholar] [CrossRef]
- Cox, A.E.; Joern, B.C.; Roth, C.B. Nonexchangeable Ammonium and Potassium Determination in Soils with a Modified Sodium Tetraphenylboron Method. Soil Sci. Soc. Am. J. 1996, 60, 114–120. [Google Scholar] [CrossRef]
- Cox, A.E.; Joern, B.C.; Brouder, S.M.; Gao, D. Plant-Available Potassium Assessment with a Modified Sodium Tetraphenylboron Method. Soil Sci. Soc. Am. J. 1999, 63, 902–911. [Google Scholar] [CrossRef]
- Núñez, A.; Morón, A. Potassium Dynamics in Western Uruguayan Agricultural Mollisols. Commun. Soil Sci. Plant Anal. 2017, 48, 2558–2572. [Google Scholar] [CrossRef]
- Bilias, F.; Tsigili, S.; Barbayiannis, N. A Preliminary Evaluation of Cation Exchange Resins as a Soil Test of Potassium Availability in Soils of Northern Greece with Different K Loadings. J Soil Sci. Plant Nutr. 2021, 21, 1004–1012. [Google Scholar] [CrossRef]
- Helmke, P.A.; Sparks, D.L. Lithium, Sodium, Potassium, Rubidium, and Cesium. In SSSA Book Series; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 551–574. ISBN 978-0-89118-866-7. [Google Scholar]
- Buck, R.L.; Hopkins, B.G.; Webb, B.L.; Jolley, V.D.; Cline, N.L. Depth of Ion Exchange Resin Capsule Placement Impacts on Estimation of Nitrogen and Phosphorus Bioavailability in Semiarid Low-Fertility Soils. Soil Sci. 2016, 181, 216–221. [Google Scholar] [CrossRef]
- Schaff, B.E.; Skogley, E.O. Diffusion of Potassium, Calcium, and Magnesium in Bozeman Silt Loam as Influenced by Temperature and Moisture. Soil Sci. Soc. Am. J. 1982, 46, 521–524. [Google Scholar] [CrossRef]
- Skogley, E.O.; Schaff, B.E. Ion Diffusion in Soils as Related to Physical and Chemical Properties. Soil Sci. Soc. Am. J. 1985, 49, 847–850. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Allen, S.E.; Terman, G.L.; Clements, L.B. Greenhouse Techniques for Soil-Plant-Fertilizer Research; National Fertilizer Development Center, Tennessee Valley Authority: Muscle Shoals, AL, USA, 1976. [Google Scholar]
- Jones, B.J., Jr.; Case, V.W. Sampling, handling and analyzing plant tissue samples. In Soil Testing and Plant Analysis; Westerman, R.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1990; pp. 389–427. [Google Scholar]
- Ziadi, N.; Simard, R.R.; Allard, G.; Lafond, J. Field Evaluation of Anion Exchange Membranes as a N Soil Testing Method for Grasslands. Can. J. Soil. Sci. 1999, 79, 281–294. [Google Scholar] [CrossRef]
- Zhang, M.; Riaz, M.; Liu, B.; Xia, H.; El-desouki, Z.; Jiang, C. Two-Year Study of Biochar: Achieving Excellent Capability of Potassium Supply via Alter Clay Mineral Composition and Potassium-Dissolving Bacteria Activity. Sci. Total Environ. 2020, 717, 137286. [Google Scholar] [CrossRef] [PubMed]
- Tonidandel, S.; LeBreton, J.M. RWA Web: A Free, Comprehensive, Web-Based, and User-Friendly Tool for Relative Weight Analyses. J. Bus. Psychol. 2015, 30, 207–216. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System Fort Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Murrell, T.S.; Mikkelsen, R.L.; Sulewski, G.; Norton, R.; Thompson, M.L. Improving Potassium Recommendations for Agricultural Crops; Murrell, T.S., Mikkelsen, R.L., Sulewski, G., Norton, R., Thompson, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-59196-0. [Google Scholar]
- Das, D.; Dwivedi, B.S.; Datta, S.P.; Datta, S.C.; Meena, M.C.; Agarwal, B.K.; Shahi, D.K.; Singh, M.; Chakraborty, D.; Jaggi, S. Potassium Supplying Capacity of a Red Soil from Eastern India after Forty-Two Years of Continuous Cropping and Fertilization. Geoderma 2019, 341, 76–92. [Google Scholar] [CrossRef]
- Rehm, G.W.; Sorensen, R.C. Effects of Potassium and Magnesium Applied for Corn Grown on an Irrigated Sandy Soil. Soil Sci. Soc. Am. J. 1985, 49, 1446–1450. [Google Scholar] [CrossRef]
