Are Mechanical and Biological Techniques Efficient in Restoring Soil and Associated Biodiversity in a Brownfield Site?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.1.1. Experimental Site
2.1.2. Reference Sites
2.1.3. Earthworm Donor Sites
2.2. Soil Restoration Techniques
2.3. Field Survey and Laboratory Analysis
2.3.1. Initial (T0) and T + 1 Year Field Sampling Design
2.3.2. Soil Characteristics
2.3.3. Vegetation
2.3.4. Soil Fauna
2.4. Data Analysis
3. Results
3.1. Effects on Soil Characteristics
3.2. Effects of Soil Restoration Techniques on Vegetation
3.3. Soil Invertebrate Fauna and Soil Biological Quality
Soil Fauna Communities
4. Discussion
4.1. Effect of Abiotic Restoration Methods
4.2. Effect of Earthworm Inoculation
4.3. Colonization Processes of Restored Soil
4.4. Soil Biologic Quality Restoration as a Long Process
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morel, J.L.; Chenu, C.; Lorenz, K. Ecosystem Services Provided by Soils of Urban, Industrial, Traffic, Mining, and Military Areas (SUITMAs). J. Soils Sediments 2015, 15, 1659–1666. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking Soils to Ecosystem Services—A Global Review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Zurqani, H.A.; Post, C.J.; Schlautman, M.A.; Post, G.C. Soil Diversity (Pedodiversity) and Ecosystem Services. Land 2021, 10, 288. [Google Scholar] [CrossRef]
- Ampoorter, E.; de Schrijver, A.; de Frenne, P.; Hermy, M.; Verheyen, K. Experimental Assessment of Ecological Restoration Options for Compacted Forest Soils. Ecol. Eng. 2011, 37, 1734–1746. [Google Scholar] [CrossRef]
- Rhee, T.S.; Brenninkmeijer, C.A.M.; Röckmann, T. The Overwhelming Role of Soils in the Global Atmospheric Hydrogen Cycle. Atmos. Chem. Phys. 2006, 6, 1611–1625. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, P.; Kumar, A.; Behera, S.K.; Sharma, Y.K.; Singh, N. Soil Carbon Sequestration: An Innovative Strategy for Reducing Atmospheric Carbon Dioxide Concentration. Biodivers. Conserv. 2012, 21, 1343–1358. [Google Scholar] [CrossRef]
- Wani, O.A.; Kumar, S.; Hussain, N.; Wani, A.I.A.; Babu, S.; Alam, P.; Rashid, M.; Popescu, S.M.; Mansoor, S. Multi-Scale Processes Influencing Global Carbon Storage and Land-Carbon-Climate Nexus: A Critical Review. Pedosphere 2022, in press. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Zurqani, H.A.; Post, C.J.; Schlautman, M.A.; Post, G.C.; Lin, L.; Hao, Z. Soil Carbon Regulating Ecosystem Services in the State of South Carolina, USA. Land 2021, 10, 309. [Google Scholar] [CrossRef]
- Lal, R. Carbon Sequestration. Philos. Trans. R. Soc. 2008, 363, 815–830. [Google Scholar] [CrossRef]
- Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E.C. Soil Ecosystem Services, Sustainability, Valuation and Management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Desrousseaux, M. La Protection Juridique de la Qualité des Sols; Bibliothèque de Droit de l’Urbanisme et de l’Environnement; Librairie Générale de Droit et de Jurisprudence (LGDJ): Issy-les-Moulineaux, France, 2016; p. 484. ISBN 978-2-275-05280-9. [Google Scholar]
- Desrousseaux, M.; Schmitt, B.; Billet, P.; Béchet, B.; Le Bissonnais, Y.; Ruas, A. Artificialised Land and Land Take: What Policies Will Limit Its Expansion and/or Reduce Its Impacts? In International Yearbook of Soil Law and Policy 2018; Ginzky, H., Dooley, E., Heuser, I.L., Kasimbazi, E., Markus, T., Qin, T., Eds.; International Yearbook of Soil Law and Policy; Springer International Publishing: Cham, Switzerland, 2019; pp. 149–165. ISBN 978-3-030-00758-4. [Google Scholar]
- Naumann, S.; Frelih-Larsen, A.; Prokop, G.; Ittner, S.; Reed, M.; Mills, J.; Morari, F.; Verzandvoort, S.; Albrecht, S.; Bjuréus, A.; et al. Land Take and Soil Sealing—Drivers, Trends and Policy (Legal) Instruments: Insights from European Cities. In International Yearbook of Soil Law and Policy 2018; Ginzky, H., Dooley, E., Heuser, I.L., Kasimbazi, E., Markus, T., Qin, T., Eds.; International Yearbook of Soil Law and Policy; Springer International Publishing: Cham, Switzerland, 2019; pp. 83–112. ISBN 978-3-030-00758-4. [Google Scholar]
- Stankovics, P.; Tóth, G.; Tóth, Z. Identifying Gaps between the Legislative Tools of Soil Protection in the EU Member States for a Common European Soil Protection Legislation. Sustainability 2018, 10, 2886. [Google Scholar] [CrossRef] [Green Version]