- Sadusky, M.C.; Sparks, D.L.; Noll, M.R.; Hendricks, G.J. Kinetics and Mechanisms of Potassium Release from Sandy Middle Atlantic Coastal Plain Soils. Soil Sci. Soc. Am. J. 1987, 51, 1460–1465. [Google Scholar] [CrossRef]
- Niebes, J.-F.; Dufey, J.E.; Jaillard, B.; Hinsinger, P. Release of Nonexchangeable Potassium from Different Size Fractions of Two Highly K-Fertilized Soils in the Rhizosphere of Rape (Brassica napus Cv. Drakkar). Plant Soil 1993, 155–156, 403–406. [Google Scholar] [CrossRef]
- Ali, A.M.; Awad, M.Y.M.; Hegab, S.A.; Gawad, A.M.A.E.; Eissa, M.A. Effect of Potassium Solubilizing Bacteria (Bacillus cereus) on Growth and Yield of Potato. J. Plant Nutr. 2021, 44, 411–420. [Google Scholar] [CrossRef]
Soil Location | Classification | pH | Clay | CaCO3 | OM 1 | CEC 2 | NH4OAc-K 3 | |
---|---|---|---|---|---|---|---|---|
% | cmolc kg−1 | mg kg−1 | ||||||
1 | Kerasia | Luvisol | 7.3 | 20.9 | - | 2.0 | 19.3 | 92.0 |
2 | Assiros | Cambisol | 6.2 | 33.7 | - | 2.6 | 30.1 | 121.0 |
3 | Pente Vrises | Luvisol | 6.3 | 38.2 | - | 2.6 | 24.8 | 93.0 |
4 | Univ. Farm | Fluvisol | 7.7 | 25.4 | 3.2 | 2.2 | 22.7 | 56.0 |
5 | Sindos | Fluvisol | 7.3 | 28.2 | 4.3 | 2.5 | 22.3 | 82.0 |
6 | Kristoni | Cambisol | 5.6 | 32.9 | - | 2.4 | 21.5 | 85.0 |
7 | Pedino | Luvisol | 5.0 | 28.4 | - | 2.2 | 21.1 | 81.0 |
8 | Sirako | Vertisol | 7.4 | 42.1 | - | 2.6 | 29.0 | 111.0 |
9 | Gynekokastro | Fluvisol | 7.3 | 26.3 | - | 2.5 | 14.9 | 87.0 |
10 | Mouries | Entisol | 6.3 | 12.0 | - | 2.0 | 12.3 | 60.0 |
(a) n = 30 1 | r2 |
Total K uptake (mg kg−1) = 3.60 K soluble (mg L−1) + 24.20 | 0.50 *** |
Total K uptake (mg kg−1) = 0.34 NH4OAc-K (mg kg−1) + 13.52 | 0.39 *** |
Total K uptake (mg kg−1) = 0.07 NaBPh4-K, 1 min (mg kg−1) + 30.73 | 0.20 * |
Total K uptake (mg kg−1) = 0.29 Resin-K 1:200, 60 min (mg kg−1) − 1.54 | 0.64 *** |
(b) n = 30 | r2 |
Total K uptake (mg kg−1) = 0.39 Clay (%) + 2.47 K soluble (mg L−1) + 0.18 Resin-K 1:200, 60 min (mg kg−1) − 12.99 | 0.85 *** |
Total K uptake (mg kg−1) = 0.32 Clay (%) − 4.35 pH + 3.50 K soluble (mg L−1) + 0.06 NaBPh4-K, 1 min (mg kg−1) + 30.11 | 0.84 *** |
Total K uptake (mg kg−1) = −2.92 pH + 3.17 K soluble (mg L−1) + 0.29 NH4OAc-K (mg kg−1) + 20.97 | 0.83 *** |
Variables | Raw Relative Weight | Rescaled Relative Weight % |
---|---|---|
K-feldspars | 0.140 | 15.6 |
OM% 1 | 0.055 | 6.14 |
NH4OAc-K | 0.356 | 39.8 |
pH | 0.082 | 9.17 |
Non exch. K | 0.091 | 10.2 |
K soluble | 0.171 | 19.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilias, F.; Kotsangeli, E.; Ipsilantis, I.; Barbayiannis, N. Cation Exchange Resins for Predicting Available K on K-Deficient Soils: Extraction Capacity among Different Soil K Pools and First Insights on the Contribution of K Solubilized by Rhizosphere Microbes. Land 2022, 11, 2146. https://doi.org/10.3390/land11122146
Bilias F, Kotsangeli E, Ipsilantis I, Barbayiannis N. Cation Exchange Resins for Predicting Available K on K-Deficient Soils: Extraction Capacity among Different Soil K Pools and First Insights on the Contribution of K Solubilized by Rhizosphere Microbes. Land. 2022; 11(12):2146. https://doi.org/10.3390/land11122146
Chicago/Turabian StyleBilias, Fotis, Eleni Kotsangeli, Ioannis Ipsilantis, and Nikolaos Barbayiannis. 2022. "Cation Exchange Resins for Predicting Available K on K-Deficient Soils: Extraction Capacity among Different Soil K Pools and First Insights on the Contribution of K Solubilized by Rhizosphere Microbes" Land 11, no. 12: 2146. https://doi.org/10.3390/land11122146
APA StyleBilias, F., Kotsangeli, E., Ipsilantis, I., & Barbayiannis, N. (2022). Cation Exchange Resins for Predicting Available K on K-Deficient Soils: Extraction Capacity among Different Soil K Pools and First Insights on the Contribution of K Solubilized by Rhizosphere Microbes. Land, 11(12), 2146. https://doi.org/10.3390/land11122146