- Montanarella, L.; Alva, I.L. Putting Soils on the Agenda: The Three Rio Conventions and the Post-2015 Development Agenda. Curr. Opin. Environ. Sustain. 2015, 15, 41–48. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; Molenaar, C.; De Cleen, M.; Visser, S. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Ferber, U.; Grimski, D.; Millar, K.; Nathanail, P. (Eds.) Sustainable Brownfield Regeneration: CABERNET Network Report; University of Nottingham: Nottingham, UK, 2006; p. 134. ISBN 978-0-9547474-5-9. [Google Scholar]
- Bardos, R.P.; Jones, S.; Stephenson, I.; Menger, P.; Beumer, V.; Neonato, F.; Maring, L.; Ferber, U.; Track, T.; Wendler, K. Optimising Value from the Soft Re-Use of Brownfield Sites. Sci. Total Environ. 2016, 563–564, 769–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limasset, E.; Fourny, S.; Collet, J.-L.; Michel, P.; Alary, C.; Laboudigue, A. Approche REFRINdd pour Accompagner les Acteurs de la Requalification des Friches Industrielles Potentiellement Polluées dans une Démarche Durable: Guide Méthodologique et Prototype d’Outil d’Accompagnement; ADEME: Angers, France, 2015; p. 104. Available online: https://librairie.ademe.fr/urbanisme-et-batiment/2060-refrindd-phase-2-redeveloppement-de-friches-industrielles-prenant-en-consideration-le-developpement-durable-mise-en-application-de-la-methode-sur-3-zones.html (accessed on 10 October 2022).
- Jacek, G.; Rozan, A.; Desrousseaux, M.; Combroux, I. Brownfields over the Years: From Definition to Sustainable Reuse. Environ. Rev. 2022, 30, 50–60. [Google Scholar] [CrossRef]
- Kantor-Pietraga, I.; Zdyrko, A.; Bednarczyk, J. Semi-Natural Areas on Post-Mining Brownfields as an Opportunity to Strengthen the Attractiveness of a Small Town. An Example of Radzionków in Southern Poland. Land 2021, 10, 761. [Google Scholar] [CrossRef]
- Burghardt, W.; Morel, J.L.; Zhang, G.-L. Development of the Soil Research about Urban, Industrial, Traffic, Mining and Military Areas (SUITMA). Soil Sci. Plant Nutr. 2015, 61, 3–21. [Google Scholar] [CrossRef]
- Howard, J.L. Chapter One—Urban Anthropogenic Soils—A Review. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 165, pp. 1–57. [Google Scholar]
- Schad, P. Technosols in the World Reference Base for Soil Resources—History and Definitions. Soil Sci. Plant Nutr. 2018, 64, 138–144. [Google Scholar] [CrossRef]
- Koul, B.; Taak, P. Ex Situ Soil Remediation Strategies. In Biotechnological Strategies for Effective Remediation of Polluted Soils; Springer: Singapore, 2018; pp. 39–57. ISBN 9789811324192. [Google Scholar]
- O’Brien, P.L.; DeSutter, T.M.; Casey, F.X.M.; Wick, A.F.; Khan, E. Evaluation of Soil Function Following Remediation of Petroleum Hydrocarbons—A Review of Current Remediation Techniques. Curr. Pollut. Rep. 2017, 3, 192–205. [Google Scholar] [CrossRef]
- Bach, E.M.; Ramirez, K.S.; Fraser, T.D.; Wall, D.H. Soil Biodiversity Integrates Solutions for a Sustainable Future. Sustainability 2020, 12, 2662. [Google Scholar] [CrossRef]
- Decaëns, T.; Jiménez, J.J.; Gioia, C.; Measey, G.J.; Lavelle, P. The Values of Soil Animals for Conservation Biology. Eur. J. Soil Biol. 2006, 42, S23–S38. [Google Scholar] [CrossRef]
- Johansson, K.; Nilsson, U.; Örlander, G. A Comparison of Long-Term Effects of Scarification Methods on the Establishment of Norway Spruce. For. Int. J. For. Res. 2013, 86, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Montalvo, A.M.; McMillan, P.A.; Allen, E.B. The Relative Importance of Seeding Method, Soil Ripping, and Soil Variables on Seeding Success. Restor. Ecol. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Ashby, W.C. Soil Ripping and Herbicides Enhance Tree and Shrub Restoration on Stripmines. Restor. Ecol. 1997, 5, 169–177. [Google Scholar] [CrossRef]
- Busso, C.A.; Perez, D.R. Opportunities, Limitations and Gaps in the Ecological Restoration of Drylands in Argentina. Ann. Arid Zone 2019, 57, 191–200. [Google Scholar]
- Hamza, M.A.; Anderson, W.K. Soil Compaction in Cropping Systems. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Lacey, J.E. Deep-Ripping and Decompaction; New York State Department of Environmental Conservation: Albany, NY, USA, 2008; p. 14. Available online: https://www.dec.ny.gov/docs/water_pdf/infildecom08.pdf (accessed on 10 October 2022).
- Carabassa, V.; Domene, X.; Alcañiz, J.M. Soil Restoration Using Compost-like-Outputs and Digestates from Non-Source-Separated Urban Waste as Organic Amendments: Limitations and Opportunities. J. Environ. Manag. 2020, 255, 109909. [Google Scholar] [CrossRef]
- Li, J.; Shao, X.; Huang, D.; Shang, J.; Liu, K.; Zhang, Q.; Yang, X.; Li, H.; He, Y. The Addition of Organic Carbon and Nitrogen Accelerates the Restoration of Soil System of Degraded Alpine Grassland in Qinghai-Tibet Plateau. Ecol. Eng. 2020, 158, 106084. [Google Scholar] [CrossRef]
- Tejada, M.; García-Martínez, A.M.; Parrado, J. Effects of a Vermicompost Composted with Beet Vinasse on Soil Properties, Soil Losses and Soil Restoration. Catena 2009, 77, 238–247. [Google Scholar] [CrossRef]
- Tejada, M.; Hernandez, M.; Garcia, C. Soil Restoration Using Composted Plant Residues: Effects on Soil Properties. Soil Tillage Res. 2009, 102, 109–117. [Google Scholar] [CrossRef]
- Rojas, J.A.; Dhar, A.; Naeth, M.A. Urban Green Spaces Restoration Using Native Forbs, Site Preparation and Soil Amendments—A Case Study. Land 2022, 11, 498. [Google Scholar] [CrossRef]
- Jaunatre, R.; Buisson, E.; Dutoit, T. Can Ecological Engineering Restore Mediterranean Rangeland after Intensive Cultivation? A Large-Scale Experiment in Southern France. Ecol. Eng. 2014, 64, 202–212. [Google Scholar] [CrossRef]
- Kiehl, K.; Kirmer, A.; Donath, T.W.; Rasran, L.; Hölzel, N. Species Introduction in Restoration Projects—Evaluation of Different Techniques for the Establishment of Semi-Natural Grasslands in Central and Northwestern Europe. Basic Appl. Ecol. 2010, 11, 285–299. [Google Scholar] [CrossRef]
- Trueman, I.; Mitchell, D.; Besenyei, L. The Effects of Turf Translocation and Other Environmental Variables on the Vegetation of a Large Species-Rich Mesotrophic Grassland. Ecol. Eng. 2007, 31, 79–91. [Google Scholar] [CrossRef]
- Contos, P.; Wood, J.L.; Murphy, N.P.; Gibb, H. Rewilding with Invertebrates and Microbes to Restore Ecosystems: Present Trends and Future Directions. Ecol. Evol. 2021, 11, 7187–7200. [Google Scholar] [CrossRef]
- De Almeida, T.; Blight, O.; Mesléard, F.; Bulot, A.; Provost, E.; Dutoit, T. Harvester Ants as Ecological Engineers for Mediterranean Grassland Restoration: Impacts on Soil and Vegetation. Biol. Conserv. 2020, 245, 108547. [Google Scholar] [CrossRef]
- Jouquet, P.; Blanchart, E.; Capowiez, Y. Utilization of Earthworms and Termites for the Restoration of Ecosystem Functioning. Appl. Soil Ecol. 2014, 73, 34–40. [Google Scholar] [CrossRef]
- Singh, S.; Singh, J.; Vig, A.P. Earthworm as Ecological Engineers to Change the Physico-Chemical Properties of Soil: Soil vs. Vermicast. Ecol. Eng. 2016, 90, 1–5. [Google Scholar] [CrossRef]
- Blanchart, E.; Lavelle, P.; Braudeau, E.; Le Bissonnais, Y.; Valentin, C. Regulation of Soil Structure by Geophagous Earthworm Activities in Humid Savannas of Côte d’Ivoire. Soil Biol. Biochem. 1997, 29, 431–439. [Google Scholar] [CrossRef]
- Bottinelli, N.; Henry-des-Tureaux, T.; Hallaire, V.; Mathieu, J.; Benard, Y.; Duc Tran, T.; Jouquet, P. Earthworms Accelerate Soil Porosity Turnover under Watering Conditions. Geoderma 2010, 156, 43–47. [Google Scholar] [CrossRef]
- Shipitalo, M.; Le Bayon, R.-C. Quantifying the Effects of Earthworms on Soil Aggregation and Porosity. In Earthworm Ecology; Edwards, C., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 183–200. ISBN 978-0-8493-1819-1. [Google Scholar]
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Peres, G.; Tondoh, J.E.; et al. A Review of Earthworm Impact on Soil Function and Ecosystem Services: Earthworm Impact on Ecosystem Services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Ketterings, Q.M.; Blair, J.M.; Marinissen, J.C.Y. Effects of Earthworms on Soil Aggregate Stability and Carbon and Nitrogen Storage in a Legume Cover Crop Agroecosystem. Soil Biol. Biochem. 1997, 29, 401–408. [Google Scholar] [CrossRef]
- Zhang, W.; Hendrix, P.F.; Dame, L.E.; Burke, R.A.; Wu, J.; Neher, D.A.; Li, J.; Shao, Y.; Fu, S. Earthworms Facilitate Carbon Sequestration through Unequal Amplification of Carbon Stabilization Compared with Mineralization. Nat. Commun. 2013, 4, 2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemente, R.; Hartley, W.; Riby, P.; Dickinson, N.M.; Lepp, N.W. Trace Element Mobility in a Contaminated Soil Two Years after Field-Amendment with a Greenwaste Compost Mulch. Environ. Pollut. 2010, 158, 1644–1651. [Google Scholar] [CrossRef]
- Deeb, M.; Groffman, P.M.; Blouin, M.; Egendorf, S.P.; Vergnes, A.; Vasenev, V.; Cao, D.L.; Walsh, D.; Morin, T.; Séré, G. Using Constructed Soils for Green Infrastructure—Challenges and Limitations. Soil 2020, 6, 413–434. [Google Scholar] [CrossRef]
- Török, P.; Vida, E.; Deák, B.; Lengyel, S.; Tóthmérész, B. Grassland Restoration on Former Croplands in Europe: An Assessment of Applicability of Techniques and Costs. Biodivers. Conserv. 2011, 20, 2311–2332. [Google Scholar] [CrossRef]
- Combroux, I.C.S.; Bornette, G.; Amoros, C. Plant Regenerative Strategies after a Major Disturbance: The Case of a Riverine Wetland Restoration. Wetlands 2002, 22, 234–246. [Google Scholar] [CrossRef]
- Forey, E.; Chauvat, M.; Coulibaly, S.F.M.; Langlois, E.; Barot, S.; Clause, J. Inoculation of an Ecosystem Engineer (Earthworm: Lumbricus Terrestris) during Experimental Grassland Restoration: Consequences for above and Belowground Soil Compartments. Appl. Soil Ecol. 2018, 125, 148–155. [Google Scholar] [CrossRef]
- Maix. Blank Map of Europe cropped.Svg. Wikimedia Common CC by SA2.0. 2007. Available online: https://commons.wikimedia.org/wiki/File:Blank_map_of_Europe_cropped.svg (accessed on 20 November 2022).
- OpenStreetMap. Reichstett Region. 2022. Available online: https://www.openstreetmap.org/#map=11/48.5769/7.8642&layers=H (accessed on 20 November 2022).
- Google Earth. Reichstett Oil Refinery Brownfield (48°39′52.04″ N/7°46′24.58″ E). Landsat/Copernicus Data. 2018. Available online: https://earth.google.com/web/ (accessed on 20 November 2022).
- Boedeltje, G.; ter Heerdt, G.N.J.; Bakker, J.P. Applying the Seedling-Emergence Method under Waterlogged Conditions to Detect the Seed Bank of Aquatic Plants in Submerged Sediments. Aquat. Bot. 2002, 72, 121–128. [Google Scholar] [CrossRef]
- Combroux, I.; Bornette, G.; Willby, N.; Amoros, C. Regenerative Strategies of Aquatic Macrophytes in Flood Disturbed Habitats: The Role of the Propagule Bank. Arch. Hydrobiol. 2001, 152, 215–235. [Google Scholar] [CrossRef]
- Lawrence, A.P.; Bowers, M.A. A Test of the “Hot” Mustard Extraction Method of Sampling Earthworms. Soil Biol. Biochem. 2002, 34, 549–552. [Google Scholar] [CrossRef]
- Butt, K.R.; Lowe, C.N.; Frederickson, J.; Moffat, A.J. The Development of Sustainable Earthworm Populations at Calvert Landfill Site, UK. Land Degrad. Dev. 2004, 15, 27–36. [Google Scholar] [CrossRef]
- Butt, K.; Frederickson, J.; Morris, R. An Earthworm Cultivation and Soil Inoculation Technique for Land Restoration. Ecol. Eng. 1995, 4, 1–9. [Google Scholar] [CrossRef]
- Butt, K.R.; Frederickson, J.; Morris, R.M. The Earthworm Inoculation Unit Technique: An Integrated System for Cultivation and Soil-Inoculation of Earthworms. Soil Biol. Biochem. 1997, 29, 251–257. [Google Scholar] [CrossRef]
- Bissonnais, Y.L. Aggregate Stability and Assessment of Soil Crustability and Erodibility: I. Theory and Methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Bremner, G. A Berlese Funnel for the Rapid Extraction of Grassland Surface Macro-Arthropods. N. Z. Entomol. 1990, 13, 76–80. [Google Scholar] [CrossRef]
- Bokhorst, S.; Berg, M.P.; Wardle, D.A. Micro-Arthropod Community Responses to Ecosystem Retrogression in Boreal Forest. Soil Biol. Biochem. 2017, 110, 79–86. [Google Scholar] [CrossRef]
- R Development Core Team. R: A language and Environment for Statistical Computing; Version 3.6.3; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Oksanen, J.; Blanchet, G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Package “Vegan”; McGlinn Lab: Charleston, SC, USA, 2020. [Google Scholar]
- Mead, A. Review of the Development of Multidimensional Scaling Methods. J. R. Stat. Soc. Ser. D 1992, 41, 27. [Google Scholar] [CrossRef]
- Menta, C.; Conti, F.D.; Pinto, S.; Bodini, A. Soil Biological Quality Index (QBS-Ar): 15 Years of Application at Global Scale. Ecol. Indic. 2018, 85, 773–780. [Google Scholar] [CrossRef]
- Parisi, V.; Menta, C.; Gardi, C.; Jacomini, C.; Mozzanica, E. Microarthropod Communities as a Tool to Assess Soil Quality and Biodiversity: A New Approach in Italy. Agric. Ecosyst. Environ. 2005, 105, 323–333. [Google Scholar] [CrossRef]
- Edwards, A.R.; Mortimer, S.R.; Lawson, C.S.; Westbury, D.B.; Harris, S.J.; Woodcock, B.A.; Brown, V.K. Hay Strewing, Brush Harvesting of Seed and Soil Disturbance as Tools for the Enhancement of Botanical Diversity in Grasslands. Biol. Conserv. 2007, 134, 372–382. [Google Scholar] [CrossRef]
- Blake, R.J.; Woodcock, B.A.; Westbury, D.B.; Sutton, P.; Potts, S.G. New Tools to Boost Butterfly Habitat Quality in Existing Grass Buffer Strips. J. Insect Conserv. 2011, 15, 221–232. [Google Scholar] [CrossRef]
- Woodcock, B.A.; Edwards, A.R.; Lawson, C.S.; Westbury, D.B.; Brook, A.J.; Harris, S.J.; Brown, V.K.; Mortimer, S.R. Contrasting Success in the Restoration of Plant and Phytophagous Beetle Assemblages of Species-Rich Mesotrophic Grasslands. Oecologia 2008, 154, 773–783. [Google Scholar] [CrossRef]
- Pyšek, P.; Prach, K.; Mandák, B. Invasions of Alien Plants into Habitats of Central European Landscape: An Historical Pattern. In Plant Invasions: Ecological Mechanisms and Human Responses; Backhuys Publishers: Leiden, The Netherlands, 1998; pp. 23–32. ISBN 978-90-5782-005-2. [Google Scholar]
- Staentzel, C.; Kondolf, G.M.; Schmitt, L.; Combroux, I.; Barillier, A.; Beisel, J.-N. Restoring Fluvial Forms and Processes by Gravel Augmentation or Bank Erosion below Dams: A Systematic Review of Ecological Responses. Sci. Total Environ. 2020, 706, 135743. [Google Scholar] [CrossRef] [PubMed]
- Drescher, M.S.; Eltz, F.L.F.; Denardin, J.E.; Faganello, A. Persistência do efeito de intervenções mecânicas para a descompactação de solos sob plantio direto. Rev. Bras. Ciência Solo 2011, 35, 1713–1722. [Google Scholar] [CrossRef] [Green Version]
- Courtney, R.; Di Carlo, E.; Schmidt, O. Soil Properties and Earthworm Populations Associated with Bauxite Residue Rehabilitation Strategies. Environ. Sci. Pollut. Res. 2020, 27, 33401–33409. [Google Scholar] [CrossRef]
- Christensen, O.M.; Mather, J.G. Pesticide-Induced Surface Migration by Lumbricid Earthworms in Grassland: Life-Stage and Species Differences. Ecotoxicol. Environ. Saf. 2004, 57, 89–99. [Google Scholar] [CrossRef]
- Mathieu, J.; Barot, S.; Blouin, M.; Caro, G.; Decaëns, T.; Dubs, F.; Dupont, L.; Jouquet, P.; Nai, P. Habitat Quality, Conspecific Density, and Habitat Pre-Use Affect the Dispersal Behaviour of Two Earthworm Species, Aporrectodea Icterica and Dendrobaena Veneta, in a Mesocosm Experiment. Soil Biol. Biochem. 2010, 42, 203–209. [Google Scholar] [CrossRef]
- Capowiez, Y.; Cadoux, S.; Bouchand, P.; Roger-Estrade, J.; Richard, G.; Boizard, H. Experimental Evidence for the Role of Earthworms in Compacted Soil Regeneration Based on Field Observations and Results from a Semi-Field Experiment. Soil Biol. Biochem. 2009, 41, 711–717. [Google Scholar] [CrossRef]
- Curry, J.P.; Boyle, K.E. Growth Rates, Establishment, and Effects on Herbage Yield of Introduced Earthworms in Grassland on Reclaimed Cutover Peat. Biol. Fertil. Soils 1987, 3, 95–98. [Google Scholar] [CrossRef]
- Forey, E.; Barot, S.; Decaëns, T.; Langlois, E.; Laossi, K.-R.; Margerie, P.; Scheu, S.; Eisenhauer, N. Importance of Earthworm–Seed Interactions for the Composition and Structure of Plant Communities: A Review. Acta Oecol. 2011, 37, 594–603. [Google Scholar] [CrossRef]
- Capowiez, Y.; Samartino, S.; Cadoux, S.; Bouchand, P.; Richard, G.; Boizard, H. Role of Earthworms in Regenerating Soil Structure after Compaction in Reduced Tillage Systems. Soil Biol. Biochem. 2012, 55, 93–103. [Google Scholar] [CrossRef]
- Sohrabi, H.; Jourgholami, M.; Lo Monaco, A.; Picchio, R. Effects of Forest Harvesting Operations on the Recovery of Earthworms and Nematodes in the Hyrcanain Old-Growth Forest: Assessment, Mitigation, and Best Management Practice. Land 2022, 11, 746. [Google Scholar] [CrossRef]
- Butt, K.R. Earthworms in Soil Restoration: Lessons Learned from United Kingdom Case Studies of Land Reclamation. Restor. Ecol. 2008, 16, 637–641. [Google Scholar] [CrossRef]
- Zaidi, A.; Wani, P.A.; Khan, M.S. Toxicity of Heavy Metals to Legumes and Bioremediation; Springer: New York, NY, USA, 2012; ISBN 978-3-7091-0729-4. [Google Scholar]
- Viketoft, M.; Bengtsson, J.; Sohlenius, B.; Berg, M.P.; Petchey, O.; Palmborg, C.; Huss-Danell, K. Long-Term Effects of Plant Diversity and Composition on Soil Nematode Communities in Model Grasslands. Ecology 2009, 90, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Hedde, M.; Nahmani, J.; Séré, G.; Auclerc, A.; Cortet, J. Early Colonization of Constructed Technosols by Macro-Invertebrates. J. Soils Sediments 2019, 19, 3193–3203. [Google Scholar] [CrossRef]
- Santorufo, L.; Joimel, S.; Auclerc, A.; Deremiens, J.; Grisard, G.; Hedde, M.; Nahmani, J.; Pernin, C.; Cortet, J. Early Colonization of Constructed Technosol by Microarthropods. Ecol. Eng. 2021, 162, 106174. [Google Scholar] [CrossRef]
- Vergnes, A.; Blouin, M.; Muratet, A.; Lerch, T.Z.; Mendez-Millan, M.; Rouelle-Castrec, M.; Dubs, F. Initial Conditions during Technosol Implementation Shape Earthworms and Ants Diversity. Landsc. Urban Plan. 2017, 159, 32–41. [Google Scholar] [CrossRef]
- Vincent, Q.; Leyval, C.; Beguiristain, T.; Auclerc, A. Functional Structure and Composition of Collembola and Soil Macrofauna Communities Depend on Abiotic Parameters in Derelict Soils. Appl. Soil Ecol. 2018, 130, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Dunger, W.; Voigtländer, K. Soil Fauna (Lumbricidae, Collembola, Diplopoda and Chilopoda) as Indicators of Soil Ecosubsystem Development in Post-Mining Sites of Eastern Germany. Soil Org. 2009, 81, 1–51. Available online: http://soil-organisms.org/index.php/SO/article/view/184 (accessed on 10 October 2022).
- Vanhée, B.; Devigne, C. Differences in Collembola Species Assemblages (Arthropoda) between Spoil Tips and Surrounding Environments Are Dependent on Vegetation Development. Sci. Rep. 2018, 8, 18067. [Google Scholar] [CrossRef] [Green Version]
- Prach, K.; Šebelíková, L.; Řehounková, K.; del Moral, R. Possibilities and Limitations of Passive Restoration of Heavily Disturbed Sites. Landsc. Res. 2020, 45, 247–253. [Google Scholar] [CrossRef]
- Eaton, R.J.; Barbercheck, M.; Buford, M.; Smith, W. Effects of Organic Matter Removal, Soil Compaction, and Vegetation Control on Collembolan Populations. Pedobiologia 2004, 48, 121–128. [Google Scholar] [CrossRef]
- Nielsen, U.N.; Osler, G.H.R.; van der Wal, R.; Campbell, C.D.; Burslem, D.F.R.P. Soil Pore Volume and the Abundance of Soil Mites in Two Contrasting Habitats. Soil Biol. Biochem. 2008, 40, 1538–1541. [Google Scholar] [CrossRef]
- Vreeken-Buijs, M.J.; Hassink, J.; Brussaard, L. Relationships of Soil Microarthropod Biomass with Organic Matter and Pore Size Distribution in Soils under Different Land Use. Soil Biol. Biochem. 1998, 30, 97–106. [Google Scholar] [CrossRef]
- Sparke, S.; Putwain, P.; Jones, J. The Development of Soil Physical Properties and Vegetation Establishment on Brownfield Sites Using Manufactured Soils. Ecol. Eng. 2011, 37, 1700–1708. [Google Scholar] [CrossRef]
Plant Communities | CTL | SCA | POS | EWC | EWL | IRF | REF | ANOVA Test between Techniques Only | ANOVA Test Including References |
---|---|---|---|---|---|---|---|---|---|
Plant cover (%) | |||||||||
Total cover | 92.0± 17.9 a | 84.0 ± 18.8 | 96.0 ± 8.9 | 89.0± 11.4 | 92.03 ± 11.5 | 100.0 ± 0.0 | 99.4 ± 0.5 | ns | ns |
Leguminous | 87.0 ± 19.9 a | 68.8 ± 26.1 a | 90.8 ± 19.7 a | 81.7 ± 9.4 a | 82.1 ± 20.7 a | 13.2 ± 19.1 b | 2.7 ± 1.3 b | ns | *** |
Graminoids | 20.2 ± 14.4 a | 31.5 ± 19.7 a | 18.6 ± 24.8 a | 12.8 ± 10.7 a | 18.8 ± 22.8 a | 70.6 ± 15.4 b | 94.5 ± 6.7 b | ns | *** |
Other forbs | 13.4 ± 4.1 | 23.5 ± 21.8 | 15.4 ± 6.3 | 13.2 ± 9.5 | 13.4 ± 8.3 | 37.0 ± 24.8 | 11.5 ± 12.8 | ns | ns |
Species richness (#m−2) | |||||||||
Total | 5.9 ± 1.6 | 6.7 ± 1.3 | 6.1 ± 1.4 | 5.9 ± 0.8 | 6.2 ± 1.4 | 5.8 ± 0.7 | 4.6 ± 1 | ns | ns |
Leguminous | 1.9 ± 0.8 | 1.6 ± 0.4 | 1.8 ± 0.6 | 1.7 ± 0.7 | 1.8 ± 1 | 1.2 ± 0.5 | 0.9 ± 0.2 | ns | ns |
Graminoids | 1.9 ± 1 | 1.8 ± 0.4 | 1.9 ± 0.6 | 1.7 ± 0.6 | 1.8 ± 0.9 | 1.4 ± 0.5 | 2.1 ± 0.4 | ns | ns |
Other forbs | 2.1 ± 0.9 a,b | 3.3 ± 1.4 a,b | 2.4 ± 0.4 a,b | 2.5 ± 0.3 a,b | 2.6 ± 0.4 a,b | 3.4 ± 1.1 b | 1.6 ± 0.8 a | ns | * |
Diversity index | |||||||||
Total | 1.57 ± 0.3 b | 1.0 ± 0.49 b | 1.4 ± 0.1 a,b | 1.47 ± 0.4 a,b | 1.4 ± 0.2 a,b | 1.6 ± 0.3 b | 0.7 ± 0.3 a | ns | *** |
Leguminous | 0.5 ± 0.3 | 0.86 ± 0.40 | 0.69 ± 0.2 | 0.6 ± 0.6 | 0.7 ± 0.2 | 0.5 ± 0.3 | 0.6 ± 0.3 | ns | ns |
Graminoids | 0.8 ± 0.2 | 0.8 ± 0.31 | 0.9 ± 0.3 | 0.8 ± 0.3 | 0.8 ± 0.5 | 0.5 ± 0.5 | 0.3 ± 0.1 | ns | ns |
Other forbs | 1.0 ± 0.6 a,b | 1.6 ± 0.32 b | 1.3 ± 0.2 a,b | 1.3 ± 0.2 a,b | 1.4 ± 0.2 a,b | 1.3 ± 0.1 a,b | 0.7 ± 0.6 a | ns | ** |
Dry biomass (g·m−2) | |||||||||
Total | 1203 ± 854 | 900 ± 643 | 935 ± 570 | 647 ± 373 | 878 ± 456 | 439 ± 100 | 333 ± 80 | ns | ns |
Leguminous | 9150 ± 786 | 665 ± 545 | 812 ± 515 | 595 ± 37 | 729 ± 523 | 12± 11 | 3 ± 3 | ns | ns |
Other forbs | 56 ± 69 | 34 ± 42 | 83 ± 73 | 37 ± 22 | 26 ± 31 | 24 ± 17 | 8 ± 13 | ns | ns |
Graminoids | 231± 215 a–c | 201 ± 147 a–c | 41 ± 50 c | 15 ± 10 c | 124 ± 192 a,c | 402 ± 99 b | 322 ± 81 a,b | ns | *** |
Invasive species | |||||||||
Species (n) | 0.4 ± 0.5 a | 1.2 ± 0.4 b | 0.8 ± 0.4 a,b | 1.5 ± 0.5 b | 1.2 ± 0.4 b | 0.6 ± 0.5 a | 0 a | ns | *** |
Cover (%) | 4.2 ± 4.0 | 2.0 ± 2.0 | 3.0 ± 5.0 | 7.2 ± 10.0 | 6.0 ± 8.0 | 1.0 ± 1.0 | 0 | ns | ns |
Soil Fauna Communities | T0 | CTL | SCA | POS | EWC | EWL | IRF | REF | Kruskal |
Class richness | 0.8 ± 1.1 a | 6.0 ± 2.2 b | 5.2 ± 0.8 b | 3.6 ± 0.9 b | 4.2 ± 0.5 a,b | 5.8 ± 1.1 b | 5.2 ± 1.6 b | 9.0 ± 1.0 b | *** |
Diversity index (Shannon) | 0.18 ± 0.33 a | 1.07 ± 0.31 b | 0.90 ± 0.27 b | 0.60 ± 0.32 a,b | 0.57 ± 0.23 a,b | 0.93 ± 0.32 b | 0.80 ± 0.22 a,b | 1.14 ± 0.26 b | *** |
Individuals (ind·m−2) | |||||||||
Total | 238 ± 410 a | 10243 ± 11252 b | 10088 ± 5525 b | 11388 ± 6739 b | 9176 ± 5445 b | 8012 ± 6681 b | 9215 ± 4807 b | 12086 ± 4886 b | *** |
Acari | 170 ± 340 b | 1300 ± 1249 a | 4171 ± 4662 a | 2212 ± 1560 a,b | 2794 ± 3981 a | 1106 ± 775 a,b | 6266 ± 2167 a | 5762 ± 4783 a | *** |
Collembola | 26 ± 50 b | 6984 ± 8692 a | 4171 ± 4503 a | 8866 ± 5770 a | 6111 ± 2899 a | 2929 ± 1688 a | 1998 ± 2700 a | 3356 ± 2875 a | *** |
Nematoda | 0 b | 873 ± 1794 a,b | 19 ± 43 a,b | 0 ab | 0 a,b | 39 ± 53 a,b | 349 ± 521 a,b | 621 ± 311 a | *** |
Coleoptera larvae | 15 ± 80 | 194 ± 168 | 58 ± 87 | 78 ± 126 | 19 ± 43 | 58 ± 126 | 78 ± 81 | 136 ± 111 | ns |
Diptera larvae | 15 ± 50 a | 504 ± 619 a,b | 1436 ± 1993 b | 175 ± 199 a,b | 58 ± 130 a,b | 3570 ± 6266 a,b | 175 ± 260 a,b | 233 ± 243 a,b | *** |
Other | 12 ± 50 a | 388 ± 434 b | 233 ± 130 b | 58 ± 53 b | 194 ± 119 b | 310 ± 269 a,b | 349 ± 340 a,b | 1979 ± 1893 b | *** |
Collembola functional groups (ind·m−2) | |||||||||
Epiedaphic | 15 ± 35 b | 369 ± 210 a,b | 834 ± 1169 a | 369 ± 269 a,b | 213 ± 372 a,b | 349 ± 311 a,b | 233 ± 130 a,b | 407 ± 520 a,b | *** |
Hemiedaphic | 9 ± 28 b | 5665 ± 8131 a | 3104 ± 3515 a,b | 7702 ± 2548 a | 3861 ± 1025 a | 2192 ± 1518 a | 1455 ± 2283 a,b | 2018 ± 2708 a,b | *** |
Euedaphic | 3 ± 17 b | 951 ± 1325 a | 233 ± 176 a,b | 795 ± 1008 a | 2037 ± 1669 a | 388 ± 369 a,b | 310 ± 419 a,b | 931 ± 1134 a | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacek, G.; Rozan, A.; Combroux, I. Are Mechanical and Biological Techniques Efficient in Restoring Soil and Associated Biodiversity in a Brownfield Site? Land 2022, 11, 2133. https://doi.org/10.3390/land11122133
Jacek G, Rozan A, Combroux I. Are Mechanical and Biological Techniques Efficient in Restoring Soil and Associated Biodiversity in a Brownfield Site? Land. 2022; 11(12):2133. https://doi.org/10.3390/land11122133
Chicago/Turabian StyleJacek, Guillaume, Anne Rozan, and Isabelle Combroux. 2022. "Are Mechanical and Biological Techniques Efficient in Restoring Soil and Associated Biodiversity in a Brownfield Site?" Land 11, no. 12: 2133. https://doi.org/10.3390/land11122133
APA StyleJacek, G., Rozan, A., & Combroux, I. (2022). Are Mechanical and Biological Techniques Efficient in Restoring Soil and Associated Biodiversity in a Brownfield Site? Land, 11(12), 2133. https://doi.org/10.3390/land11122133